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Abstract We study the stability under scalar perturbations,
and we compute the quasinormal modes of the Einstein–
Born–Infeld dilaton spacetime in 1 + 3 dimensions. Solv-
ing the full radial equation in terms of hypergeometric func-
tions, we provide an exact analytical expression for the spec-
trum. We find that the frequencies are purely imaginary,
and we confirm our results by computing them numerically.
Although the scalar field that perturbs the black hole is elec-
trically neutral, an instability similar to that seen in charged
scalar perturbations of the Reissner–Nordström black hole is
observed.

1 Introduction

Black holes (BHs), a generic prediction of Einstein’s Gen-
eral Relativity (GR) [1], are way more than just mathemati-
cal objects. After Hawking’s seminal work [2,3] in which it
was shown that BHs emit radiation from their horizon, these
objects have attracted a lot of attention over the last decades,
as they comprise an excellent laboratory to study and under-
stand several aspects of gravitational theories. In particular,
the study of BHs has received considerable attention in the
context of scale dependent theories (see e.g. [4–8]), where
certain deviations from the classical solution appear.

On the other hand, how a system responds to small pertur-
bations has always been an important issue in Physics. The
work of [9] marked the birth of BH perturbations, and it was
later extended by [10–14]. The state-of-the art in BH pertur-
bations is summarized in Chandrasekhar’s monograph [15].
When BHs are perturbed, the geometry of spacetime under-
goes dumbed oscillations. Quasinormal modes (QNMs), with
a non-vanishing imaginary part, carry unique information
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about the few BH parameters, since they do not depend on the
initial conditions. After the LIGO direct detections of gravi-
tational waves [16–18], that offer us the strongest evidence so
far that BHs exist and merge, QNMs of black holes are more
relevant than ever. By observing the quasinormal spectrum,
that is frequencies and damping rates, we can determine the
mass, angular momentum and charge of the BH, and even fal-
sify the theoretical paradigm of the no-hair conjecture [19].
QNMs of BHs have been extensively studied in the literature.
For a review on the subject see [20], and for a more recent
one [21].

Relativistic scattering of waves has been traditionally
studied in asymptotically flat spacetimes without a cosmo-
logical constant, such as Schwarzschild [22], Kerr [23] and
Reissner–Norstrom [24] BHs, see e.g. [25–31]. However,
due to inflation [32], the current cosmic acceleration [33,34]
and the AdS/CFT correspondence [35,36], asymptotically
non-flat spacetimes with a positive or negative cosmological
constant have also been studied over the years [37–47]. In
[48,49], however, the authors have found black hole solu-
tions in three and four dimensions that are neither asymptot-
ically flat nor asymptotically (anti) de Sitter. In those works
the model is described by the Einstein–Born–Infeld dilaton
action. Originally the Born–Infeld non-linear electrodynam-
ics was introduced in the 30’s in order to obtain a finite self-
energy of point-like charges [50]. During the last decades
this type of action reappears in the open sector of superstring
theories [51,52] as it describes the dynamics of D-branes
[53,54]. Furthermore, in the closed sector of all superstring
theories at the massless level the graviton is accompanied
by the dilaton that determines the string coupling constant.
Since superstring theory is so far the only consistent the-
ory of quantum gravity, it is more than natural to study the
QNM of black hole solutions obtained in the framework of
Einstein–Born–Infeld dilaton models.

Computing the QNM frequencies in an analytical way
is possible in a few cases only [55–61], while in most of
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the cases some numerical scheme [62–65] or semi-analytical
methods are employed, such as the well-known from stan-
dard quantum mechanics WKB method used extensively in
the literature [66–76]. In the present work we obtain an exact
analytical expression for the quasinormal spectrum of a four-
dimensional Einstein–Born–Infeld dilaton spacetime, which
is well motivated since it contains ingredients found in super-
string theory. For a neutral BH, such as the Schwarzschild
one, the scalar, vector and tensor perturbations can be studied
separately. If, however, the BH is electrically charged then
electromagnetic and gravitational perturbations are coupled
and must be studied simultaneously [69]. Therefore, in this
work we take the first step to study the stability against scalar
perturbations by perturbing the BH with a probe scalar field
Φ, not to be confused with the dilaton φ (see the discussion
below), hoping to be able to address the problem of the cou-
pled electromagnetic-gravitational perturbation in a future
work.

Our work is organized as follows: After this introduction,
we present the model and the BH solution in the next section.
In Sect. 3 we discuss scalar perturbations where we present
the effective potential of the Schrödinger-like equation, while
in the fourth section we solve the radial equation in terms
of hypergeometric functions. In Sect. 5 we obtain an exact
expression for the quasinormal modes, and in Sect. 6 we
compare our solution with numerical results obtained with
a recently developed method [62]. Finally, we conclude our
work in the last section. We use natural units such that c =
h̄ = 1 and metric signature (−,+,+,+).

2 The model and the BH background

Our starting point is the model considered in [49] described
by the action

S[gμν, Aμν, φ] =
∫

d4x
√−g

[
R − 2(∇φ)2 − V (φ)

+ 4γ e−2κφ(1 − √
1 + Y )

]
, (1)

where

Y = FμνFμν

2γ
, (2)

and where R is the Ricci scalar, g is the determinant of the
metric tensor gμν , Fμν is the electromagnetic field strength,
φ is the dilaton with a self-interaction potential V (φ) =
2Λe−2κφ , γ is the Born–Infeld parameter, and κ is the dila-
ton coupling constant. Assuming static spherically symmet-
ric solutions, the line element of the metric is found to be
[49]

ds2 = − f (r)dt2+ f (r)−1dr2+e2κφ(dθ2+sin2 θ dϕ2), (3)

while the dilaton is given by [49]

φ(r) = κ

1 + κ2 ln(br − c), (4)

where b, c are constants of integration. In the following we
set for convenience and without loss of generality b = 1 and
c = 0. Since the model is string inspired, in the following
we shall consider the string coupling case κ = 1. Then the
line element takes the form

ds2 = −
( r

L
− r0

)
dt2 +

( r

L
− r0

)−1
dr2

+ r(dθ2 + sin2 θ dϕ2), (5)

where the constant r0 is related to the mass of the black hole,
r0 = 4M [49], while L is given by

L−1 = 2(1 − Λ − 2H), (6)

where the constant H is given by [49]

H = −γ +
√

γ (Q2 + γ ), (7)

and the charge Q of the black hole is given by [49]

Q2 = 1 + √
1 + 16γ 2

8γ
. (8)

There is a single event horizon rH = Lr0, and therefore the
metric function can be written down equivalently as f (r) =
(r − rH )/L . Overall, the model is characterized by 3 free
parameters, namely γ,Λ, M . The horizon depends on all of
them while while L does not depend on the mass of the black
hole.

3 Scalar perturbations

In this section we study the propagation of a probe mini-
mally coupled massless scalar field Φ(t, r, θ, ϕ) in a given
gravitational background of the form

ds2 = − f (r)dt2 + f (r)−1dr2 + r(dθ2 + sin2 θ dϕ2), (9)

with a known metric function f (r) = (r −rH )/L . The start-
ing point is the well-known wave equation

1√−g
∂μ(

√−ggμν∂ν)Φ = 0, (10)
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which is a partial differential equation for the scalar field.
Next we seek solutions where the time and angular depen-
dence are known as follows

Φ(t, r, θ, ϕ) = e−iωt R(r)Ym
l (θ, ϕ), (11)

with Ym
l being the usual spherical harmonics. Using the

above ansatz it is straightforward to obtain the radial equa-
tion, which is an ordinary differential equation

R′′ +
(
h′

h
+ 1

r

)
R′ +

(
ω2

h2 − l(l + 1)

rh

)
R = 0, (12)

where the prime denotes differentiation with respect to radial
distance r . Next, we recast the equation for the radial part into
a Schrödinger-like equation of the form

d2ψ

dx2 + (ω2 − V (x))ψ = 0, (13)

by defining new variables, a dependent R → ψ as well as an
independent one r → x as follows

R = ψ√
r
, (14)

x =
∫

dr

f (r)
= L ln

(r − rH
d

)
, (15)

with x being the so-called tortoise coordinate, and d is a con-
stant of integration which will be taken as unity. Therefore,
we obtain the expression for the effective potential

V (r) = h(r)

(
l(l + 1)

r
+ h′(r)

2r
− h(r)

4r2

)
, (16)

which can be simplified to be

V (r) = V0 − rHl(l + 1)

Lr
− r2

H

4L2r2 , (17)

where the constant term is given by V0 = (Ll(l + 1) +
1/4)/L2. The effective potential barrier versus the radial
coordinate can be seen in Figs. 1 and 2 where we plot it
for different γ and Λ, respectively. Since it does not exhibit
a maximum the WKB approximation is not applicable, and
therefore we shall turn our attention to a different method for
the numerical verification of our main analytical expression,
see eq. (43) below.

Finally, the Schrödinger-like equation must be supple-
mented by appropriate boundary conditions at horizon and
at infinity, which are the following [77]

ψ(x) →
⎧⎨
⎩

Aeiωx if x → −∞

C+eik∞x + C−e−ik∞x if x → +∞
(18)

Fig. 1 Effective potential versus r for l = 0, M = 2,Λ = 0.1 and
γ = 0.1 (solid red line), γ = 0.5 (dashed blue line) and γ = 2 (dotted-
dashed magenta line)

Fig. 2 Effective potential versus r for l = 0, M = 2, γ = 0.5 and
Λ = 0.001 (solid red line), Λ = 0.01 (dashed blue line) and Λ = 0.1
(dotted-dashed magenta line)

where A,C+,C− are arbitrary constants, and k∞ depends on
the value of the effective potential at infinity. Up to now, fol-
lowing the procedure just described one can compute the so-
called greybody factors, which show the modification of the
original spectrum of Hawking radiation due to the effective
potential barrier, and where the frequency is real and takes
continuous values. For an incomplete list see e.g. [25–31,37–
47] and references therein. Now, the QNMs are determined
requiring that the first coefficient of the second condition van-
ishes, i.e. C+ = 0 [78]. The purely ingoing wave physically
means that nothing can escape from the horizon, while the
purely outgoing wave corresponds to the requirement that no
radiation is incoming from infinity. We thus obtain an infi-
nite set of discrete complex numbers ωn = ωR +ωI i , which
are precisely the QNM frequencies of the black hole. Given
the time dependence of the probe scalar field Φ ∼ e−iωt ,
it is clear that unstable modes correspond to ωI > 0, while
stable modes correspond to ωI < 0. In addition, the real
part of the mode ωR determines the period of the oscillation,
T = 2π/ωR , while the imaginary part |ωI | describes the
decay of the fluctuation at a time scale tD = 1/|ωI |.

Since at the horizon the effective potential vanishes, the
general solution for the function ψ close to the horizon
(where ω2 � V (x)) is given by
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ψ(x) = A+eiωx + A−e−iωx , (19)

while requiring purely ingoing solution we set A− = 0 [44,
46], and thus the solution becomes

ψ(x) = Aeiωx . (20)

On the other hand, it is easy to check that at large r (or at
large x , since when r � rH , r 	 ex/L ) the potential tends to
the constant V0, and therefore defining Ω ≡ √

ω2 − V0 the
solution for ψ is given by

ψ(x) = D+eiΩx + D−e−iΩx . (21)

Therefore, the far-field solution expressed in the tortoise
coordinate x takes the form of ingoing and outgoing plane
waves provided that ω2 > V0, while the QNMs are deter-
mined by requiring that D+ = 0.

4 Solution of the full radial equation in terms of
hypergeometric functions

Next, we find an exact solution of the radial equation (12)
in terms of hypergeometric functions by introducing z =
1 − rH/r . The new equation for z reads

z(1 − z)Rzz + (1 − z)Rz +
(
A

z
+ B

−1 + z

)
R = 0, (22)

where A = (ωL)2, B = −(ωL)2 + Ll(l + 1). To get rid of
the poles we set

R = zα(1 − z)βF, (23)

where now F satisfies the following differential equation

z(1 − z)Fzz + [1 + 2α − (1 + 2α + 2β)z]Fz
+

(
Ā

z
+ B̄

−1 + z
− C

)
F = 0, (24)

and the new constants are given by

Ā = A + α2, (25)

B̄ = B + β − β2, (26)

C = (α + β)2. (27)

Demanding that Ā = 0 = B̄ we obtain the Gauss’ hyperge-
ometric equation

z(1 − z)Fzz + [c − (1 + a + b)z]Fz − abF = 0, (28)

and we determine the parameters α, β as follows

α = iωL , (29)

β = 1

2
+ i

√
(ωL)2 − Ll(l + 1) − 1

4
. (30)

Finally, the three parameters of Gauss’ equation are given by

c = 1 + 2α, (31)

a = α + β, (32)

b = α + β. (33)

Note that the parameters a, b, c satisfy the condition c−a−
b = 1 − 2β. Therefore, the solution for the radial part is
given by

R(z) = Dzα(1 − z)βF(a, b; c; z), (34)

where D is an arbitrary coefficient, and the hypergeometric
function can be expanded in a Taylor series as follows

F(a, b; c; z) = 1 + ab

c
z + · · · (35)

Note that the above solution for the choice of α = iωL
reproduces the purely ingoing solution at the horizon (20), as
it can be seen from the fact that close to the horizon (z → 0),
the radial part becomes R(z) 	 Dzα , and the parameter z
can be written approximately z 	 (r − rH )/rH = ex/L/rH .

5 Exact quasinormal spectrum

To see how the radial part behaves in the far-field zone r �
rH (where z → 1) we use the transformation [79]

F(a, b; c; z) = Γ (c)Γ (c − a − b)

Γ (c − a)Γ (c − b)

× F(a, b; a + b − c + 1; 1 − z) +
(1 − z)c−a−b Γ (c)Γ (a + b − c)

Γ (a)Γ (b)

× F(c − a, c − b; c − a − b + 1; 1 − z),

(36)

and therefore the radial part as z → 1 reads

R(z → 1) = D(1 − z)β
Γ (1 + 2α)Γ (1 − 2β)

Γ (1 + α − β)Γ (1 + α − β)

+ D(1 − z)1−β Γ (1 + 2α)Γ (−1 + 2β)

Γ (α + β)Γ (α + β)
. (37)

Since z = 1 − (rH/r), the radial part R(r) for r � rH can
be written down as follows

R(r) 	 D
Γ (1 + 2α)Γ (1 − 2β)

Γ (1 + α − β)Γ (1 + α − β)

(rH
r

)β

+D
Γ (1 + 2α)Γ (−1 + 2β)

Γ (α + β)Γ (α + β)

(rH
r

)1−β

. (38)
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Upon defining new constants D1, D2 as follows

D1 = D
Γ (1 + 2α)Γ (1 − 2β)

Γ (1 + α − β)Γ (1 + α − β)
, (39)

D2 = D
Γ (1 + 2α)Γ (−1 + 2β)

Γ (α + β)Γ (α + β)
, (40)

the function ψ that satisfies the Schrödinger-like equation
takes the form

ψ 	 D1 r
β
He

−iIm(β) x
L + D2 r

1−β
H eiIm(β) x

L . (41)

In the final step of the calculation we apply the boundary
condition D2 = 0, as we mentioned when we discussed
scalar perturbation in Sect. 3. We require that the Gamma
function in the denominator has a pole, and therefore the
QNMs are determined imposing the condition

α + β = −n, (42)

with n = 0, 1, 2, ... being the overtone number. Using the
previous expressions for α and β we obtain the formula

ωn = i

(
n + 1

2

2L
− 1

8L(n + 1
2 )

− l(l + 1)

2(n + 1
2 )

)
(43)

which is our main result in the present work. We can imme-
diately observe the following three features of the spectrum,
namely a) the QNMs are purely imaginary, b) they do not
depend on rH , so they depend on γ and Λ only, but not
on the mass of the black hole, and c) all modes for n = 0
become ωn=0 = −l(l+1)i , and therefore they do not depend
on any of the BH properties. In particular, the fundamental
mode l = 0, n = 0 is precisely zero, while for l > 0 all
modes corresponding to n = 0 are stable. In Table 1 we
compare our exact values with the ones computed numeri-
cally, while in the Figs. 3 and 4 we show how the imaginary
part of the frequencies change with γ and with Λ respectively
for l = 0, n = 1. Our figures show that the mode changes
sign depending on the value of the cosmological constant Λ

as well as the Born–Infeld parameter γ (or equivalently the
electric charge Q). In particular, for low charge (large γ ) the
imaginary part is positive, whereas as the charge grows at a
certain point the imaginary part becomes negative. Interest-
ingly enough, a behaviour similar to that found in [80,81]
is observed, although the scalar field that perturbs the BH
in the present work is not electrically charged. Contrary to
these works, however, where it was found that all modes with
l > 0 were stable, our results show that for any value of the
angular momentum there is a certain value of the overtone
number after which the modes become unstable.

Table 1 Scalar QNMs of Einstein–Born–Infeld dilaton black hole for
various values of γ and Λ. l, n are the angular momentum and over-
tone number, respectively, and L−1 = 2(1 − Λ − 2H), see text. The
values without the parenthesis are the exact QNMs, while the ones in
the parenthesis are the numerical values

n l = 0 l = 1 l = 2

γ = 0.112, Λ = 0.01 (L = 3.00993)

0 0 − 2i − 6i

(0.000) (− 2.000i) (− 6.000i)

1 0.221489i − 0.445178i − 1.77851i

(0.221489i) (− 0.445178i) (− 1.77851i)

2 0.39868i − 0.00131968i − 0.80132i

(0.39868i) (− 0.00131968i) (− 0.80132i)

3 0.569543i 0.283829i − 0.2876i

(0.569543i) (0.283829i) (− 0.2876i)

γ = 0.5, Λ = 0.1 (L=1.77326)

0 0 − 2i − 6i

(0.000) (− 2.000i) (− 6.000i)

1 0.375955i − 0.290712i − 1.62405i

(0.375955i) (− 0.290712i) (− 1.62405i)

2 0.676718i 0.276718i − 0.523282i

(0.676718i) (0.276718i) (− 0.523282i)

3 0.966741i 0.681026i 0.109598i

(0.966741i) (0.681026i) (0.109598i)

γ = 2, Λ = 0.001 (L=1.06867)

0 0 − 2i − 6i

(0.000) (− 2.000i) (− 6.000i)

1 0.623828i − 0.0428385i − 1.37617i

(0.623828i) (− 0.0428385i) (− 1.37617i)

2 1.12289i 0.722891i − 0.0771093i

(1.12289i) (0.722891i) (− 0.0771093i)

3 1.60413i 1.31842i 0.746987i

(1.60413i) (1.31842i) (0.746987i)

Fig. 3 Imaginary part of the QN modes versus γ for l = 0, n = 1
and Λ = 0.2 (solid red line), Λ = 0.25 (dashed blue line) and Λ = 0.3
(dotted-dashed magenta line)
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Fig. 4 Imaginary part of the QN modes versus Λ for l = 0, n = 1
and γ = 0.1 (solid red line), γ = 0.15 (dashed blue line) and γ = 0.2
(dotted-dashed magenta line)

6 Numerical results

We review a non grid-based interpolation scheme, proposed
by Lin et al. [62]. This method makes use of data points in
a small region of a query point to estimate its derivatives by
employing Taylor expansion. The data points can be scat-
tered, therefore they do not sit on a grid. A key step of the
method is to discretize the unknown eigenfunction in order to
transform a differential equation and its boundary conditions
into a homogeneous matrix equation. Based on the informa-
tion about N scattered data points, Taylor series are carried
out for the unknown eigenfunction up to N -th order for each
discretized point. The resulting homogeneous system of lin-
ear algebraic equations is solved for the eigenvalue. A huge
advantage of this method is that the discretization of the wave
function and its derivatives are made to be independent of any
specific metric through coordinate transformation.

This method has been tested thoroughly for its accuracy
and efficiency to various differential equation and eigenvalue
problems in [62,63], and [64]. The QNM results have been
compared with WKB approximation [66,67] (up to the sixth
order), Horowit z-Hubeny method [82], and continued frac-
tion method [83] achieving very good precision.

We have applied the present method to compute the scalar
QNMs of a four-dimensional Einstein–Born–Infeld dilaton
black hole, and our numerical results are summarized in Table
1.

We observe that the numerical results agree perfectly with
our main result shown in eq. (43). We immediately see that
for n = 0 the modes depend only on the angular momen-
tum l, irrespectively of the choice of γ and Λ, which is in
agreement with ωn=0 = −l(l + 1)i obtained in the previous
section. For l = 0, the aforementioned fundamental mode is
exactly zero, while for l ≥ 1, as l increases, the modes decay
faster while more stable overtones begin to appear. This is
to be expected, since larger angular momentum increases
the height of the potential stabilizing the system. Finally, we

observe that as L decreases the stable overtones decay slower
while the unstable ones grow faster.

7 Conclusions

To summarize, in this article we have studied the stability
under scalar perturbations of (1+3)-dimensional Einstein–
Born–Infeld dilaton spacetimes, and we have provided an
exact analytical expression for the frequencies, which are
found to be purely imaginary. We have confirmed our results
computing the frequencies numerically using a recently
developed non grid-based numerical scheme. In addition, an
instability similar to that seen in charged scalar perturbations
of the Reissner–Nordström black hole is observed, although
in our work the scalar field that perturbs the BH is not elec-
trically charged.
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