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Abstract We introduce ScannerBit, the statistics and sam-
pling module of the public, open-source global fitting frame-
work GAMBIT. ScannerBit provides a standardised inter-
face to different sampling algorithms, enabling the use and
comparison of multiple computational methods for inferring
profile likelihoods, Bayesian posteriors, and other statistical
quantities. The current version offers random, grid, raster,
nested sampling, differential evolution, Markov Chain Monte
Carlo (MCMC) and ensemble Monte Carlo samplers. We
also announce the release of a new standalone differential
evolution sampler, Diver, and describe its design, usage and
interface to ScannerBit. We subject Diver and three other
samplers (the nested sampler MultiNest, the MCMC GreAT,
and the native ScannerBit implementation of the ensemble
Monte Carlo algorithm T-Walk) to a battery of statistical
tests. For this we use a realistic physical likelihood func-
tion, based on the scalar singlet model of dark matter. We
examine the performance of each sampler as a function of its
adjustable settings, and the dimensionality of the sampling
problem. We evaluate performance on four metrics: optimal-
ity of the best fit found, completeness in exploring the best-fit
region, number of likelihood evaluations, and total runtime.
For Bayesian posterior estimation at high resolution, T-Walk
provides the most accurate and timely mapping of the full
parameter space. For profile likelihood analysis in less than
about ten dimensions, we find that Diver and MultiNest score
similarly in terms of best fit and speed, outperforming Gre AT
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and T-Walk; in ten or more dimensions, Diver substantially
outperforms the other three samplers on all metrics.
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1 Introduction

Science has entered an era of increasing computational com-
plexity. Large data sets and burgeoning model complexity
have necessitated the development of increasingly sophisti-
cated and efficient analysis techniques. As datasets and theo-
ries in particle physics and cosmology have become more
computationally expensive to work with, the problem of
efficiently and comprehensively sampling model parameter
spaces has become steadily more challenging. Simple ran-
dom parameter sampling (e.g. [1,2]) has gradually proven
more inadequate as time goes on, as it typically leads to
incomplete and biased inferences when applied to all but the
simplest problems.

Workers in various fields have employed increasingly
advanced numerical and statistical methods to deal with this
challenge. Bayesian numerical techniques such as Markov
Chain Monte Carlos (MCMCs) became particularly popular
in cosmology, because of their theoretical near-linear scal-
ability with parameter dimensionality. Cosmic Microwave
Background (CMB) analyses were amongst the first such
applications of MCMCs [3], with later improvements and
optimisations brought about through the use of adaptive
techniques and robust convergence criteria [4—6]. MCMCs
also proved popular in particle physics, for the exploration
of moderately complex supersymmetric model parameter
spaces [7-11]. Nested sampling [12] gradually displaced
MCMCs in many such applications [13—16], owing to its
efficiency for mapping posterior distributions and calculating
the Bayesian evidence, especially when dealing with multi-
modal likelihoods [17].

Because the likelihood functions involved are computa-
tionally expensive (see e.g. [18,19]), fully frequentist Ney-
man constructions are typically not possible. A popular
alternative to Bayesian inference is to examine the prior-
independent profile likelihood. However, Bayesian methods
such as MCMCs and nested sampling are not necessarily
optimal sampling strategies in this case [20]. Estimating the
Bayesian posterior requires integrating the likelihood in var-
ious directions of the parameter space, whereas the profile
likelihood relies instead on maximising it in those directions.
From the perspective of numerical analysis, to a first approxi-
mation Bayesian sampling is an integration problem, whereas
profile likelihood estimation is an optimisation problem. It
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is therefore unsurprising that modern multi-modal optimi-
sation strategies such as genetic algorithms and differential
evolution have proven more efficient than Bayesian methods
in some applications of the profile likelihood [20,21].

This picture is further complicated by additional require-
ments not present in traditional optimisation problems. To be
able to infer reliable confidence intervals on parameters, the
likelihood function must be sampled sufficiently well around
the maximum to allow isolikelihood contours to be inferred.
Unfortunately, determination of the global best-fit point does
not necessarily guarantee that this will be the case. In this
respect, some Bayesian methods can in fact be more effi-
cient than optimisers, even if they are less efficient at finding
the global maximum [22]. Another issue is the degree to
which the resulting confidence intervals achieved in the pro-
file likelihood analysis have the expected statistical coverage
properties [23-26]; this can be strongly influenced by the
choice of scanning algorithm.

In this paper we provide a detailed manual for Scanner-
Bit, a package designed to provide a common interface to
a range of different sampling algorithms, so that the perfor-
mance of the different algorithms can be easily compared,
and the most appropriate algorithm (or combination thereof)
chosen for the problem at hand. We also carry out some
such comparisons of sampling algorithms, and provide rec-
ommended settings for different samplers.

ScannerBit is designed to be modular and expandable,
allowing it to access a multitude of different samplers in a
plug and play fashion. As the GAMBIT project grows, we
will continually add scanners to the ScannerBit suite. Users
can also easily implement various scanners to meet their per-
sonal needs. ScannerBit initially ships with four production-
quality scanners: an adaptive MCMC (GreAT), an ensemble
MCMC (T-Walk), a nested sampler (MultiNest) and a differ-
ential evolution sampler (Diver). GreAT [27] and MultiNest
[17] are existing external packages. Diver is a new exter-
nal package that we describe for the first time here. T-Walk
is implemented natively in ScannerBit. The ScannerBit
package also contains a postprocessor and a series of simple
scanners, including random, grid and list-based samplers and
a more basic toy MCMC (for tutorial purposes).

All the scanners initially accessible from ScannerBit are
designed for the calculation of profile likelihoods or Bayesian
posteriors, such that they select optimal parameter combi-
nations for which to perform likelihood calculations. These
samplers therefore require the likelihood to be explicitly cal-
culable for any parameter combination, either by parametri-
sation or numerical approximation. The design of Scanner-
Bit is not limited to this operation mode, however, and can
easily support methods that do not require explicit calculation
of a likelihood, such as Approximate Bayesian Computation
[28].

ScannerBit can either be used within its parent code
GAMBIT [29], or as a standalone package, or simply inter-
faced directly to an external likelihood function.

We begin by describing the ScannerBit package in Sect.
2, before giving the implementation details and the underly-
ing statistical methods that we employ in Sect. 3. The user
interface is covered in Sect. 4, and the simple scanners in Sect.
5. Sections 6—10 respectively describe the postprocessor,
MCMC, ensemble MCMC, nested sampler and differential
evolution samplers. In Sect. 11 we perform a detailed com-
parison of the different algorithms implemented in Scan-
nerBit, and their available parameters and options. We sum-
marise in Sect. 12, then provide an extensive set of appen-
dices. These cover the sources, options and outputs of our dif-
ferential evolution sampler Diver (Appendix A), Scanner-
Bit options and outputs for all five major scanners (Appendix
B), examples of how to implement new priors (Appendix C),
examples of adding new scanners and objective functions
(Appendix D), some supplementary comparisons of scan-
ner performance (Appendix E), a minimal example input file
(Appendix F), and a glossary of the most commonly-used
GAMBIT terms (Appendix G).

More details on GAMBIT itself can be found in Ref. [29],
on its various physics modules in Refs. [19,30-32], and on
first physics results in Refs. [33-35].

2 Package description

To efficiently sample an n-dimensional parameter space,
ScannerBit works by separating the sampling problem into
three distinct steps:

1. Choosing n values in the interval between O and 1.
Taken together, these values constitute a ‘point’ in the
n-dimensional ‘unit hypercube’.

2. Transforming the point in the unit hypercube into a point
in the physical n-dimensional parameter space.

3. Passing the values of the physical parameters to a user-
specified function, which may compute a number of
things from the parameter values, including theoretical
predictions of different observable quantities and cor-
responding likelihoods, based on e.g. comparison with
experimental data.

The steps then repeat until some convergence criterion is
satisfied, with the results of Step 3 used to help choose the
next point in the unit hypercube in the subsequent iteration
of Step 1.

The results of Step 3 are output in each iteration, in a for-
mat of the user’s choice. Any output format supported by the
GAMBIT printer system can be chosen, including ASCIl and
HDF5 database files. The GAMBIT printers are described in
detail in Sect. 9 of Ref. [29], and ScannerBit’s interface
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to them is described in Sect. D.4. Both ASCIl and HDF5
outputs can be parsed and plotted as profile likelihoods with
pippi [36], which can be installed automatically from within
GAMBIT (or ScannerBit) by typing make get-pippi from
within the build directory. As the printer output is handled in
Step 3, independent of the sampling algorithms responsible
for Step 1, every parameter set tested is printed, along with
every quantity derived from this set, regardless of whether
the scanner accepts the tested point or not. This provides
the maximum information possible for profile likelihood and
post-processing analyses. The GAMBIT printers can also be
sent additional supplementary data computed by the sam-
plers themselves, such as the posterior weights needed for
plotting posterior probability densities with pippi.

2.1 ScannerBit plugins

ScannerBit is designed to be completely modular and
expandable. It achieves this via a plugin interface, which
allows various scanners and likelihood functions to be con-
nected at will. Plugins are either scanner plugins, which
each contain code implementing a single sampling algo-
rithm, or objective plugins, also known as test function plug-
ins, which contain specific objective functions to be scanned
(such as simple test functions and likelihoods). Scanner plu-
gins are responsible for efficiently navigating the unit cube in
Step 1, whereas objective plugins provide the user-specified
function in Step 3. Each plugin is compiled into an inde-
pendent library with a common interface to ScannerBit, so
that at runtime it can be passed necessary information like
the dimensionality of the space being scanned and the user’s
preferred method of outputting the results.

The transformation that must be applied in Step 2 con-
stitutes a sampling prior. This is relevant both for Bayesian
analyses, where the final posterior probability of the model
parameters is directly proportional to the prior, and for pro-
file likelihood analyses, where the sampling prior can have
an impact on how efficiently the likelihood function can be
sampled. ScannerBit implements priors as transformations
of the uniform probability distribution, as it instructs all scan-
ner plugins to carry out Step 1 by sampling the unit hypercube
using a uniform sampling prior. ScannerBit transforms the
samples generated from the unit hypercube into actual model-
space parameter values by requiring the user to select a prior
transformation to apply to each parameter. This allows scan-
ner plugins to operate completely independently of priors.
Sampler implementations are kept entirely independent of
prior implementations, allowing any scanner to be used with
any prior.! Priors can be added to ScannerBit in a similarly

1" Although scanning the unit hypercube is the default, ScannerBit does
also permit special scanners developed for specific models to choose to
bypass the prior transformation entirely, in order to work directly with

@ Springer

modular way to scanner and test function plugins (see Sect.
3.1).

ScannerBit grants scanner plugins access to specific
functions necessary for them to perform their sampling task.
At the simplest level, the only such functions are the prior
transformation of Step 2, and a log-likelihood function for
Step 3, allowing the likelihood to be evaluated for any given
point in the hypercube. The function(s) provided to a scan-
ner plugin at runtime are selected by assigning purposes
(such as “LogLike”) to different objective plugins or results
provided by GAMBIT, and then telling each scanner which
purpose(s) corresponding to the inputs it should collect. The
purposes are specified in the input file for a ScannerBit run,
which should be written in YAML format.”> All Scanner-
Bit objective functions tagged for a common purpose are
combined into a single function, and provided to the scan-
ner as a function pointer. In a regular GAMBIT scan, this is
the total log-likelihood function provided by the likelihood
container, which combines GAMBIT functions tagged with
a common purpose, according to the specific function capa-
bilities requested by the user in their input YAML file.

Generically, objective plugins take model parameter val-
ues as inputs, and return some quantity useful to Scanner-
Bit for performing a scan. Each objective can be individually
assigned a purpose to enable its output to be assigned appro-
priately in a scanner plugin. The canonical example of an
objective plugin is the merit function to be used in a given
scan, allowing ScannerBit to determine which parameter
combinations are better than others, and to make informed
choices about which combinations to sample next. This func-
tion might be a complicated likelihood (as in the case of the
GAMBIT likelihood container), or just a simple test func-
tion for evaluating the performance of a new scanner. A more
advanced example of an objective plugin would be one that
provides the derivative of a merit function, for use with e.g.
optimisers that use derivatives to accelerate their searches.
Whilst each objective plugin is automatically given access
to the prior chosen for a given scan, objective plugins can
in fact also be employed to provide the underlying transfor-
mation function used in a prior (although this method is not
mandatory for defining a new prior — see Sect. 3.1).

Each plugin’s source code is placed in its own subdirec-
tory within ScannerBit/src/plugin_kind, where plugin_kind
iseither scanners or objectives. The plugin headers reside
in their own subdirectory within ScannerBit/headers/
gambit/ScannerBit/plugin_kind. Each plugin’s compila-
tion and linkage is handled by the ScannerBit CMake script.

Footnote 1 continued

model parameter values. Users are advised to avoid this unless strictly
necessary though, as the resulting scanner is neither usable with other
models nor other priors.

2 http://www.yaml.org.
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3 Statistics and scanning

To run a parameter scan in GAMBIT, the user writes an input
YAML file specifying that they want to analyse a particular
model. They indicate the parameter ranges and priors over
which GAMBIT should sample that model, how that sam-
pling should be done, and what quantities should be com-
puted for each parameter combination. GAMBIT activates
the model in its model database, along with all other mod-
els that the model in question is a subspace of. The depen-
dency resolver uses the activated model hierarchy and the
list of the user’s requested quantities to activate and con-
nect various module functions into a dependency graph (see
Ref. [29]). ScannerBit is then responsible for determining
which parameter combinations to run through the depen-
dency graph.

Every quantity requested for calculation in a scan must
be assigned a purpose in the input YAML file, using the
eponymous option purpose. This can be set to Test or
Observable, to flag that the quantity must be computed
and output for each sample. To include the quantity in the
function that actually drives a sampler, the user must match
the purpose of the quantity to whatever purpose he or she
instructs the sampler to seek out in order to define its objective
function. Once dependency resolution has been completed,
GAMBIT constructs a likelihood container, which consists
of the dependency tree of all module functions assigned the
purpose sought by the sampler. This container essentially
packages the results of the different module functions into a
single function that can be called by any sampling algorithm.

Conventionally, GAMBIT example YAML files assign
purpose:LogLike to any quantity that should enter the fit as
a likelihood component, and expects such functions to return
the natural logarithm of the likelihood log £. By simply sum-
ming their return values, the likelihood container combines
the results of all log-likelihood functions and returns the
result to ScannerBit as the total log-likelihood. At present,
the sampling algorithms callable by ScannerBit allow only
asingle purpose to dictate the behaviour of a scan, although
future scanners are anticipated to make use of two or more
distinct purposes in a single scan (as in e.g. in multi-objective
optimisation).

3.1 Priors and sampling distributions

Most samplers are driven by ScannerBit to draw from the
unit interval [0, 1]. The sampled values are then converted
to real physical parameters internally, using whatever prior
the user has chosen when launching the scan. In the simplest
cases, this occurs by applying the transformation method,
where samples from the unit interval are converted to samples
from the desired sampling distribution (i.e. prior), by apply-
ing the inverse of the cumulative distribution function (CDF)

of the desired distribution. Here, a uniform random deviate
x is transformed into a random deviate y sampled from a
target distribution D with cumulative distribution function
F(y), by computing

y=F (). (D

Take as an example the case where a user requests a flat
‘prior’ over the range [a, b] for some parameter. ScannerBit
expects the underlying sampler to provide a number x in the
interval [0, 1], and then applies the transformation

y=F'(x)=0b—-a)x +a, )

in order to obtain a sample in the range [a, b]. Here F -1
is the inverse of

F(y) = /)’ P(x)dx

_/3’ dx

), b—a
—a

-, 3)

which is the CDF of P(x) = 1/(b — a), the uniform dis-
tribution over [a, b]. Thus, although the underlying sampler
chooses uniform random numbers for x from the interval
[0, 1], the final ‘physical’ parameter y will be sampled uni-
formly from the interval [a, b]. Similarly, if the user requests
a ‘Gaussian’ prior (with mean p and standard deviation o) for
parameter y, then ScannerBit will apply the transformation

y:u—}—o«/z erf71(2x— 1, “)

so that uniform samples from the unit interval are transformed
into samples from the normal distribution N (i, o).

It is important to note that the actual sampling distribution
of a scan only follows these transformed distributions in the
special case where the underlying unit-interval sampling is
actually uniform. This corresponds to the case of a purely
random sampling algorithm (implemented as the random
sampler in ScannerBit; see Sect. 5.1).

If the underlying sampling is driven, for example, by a
Metropolis-Hastings algorithm, or an evolutionary sampler,
then the final samples will of course not be drawn directly
from the user-requested distribution. In this case the user-
requested sampling distribution still has statistical implica-
tions, particularly for the Bayesian interpretation of results,
where it plays the role of the prior probability distribution. For
example, if the user requests that a parameter have a Gaussian
prior 7 (y), and chooses to draw samples with a Metropolis—
Hastings algorithm, then the final density of points will be
proportional to the posterior probability density p(y)

@ Springer
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p(y) o< LOy)7(y). )

This is because it is a property of the Metropolis—Hastings
algorithm that the density of sample points is proportional
to £ in the unit-interval parameter space — which is then
distorted to the physical parameter space density d(y) under
the mapping y = F~!(x)

dF
d(y) = L(y) ’% (6)
= L) (). N

Here f(y) is the probability distribution function (PDF)
corresponding to the CDF F(y), and is therefore the user-
requested ‘prior’, and d(y) is proportional to the posterior
probability density p(y).

ScannerBit makes a wide range of possible prior trans-
formations available. These priors are separated into three
groups: one-dimensional (flat, log, double_log_flat_join,
sin, cos, tan, cot), multi-dimensional (gaussian, cauchy),
and others (same_as, fixed_value, none, plugin). These
priors, and their corresponding options, can be specified in
the priors section of the YAML input file that defines a
scan, or, in the case of one-dimensional priors, also in the
pParameters section (see Sect. 4). Users can also define cus-
tom priors, which can be added to the set of priors available
to ScannerBit (see Appendix C).

3.1.1 Built-in one-dimensional priors
ScannerBit currently includes six one-dimensional priors:

sin: P(x) oc sin(x)

cos: P(x) o cos(x)

tan: P(x) o tan(x)

cot: P(x) o cot(x)

flat: Uniform in x, i.e. P(x) o const.

log: Uniform in log x, i.e. P(x) oc 1/x.
double_log_flat_join: A piecewise prior that patches
together sections uniform in log(—x), uniform in x, and
uniform in log x. Useful when the desired prior density is
positive at zero, but logarithmic at large absolute values
of the parameter. i.e.

1/|x] : lower < X < flat_start
'P(x) oc g const : flat_start <x < flat_end

1/)C : flat_end < X < upper

Each prior has a number of configurable options. These
may be entered as key-value entries for the parameter in
question, in the input YAML file. For one-dimensional pri-
ors, the options can be entered in either the priors or the
parameters section of the YAML file (further details on the

@ Springer

input file format can be found in Sect. 4). The following
options are available for all 1D priors except double_log_
flat_join:

range: Specifies the range in the form [low, high].
shift: Shifts all parameter samples by the specified
value. Defaults to 0 if absent.

scale: Multiplies all parameter samples by the specified
value. If set to degrees, will convert degrees to radians.
Defaults to 1 if absent.

output_scaled_values: If true, any scale and/or shift
applied to the parameter during a scan is also applied to
the printed value of the parameter. Defaults to true if
absent.

The double_log_flat_join prior also accepts the same range
option, as well as

ranges: An extended version of range, taking the form
[lower, flat_start, flat_end, upper]. The negative log prior
is applied over parameter values ranging from the first to
the second entry, the flat prior is applied from the second
to the third entry, and the positive log prior is applied
between the third and fourth entries. This option takes
precedence over range.

flat_start, flat_end: The boundaries of the interior
region over which to apply the flat prior; these options
are expected whenever the 4-component ranges option
is not in use.

lower, upper: The outer boundaries of the logarithmic
prior sections. These options are only used if neither
ranges NOr range is present. They require the presence
of flat start and flat end.

3.1.2 Built-in multi-dimensional priors

ScannerBit presently ships with two real multi-dimensional
priors, and one example function:

gaussian: Gaussian distribution of the form

P(x) o exp[—(x —X) - C~' - (x — %)/2],

with C a covariance matrix.

cauchy: Cauchy distribution of the form

P o [1+x—%)-C 1 x—%],

with C a covariance matrix.

dummy: Performs a dummy transformation of the unit
hypercube parameters back to themselves; included as
a simple example of the code needed to define a new
multidimensional prior (see Appendix C).

The gaussian and cauchy priors have options:

cov: Full covariance matrix. Off-diagonal elements
default to zero if this option is omitted.
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sigs: A vector containing the square root of each of the
diagonal components of the covariance matrix. Defaults
to 1 if absent.

mean: A vector containing the mean (for gaussian) or
median (for cauchy) of each parameter. Defaults to 0 if
absent.

3.1.3 Additional built-in priors

ScannerBit is also equipped with some useful non-standard
priors:

same_as: Specifies that some parameter is the same as
another parameter. The net effect is to make both param-
eters appear as a single parameter to the scanner, but as
two distinct parameters to the objective function. This
prior accepts an eponymous option same_as, which is
used to choose which parameter to shadow. It also option-
ally accepts the scale and shift keywords described in
Sect. 3.1.1, allowing the parameter to be presented to the
objective function as a rescaled, shifted version of the
parameter it has been set up to shadow.

fixed_value: Fixes this parameter to a specified value,
with the actual value set by the option of the same name.
If a sequence of values is given, the values are simply
iterated over in each subsequent point, repeating from
the beginning once exhausted. This prior also accepts the
scale and shift keywords.

none: Specifies that this parameter will be directly set
by the scanner. If the scanner does not do so, ScannerBit
will throw an error.

plugin: Uses a plugin function as the prior. The plu-
gin to be used is set with an option of the same name
(i.e., plugin), and must be defined as an objective plu-
gin under the objectives tag in the Scanner section
of the input YAML file. Note that in the current version
of ScannerBit, using the same plugin more than once
in a given scan is not supported, e.g. as two separate
applications of a one-dimensional prior to two different
parameters.

3.2 Plugins

ScannerBit plugins are independent code snippets, sepa-
rate from the main ScannerBit code. Scanner plugins pro-
vide a standard interface between ScannerBit and sampling
algorithms (whether external libraries or native Scanner-
Bit implementations). Objective plugins (otherwise known as
test function plugins) provide an interface between Scan-
nerBit and external objective or test functions.

Plugin functionality falls into three main categories: load-
ing, unloading, and the main function provided to Scanner-
Bit by the plugin.

loading: When a plugin is loaded, it is provided with
some generic information needed for running any plugin,
as well as specific information relevant to its plugin type.
The generic information includes a list of expected input
file options, as well as interfaces to the printer and prior
transform. Plugin-specific information may include like-
lihood functor access, hypercube parameter dimension,
and parameter key names. Each plugin has a constructor
that runs when the plugin is loaded, allowing it to perform
startup operations such as variable initialisation.
unloading: When a plugin is no longer needed, any
shared libraries it has loaded are unloaded, and the plugin
deconstructor runs. This typically performs any plugin-
specific shutdown operations, such as closing files or
releasing memory.

main function: Every plugin has some core functional-
ity, provided by its plugin_main function. For example,
ascanner plugin’s plugin_main should contain code that
samples an objective function over a specified parameter
space — whereas an objective plugin to be used as a likeli-
hood function would provide functionality necessary for
likelihood evaluations. This functionality may have any
interface, but it must be consistent with the goal of the
plugin. For example, a likelihood plugin should accept a
map of parameters and return a likelihood value, whereas
a scanner plugin would not accept inputs.

Because of this general format, plugins can be used for a wide
range of tasks. Scanner plugins specifically contain code to
perform parameter scans of various models, do not require
inputs, and simply return an integer indicating the success
or failure of the scan. Objective plugins are for more general
use, and may provide functions that can be used as likeli-
hoods, observable functions, prior transforms, or in fact any
other quantity that might need to be computed for each point
in parameter space (e.g. likelihood gradients). Objective plu-
gins are not required to have any specific interface, but are
all granted access to the same information and utility func-
tions by ScannerBit. Detailed information about definition,
design and operation of ScannerBit plugins can be found in
Appendix D.

4 Setup and input file options

ScannerBit scans are specified and initiated using an input
file written in YAML. This file must contain at least four
sections: Parameters, Scanner, Printers and KeyValues.
It may also optionally contain a priors section. We do
not deal with the Printers and Keyvalues sections in
this paper, as they refer to GAMBIT features described in
detail in Ref. [29]; minimal working entries for these sec-
tions can be found in the example input YAML file given in
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Appendix F. Additionally, ScannerBit includes an example
YAML file, ScannerBit.yaml, in the yaml_files folder.
The parameters section indicates which models and param-
eters to scan, as well as (optionally) simple prior definitions
for individual parameters. The Priors section contains addi-
tional — potentially more complicated — prior definitions not
included in the parameters section. The scanner section
contains all scanner and plugin options and definitions.

4.1 Input file Parameters section

The parameters section contains information about the
models and their associated parameters, and follows the basic
format:

Parameters:
model :
parameter_namel :
...options...
parameter_name?2 :
...options...

The Parameters section can contain several models, where
each model contains several parameters. Each declared
parameter can have the following options, associated with
the prior to be applied to the parameter:

prior_type: Specifies a one-dimensional prior to be
applied to the parameter. If this option is absent but either
the range, same_as or fixed value OptiOIl is given,
ScannerBit will deduce the prior type from the presence
of the other option.

range: Specifies the range of parameter values to be sam-
pled. In the absence of an entry for prior_type, speci-
fying a range causes a flat prior to be adopted.

shift: Adds the given value to the parameter.

scale: Multiplies the parameter by the given amount.
same_as: Indicates that this prior is the same as another
parameter. Note that ScannerBit parameters are denoted
by a string of the form model::parameter_name.
fixed_value: Fixes the parameter to the given value.
The same effect can be achieved in even more compact
form, by giving no options for a parameter except a value
or sequence of Values, in the form parameter_name : value.
lower, flat_start, flat_end, upper: forthe double_
log_flat_join prior (see Sect. 3.1.1).

Each of these options are optional. If none of them is set,
the prior must be specified in the pPriors section. Like the
flat prior, the fixed_value and same_as priors do not need
to be specifically indicated with prior_ type, as they are
implicitly defined by the declaration of their options. More
details can be found in the subsection dealing specifically
with one-dimensional priors (Sect. 3.1.1).
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4.2 Input file Priors section

Any parameter lacking a specified one-dimensional prior in
the parameters section must be associated with a sampling
range and prior in the Priors section. A prior definition in
this section takes the form:

Priors:
prior_name:
parameters: [parameter_list]
prior_type: type
options

Here, prior_name can be any unique identifier, and need
not map to any particular name within ScannerBit. The
parameter_list is a sequence of parameters to apply the prior to.
The type of the prior must match one of the known Scanner-
Bit priors listed in Sect. 3.1. This should be followed by any
additional key-value pairs needed to set the desired oprions of
the chosen prior.

4.3 Input file Scanner section

The scanner section defines the scanners, objectives and
their options. It has the general form:

Scanner:
use_objectives: [objectivel, objective2, ...]
use_scanner: chosen_scanner

scanners:

scannerl :
plugin: pluginl

options

scanner2 :
plugin: plugin2
options

objectives:
objectivel :
purpose: purposel
plugin: plugin3
options

objective? :
purpose: purpose2
plugin: plugind
options

All scanners that a user wishes to make available for a given
scan must be listed in the scanners node, and all objectives
in the objectives node. Each scanner or objective must be
given a local name (scannerl, scanner2, objectivel, etc), and a
plugin and any relevant options must be associated with that
name. Objectives also need to be assigned a purpose, which
tells ScannerBit and its scanner plugins how the objective
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plugin should be used. Exactly one of the scanners under the
scanner node can be chosen as the sampling algorithm for
the scan, by setting use_scanner to the name of the block
that defines the preferred scanner. Arbitrarily many objec-
tives can be activated with the use_objectives directive.

4.4 ScannerBit standalone executable

Like other GAMBIT modules, ScannerBit can be com-
piled into a standalone executable, and used independently
of GAMBIT. This can be useful for sampling external objec-
tive functions that do not come from GAMBIT. The build
command is simply

make ScannerBit_standalone

which creates the executable ScannerBit_standalone and
places it in the main GAMBIT directory.

The interface of the ScannerBit _standalone is sim-
ilar to that of GAMBIT itself. Launching ScannerBit_
standalone -f yaml_file runs a scan defined in the file yam/_
file. To replace rather than resume from any existing files
when beginning a scan, use the -r option.

ScannerBit_standalone also provides a diagnostic list
of recognised scanners and objective plugins a la GAMBIT,
using the commands ScannerBit_standalone scanners
and ScannerBit_standalone objectives (or simply
ScannerBit_ standalone plugins to see both together).
These commands list the name, version, and status of all the
plugins that ScannerBit is aware of.

The standalone can also provide diagnostic information
on a specific plugin, using the command ScannerBit_
standalone plugin_name. Individual plugin diagnostics con-
tain three sections. The General Plugin Information section
displays the name, type, version, and status of the plugin.
The status ok indicates that a plugin is properly linked. The
statusregqd 1lib(s) not foundindicatesthatalibrary
requested by the regd libraries macro cannot be found.
A status of invalid 1ib path(s)
file indicates that a library specified in config/scanner_
locations.yamlorconfig/objective_locations.yaml
(or their default equivalents; see Sect. D.1) cannot be
found at the specified location. Similarly, reqd header
file(s) not found occurs when a header listed under
regd_headers cannotbelocated,and invalid include
dir(s) in locations fileindicatesthataninclude
folder that was specified in the scanner_locations.yaml
or objective_locations.yaml files cannot be located.
Finally, a status of excluded indicates that the plugin
was -Ditched from the configuration of the code when
CMake was invoked. The Header & Link Info section con-
tains include and link paths of headers and libraries requested
by the plugin, information about which of them were found,
and a list of all input file options that the plugin requires

in locations

to be defined in order to run. Finally, the Description sec-
tion contains a short description of the plugin. This typically
includes recognised input file options and a description of
the algorithm or function that the plugin provides.

5 Simple scanners

ScannerBit includes four simple scanners, all found in
ScannerBit/src/scanners/simple/: a random sampler,
a grid sampler, a list-based raster sampler, and a simple toy
Metropolis MCMC toy_mcmc. These are all parallelised
with MPI, using a simple prescription that simply distributes
objective calculations evenly among the available processes.
Below we give the available options for each simple scanner,
and default values in square brackets (where defaults exist).

5.1 The random sampler

The random sampler draws a user-defined number of ran-
dom points from the specified prior. The only available option
is

point_number[10]: The number of random samples
desired.

5.2 The grid and square_grid scanners

These scanners calculate likelihoods at points on a uniform,
user-defined grid in the unit hypercube. The grid scanner
allows the grid resolution be specified separately for each
parameter, whereas square_grid is simply a shortcut for the
special case where the grid has the same number of points in
every dimension. The grid resolution is set with the option

grid_pts[2]: For the grid scanner, a vector of integers
that specifies the number of grid points in each dimension
of the parameter space. For the square_grid scanner, a
single integer.

5.3 The raster scanner

This scanner computes an objective over a user-defined list
of parameter points. The available options are:

1ike: The purpose to use as the objective.
parameters: The parameters specified by the user.

The parameters option should contain a list of parameters,
with a number or sequence that specifies the user-defined
values, e.g.

raster_example:
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plugin: raster

like: LogLike

parameters:
"model: :param_1": [0, 1]
"model: :param_2": 0.5
"model: :param_3": [2, 3, 4]

To obtain sensible results, the none prior should be
employed for any parameters where values are given via the
parameters option. Any parameters not specified are chosen
randomly, and transformed by the chosen priors. Parameters
can be specified with a single number to apply to all points in
the list, or as a vector of values. Different parameters can be
assigned lists of different lengths, which simply repeat once
they are exhausted. In the example above, ScannerBit will
run the points (0,0.5,2) — (1,0.5,3) — (0,0.5,4), and
then terminate.

5.4 The toy_mcmc scanner

This the simplest possible implementation of the Metropolis
algorithm [37], with the proposal distribution set to the prior.
Given a randomly drawn initial point x;, a candidate point x;
is randomly selected from the unit hypercube. The candidate
is then accepted with probability

o = min[1, /.Z(xl{)/ﬁ(xi)]. ()

If a point is accepted, it becomes the comparison point in the
next iteration. If it is rejected, the previous point is retained.
The scanner keeps track of the number of times a given point
is retained, and the resulting point multiplicities can then
be used as weights in subsequent analysis, in particular for
computing Bayesian posterior probability densities. There is
no convergence criterion implemented in the toy_mcmc; the
scanner simply runs for a fixed number of points given by
the user:

point_number [1000]: The number of distinct (accepted)
points to be computed in the chain.

6 The postprocessor

This plugin reads a series of samples computed in some pre-
vious scan, and computes additional likelihoods or observ-
ables for them. Log-likelihoods for the original samples may
be added to or subtracted from a newly-computed contribu-
tion, allowing existing likelihood constraints to be replaced
or new ones added to previously-completed scans. Like the
simple scanners, the postprocessor uses MPI to divide its
objective calculations evenly between available processes.
The postprocessor operates as a scanner plugin. From
the perspective of ScannerBit and GAMBIT, it is a scanning
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algorithm. However, it does not generate sample points for
itself, but instead obtains them directly from previous scan
output. When running from GAMBIT, this means that the
likelihood container then operates using the parameter val-
ues from the previous scan as input, and the output likelihood
and observables are added to the existing data from the pre-
vious scan. A new set of output files is created, just as they
are when running a ‘true’ scan. All data from the original
output that does not conflict with new output is copied to the
new output files, leaving the original files unchanged.

In most respects, the postprocessor operates as a stan-
dard GAMBIT scanner: it can be run via the standard GAM-
BIT interface, it can be run in parallel via MPI, it can be
stopped and resumed, and all printer output from the like-
lihood container is treated the same as it would be during a
‘normal’ scan. The options and particulars of the postpro-
cessor are given in Appendix B.1.

7 Markov Chain Monte Carlo

In Bayesian parameter estimation and model comparison,
calculating evidence values or one-dimensional posterior
PDFs for individual parameters or observables requires the
ability to integrate the full multi-dimensional posterior den-
sity. An efficient sampling method for the posterior PDF
is therefore mandatory. Of the methods proposed for this
task, Markov Chain Monte Carlo (MCMC) algorithms are
amongst the most tried and tested [38,39].

In general, MCMC methods allow one to study any tar-
get distribution of a vector of parameters @, by generat-
ing a sequence of n parameter combinations (a ‘chain’)
{0:}i=1,.n = {01,02,...,0,}. The chain constitutes a
Markov process, because each ;41 is drawn from a pro-
posal distribution that is fully determined by the previous
point §;. MCMC algorithms are designed to ensure that the
time spent by the Markov chain in a region of the parameter
space is proportional to the target posterior PDF value in this
region. Hence, from such a chain, one can obtain a series of
independent samples from the posterior PDF. Up to a com-
mon normalisation constant (the evidence), both the target
posterior PDF and any marginalised versions of it can be
estimated by simply counting the number of samples within
the relevant region of parameter space.

7.1 The GreAT software

The Grenoble Analysis Toolkit (GreAT) [27] is a modu-
lar, user-friendly, object-oriented C++ MCMC framework
for sampling user-defined parameter spaces. It uses the
Metropolis-Hastings algorithm [37—40] to generate Markov
chains. This prescription ensures that the stationary distri-
bution of the chain asymptotically tends to the target distri-
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bution (typically the posterior PDF), by generating a candi-
date state 0y picked at random from a proposal distribution
q(0yia1]0;) and accepting the candidate with probability a,

©))

a(@yiat]0;) = min (1, P(Oiar) q(0; |0trial)> '

p0;) qOuiald;)

Here, the target distribution p (@) can be reduced to the like-
lihood function £ assuming a flat prior for 6. If the trial is
accepted, it becomes the new state, whereas if it is rejected,
the current state is retained. This criterion ensures that once
at its equilibrium, the chain samples the target distribution
p(0).

To optimise the efficiency of an MCMC, the proposal dis-
tribution should be as close as possible to the true distribu-
tion. The MCMC implemented in GreAT uses a multivariate
Gaussian distribution, accounting for possible correlations
between the parameters of the model. GreAT runs multiple
MCMC chains, either sequentially or in parallel depending
on the user’s MPI configuration. At the termination of each
chain, based on the samples contained in all chains completed
so far, i.e. minus a ‘burn-in’ period at the beginning of each
chain and after the removal of correlated samples by thin-
ning the chains, GreAT updates the covariance matrix to be
used to define the proposal distribution in subsequent chains.
The updated covariance matrix is saved externally, in order
to allow chains running in parallel to always use the latest
version.

To obtain a reliable estimate of the target distribution,
GreAT bases its analysis of a chain on a selected subset of
its points. Burn-in points are discarded, to avoid the ran-
dom starting point of the chain biasing the sampling. By
construction, each step of the chain is correlated with the
previous steps: GreAT obtains sets of independent samples
by thinning the chain over its autocorrelation length /. The
single-parameter autocorrelation on length scale &, in a chain
of total length N and for parameter 6, is

Y NG - 0) Ok — 6)
YO —6)2

r(k) = (10)

GreAT defines the correlation length /; for the jth parameter
to be the smallest inter-sample interval such that 7 (/;) < 0.5;
samples separated by scales larger than this are considered
independent. The overall correlation length / for the chain
is defined as the maximum correlation length across all m
parameters, i.e. [ = max;—1 n ;.

The fraction of independent samples measuring the effi-
ciency of the MCMC is defined to be the fraction of samples
remaining after discarding the burn-in steps and thinning the
chain. The final results of the MCMC analysis are the target
distribution and all marginalised distributions, obtained by

counting the number of samples within the relevant region
of parameter space.

7.2 GreAT-ScannerBit interface

As implemented in GreAT, the Metropolis—Hastings algo-
rithm has no default convergence criterion. The user is
required to specify a chain length, i.e. a number of steps,
for each Markov chain. These options are given in Appendix
B.2

GreAT also extracts the relevant trials for further analy-
sis. It first calculates the burn-in length b corresponding to
the first sample 6, for which p(0,) > p12, where py,; is
the median of the target distribution obtained from the entire
chain (i.e. the median posterior density, at least in standard
applications). To obtain uncorrelated samples within each
chain, it then computes the autocorrelation function for each
parameter (Eq. 10). If the chain does not have any sam-
ples for which p(#5) > pi/2, then a burn-in length can-
not be defined. This can happen if e.g. every sample has
the same likelihood, as can occur if every sample in the
chain is deemed invalid by ScannerBit, and assigned the
default minimum log-likelihood (set by the YAML entry
KeyValues::likelihood: :model_invalid_for_1lnlike
_below).

GreAT performs these operations after computing each
chain, before using the results to update the covariance
matrix. If the burn-in length of the last chain is undefined,
a warning message is printed, and a new chain is started
using the old covariance matrix. Chains for which the burn-
in length is undefined are not retained for any further anal-
ysis, and are considered invalid. At the end of the run, the
complete statistics for all valid chains (burn-in length, cor-
relation length, number of independent samples) are printed
out in GreAT’s native format. The independent samples and
their multiplicities are stored in whatever output format the
user has instructed GAMBIT to use for printing results.

8 Ensemble MCMC

Standard MCMC algorithms are traditionally somewhat
problematic in large or highly multi-modal parameter spaces,
as their efficient operation requires a well-tuned proposal
density. Some modern MCMC samplers (such as GreAT)
address this by adaptively varying the proposal distribution
based on samples from previous runs. Other successful strate-
gies use multiple concurrent MCMC chains as the basis of
the proposal distribution. These are commonly referred to as
ensemble samplers.

In an ensemble MCMC, each chain is individually
advanced by constructing a proposal PDF from the set of
all current points across the full set of concurrent chains.
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Procedurally, this equates to exploring an augmented param-
eter space consisting of n copies of the original space,
{00), 01y, - .., 0} corresponding to a composite posterior
distribution P(e(o), 0(1), Ceey 0(,1)) = H?:O 7)(0(1')) where
P(0) is the actual target distribution of interest. These algo-
rithms are able to easily adapt their proposal densities to the
target distribution, and exhibit performance that is generally
invariant under affine transforms (e.g. § — ¢@). Unfortu-
nately, the performance of these algorithms is highly sensi-
tive to the number of concurrent chains, with the number of
chains required typically scaling linearly with the parameter
dimension; this makes the overall number of likelihood eval-
uations needed for convergence proportional to the square of
the parameter dimension.

8.1 T-Walk

In the serial version of the T-Walk algorithm [41], chains
are advanced one at a time, with the proposal density based
on the current parameter points of all chains not chosen for
advancement, and the chain to be advanced chosen randomly
at each iteration. In the parallel version, each MPI process
randomly selects a chain for advancement at each iteration,
and the proposal distribution used for advancing all chains is
based only on the state of the remaining chains not chosen for
advancement by any process in that iteration. In what follows,
we refer to chains that are being advanced in a given iteration
as the advancing chains, and the others (those contributing
to the proposal distribution) as the proposal chains.

T-Walk uses one of four movement strategies when
advancing a chain, choosing randomly between them at each
iteration. Two of these strategies, the walk and traverse
moves, shift the current chain position (#;) by some multiple
of the distance between it and the current point in arandomly-
selected proposal chain. The remaining two moves, hop and
blow, cause advancing chains to perform different random
Gaussian jumps, with covariance matrices calculated from
the full set of current points in the proposal chains.

Walk: advances the current chain 6; by jumping either
towards or away from a randomly selected proposal chain
0;,i # j. This move produces a candidate point 0;,

0;=0;,+(1—a)0;—0)), (1)

where « is a parameter drawn from a distribution G ().
For distributions satisfying

g (1> — oG (@), (12)
o

@ Springer

detailed balance is satisfied if the candidate point is
accepted with probability
P(Of):|
. —1 i
p=min|1l,a" —|. (13)
[ P(8:)

Here n is the dimension in which the T-Walk moves are
being performed (the so-called ‘projection dimension’,
described later in this subsection). ScannerBit’s imple-
mentation of T-Walk uses the distribution

Jay » \/La,foralwfafaw
2(ay — 1) 0 otherwise,

G(o) = (14)

where a,, is a user-configurable input parameter of the
algorithm.

Traverse: similar to walk, but the chain is advanced by
jumping over the point in the proposal chain. The candi-
date point is

0. =0, +(1+pB)0; —0), (15)

where 8 can take any positive value. Detailed balance is
satisfied if 8 follows a distribution H () that satisfies

1
H| =) =H(B), 16
<ﬂ> (B) (16)

and the Metropolis-Hastings acceptance probability is
modified as

P,
1n=mm[LﬂmQ5%%}, (17)

where n is again the projection dimension. ScannerBit’s
implementation of T-Walk uses

H(B) = (18)

B4 for B >1,

ay

ﬁ—lx{mrmm<ﬁ§1

where a; is another parameter of the algorithm, config-
urable by the user.

Hop and blow: In general, the walk and traverse moves
available to the advancing chains only form a basis for
some smaller-dimensional subspace of the full parame-
ter space. With only these moves available, if the current
chain positions are co-planar or are sufficiently clustered,
mixing between chains can be low, and infinite loops of
identical repeated and reversed jumps can occur. For this
reason, traditional MCMC jumps are mixed into the pro-
posal distribution. These moves use the total set of cur-
rent points in the proposal chains to infer a covariance
matrix C. The hop and blow moves use C to construct a
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Gaussian proposal function and perform an MCMC jump
based on the resulting conditional PDF; hop centers the
proposal on the current point of the chain being advanced,
whereas blow centers it on the current point of one of the
proposal chains.

ScannerBit’s implementations of hop and blow
advance a chain some distance r in a chosen direction
t from the center of the proposal distribution. Following
[6], r is drawn from the distribution

2 1
Pr) = ng(r/d) + gefr, (19)

where P, (x) is the distribution of radii arising from an
n-dimensional normal distribution centred at the origin,
and d is the user-configurable Gaussian jump parameter.
The distance r is related to the hypercube parameters 6
via a Cholesky decomposition C = LL7,
0 =0, +rL-F. (20)
The starting point 6, of the jump for the hop move is the
current point of the chain to be advanced, whereas the
starting point of the blow move is the current point of
any other advancing or proposal chains.
In order to promote exploration of the parameter space in
scenarios where the best-fit regions are highly degenerate
in the parameters, T-Walk chooses the direction of prop-
agation T by first choosing a random orthonormal basis
for the parameter space. It then chooses I in successive
hop and blow moves by cycling through the basis vectors
in random order. Once it has used all basis vectors once,
it generates a new random orthonormal basis.

T-Walk calculates C directly from the current points
of the proposal chains,

c=Y (6,0 (6-0)" . 1)
r

where j indexes the proposal chains, and @ gives the mean
current point across them. If this matrix is not positive-
definite, then T-Walk approximates it as

2
Cl,l = (njla}(x [9](1') — 091(k)]> /12 (22)

where j and k run over all proposal chains.

ScannerBit’s implementation performs each walk and
traverse step within a randomly chosen subspace of lower
dimensionality, known as the projection subspace. This
encourages chain movement by avoiding a narrow distribu-
tion, which is endemic to higher-dimensional proposal dis-
tributions. The relative probabilities of walk and traverse

moves are set equal, as are those of hop and blow. The ratio
of walk+traverse to hop+blow moves, and the dimension
of the projection subspace, are user-configurable.

The version of the T-Walk algorithm described above,
and implemented in ScannerBit, differs slightly from the
original algorithm [41] in two ways. The first is the use of the
full concurrent covariance matrix for the Gaussian jumps in
the hop and blow moves, making them similar to the “walk”
move of Ref. [42]. Second, the algorithm is formulated to
work with any number of chains greater than one, rather than
just a pair (making the walk and traverse moves described
here similar to the “stretch” move in Ref. [42]).

The version of T-Walk in ScannerBit uses the Gelman-
Rubin convergence diagnostic V'R [43] to determine conver-
gence. This statistic compares the inter-chain dispersion to
the total dispersion of each parameter.

See Appendix B.3 for the available options and outputs of
T-Walk.

9 Nested sampling

Nesting sampling is a method designed for efficient calcula-
tion of the Bayesian evidence. As a byproduct, it also pro-
duces samples from the posterior. The algorithm samples the
posterior in nested shells of probability, by continually updat-
ing a set of “live” points, replacing the lowest-likelihood live
point in each iteration with a better point. As the algorithm
progresses, the set of live points naturally splits into clusters
that shrink around the peaks of the posterior, making the algo-
rithm well-suited to efficiently sampling multimodal distri-
butions. MultiNest [17] is a Fortran library that implements
the nested sampling algorithm, with the addition of a clus-
tering algorithm to estimate bounding ellipsoids for the live
points. These bounding ellipsoids are used to approximate
the iso-likelihood contours of the function being explored,
allowing the algorithm to efficiently propose new live points
when scanning parameter spaces of low to moderate dimen-
sion. For large dimensionalities the MultiNest algorithm is
computationally expensive, as the bounding ellipsoids typ-
ically encompass large swathes of uninteresting parameter
space — but for small and moderate-size parameter spaces
it usually offers quite competitive efficiency. The Scanner-
Bit plugin runs the MultiNest sampler developed by Feroz
et al. [17]. Its options and outputs are listed in Appendix
B.4.

10 Differential evolution
Differential evolution [44—47] (DE) is an efficient algorithm

for global optimisation, with similarities to both genetic algo-
rithms and the Nelder—Mead simplex method [46]. It has been
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found to be quite robust, and is often the algorithm of choice
for multimodal, high-dimensional problems.

DE works by evolving a population of points in parameter
space, with successive generations chosen by a form of vector
addition between members of the current population. The
vector addition step gives the algorithm the character of a
random walk with a step size provided by the population. This
makes it highly adaptive, and helps to limit the number and
tuning of control parameters required. In its simplest form,
DE requires only three controlling parameters; this can be
reduced even further in variants that allow self-adaptation of
parameters. It is straightforward and efficient to parallelise,
as each member of the population can be simultaneously and
independently evaluated against a replacement candidate.

DE’s population-based mutation also leads to contour
matching [48], where members of a population will tend
to be at similar likelihood values, with the worst individu-
als improving the fastest, allowing the algorithm to trace out
contours of the objective function rather effectively. This not
only allows good mapping of likelihood contours, but fur-
ther aids with adaptive stepping from one generation to the
next, and promotes transfer of population members between
local minima, improving the overall convergence towards the
global minimum.

10.1 Algorithmic details

All variants of DE consist of three main steps: mutation,
crossover, and selection. These are controlled by three param-
eters: the population size N P, the mutation scale factor F,
and the crossover rate Cr. The simplest form of DE, known
as ‘rand/1/bin’, was first described in 1995 [44], and contin-
ues to be widely used. The first two parts of the name refer to
the strategy for mutation, and the third refers to the crossover;
these are described in detail below.

The algorithm begins by initialising the population to a
random selection of points within the allowed parameter
space (Fig. 1). We will denote the population of points (also
referred to as target vectors) as {Xf}, with i indexing the
members of the population, and g indexing the generation.
Each subsequent generation of the population is chosen by
performing mutation, crossover and selection on the previous
generation.

10.1.1 Mutation

The first step in DE is mutation, which will produce the donor
vectors {V;} from the current population of target vectors
{X?}. This step is illustrated in Fig. 2. In the rand/1 mutation
scheme, a random vector is combined with a single difference
vector scaled by the mutation scale factor F. To produce each
donor vector V;, three random vectors X, 1, X, and X,3 are
chosen from the current population, such that none of the
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Fig. 1 A simple example of differential evolution in two dimensions.
This figure shows the likelihood function represented by contours (with
more central contours corresponding to higher likelihood values), and an
initial random population of NP = 10 vectors {X?}. Subsequent figures
illustrate the remaining steps of the algorithm

_

Fig. 2 The process of creating the first donor vector during mutation in
the simple ‘rand/1’ variant of this step. The difference vector between
two randomly chosen points is shown as a dashed red line, and the scaled
difference vector (thick red line) is shown added to another randomly
chosen point to create the donor vector V. Note that the current target
vector X is not used during rand/1 mutation. The scale factor in this
example is ¥ = 0.7. Ellipses are isolikelihood contours, with more
central contours corresponding to higher likelihood values

Xy are the same, and none matches the current target vector
X;. The vectors are then combined using vector addition to
produce the donor vector:

Vi =X,1 + FX,2 — X;3). (23)

This name rand/1 refers specifically to the fact that the donor
is formed by choosing a random base vector from the pop-
ulation, and vector-adding it to one scaled difference vector
between population members. The combination of a single
target vector (referred to as the base vector) with a donor vec-
tor constructed from scaled differences between other popu-
lation members is a general feature of DE. Further variants
are detailed in Sect. 10.1.4.
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Fig. 3 Binomial crossover between the donor vector V| and the target
vector X in rand/1/bin differential evolution. This produces three pos-
sible trial vectors, shown in lightly-filled red circles. Because at least
one component of the donor vector always goes into the trial vector,
but no components are guaranteed to come from the target vector, V
is a possible trial vector (in the case where both components have been
taken from the donor vector), as are U, and U, (where only one com-
ponent has been chosen from the donor vector). The target vector X
itself is not a possible trial vector. Ellipses are isolikelihood contours,
with more central contours corresponding to higher likelihood values

The usage of this vector addition strategy allows DE to
explore a function dynamically, based on the size and shape of
the evolving population (which reflects the size and shape of
the contours of the objective function). The value of F is the
main determinant of how broad this search is. In general, F
is required to be less than 1 for convergence to be achievable
—but too low a value can lead to insufficient exploration, and
premature convergence [48].

10.1.2 Crossover

The second step in DE is crossover, also called recombina-
tion. This is illustrated in Fig. 3. Crossover combines the
donor vectors produced by mutation with the original popu-
lation of target vectors to produce the trial vectors U;. The
trial vectors will potentially form the next generation of vec-
tors. The degree to which the trial vectors are composed of
components of the donor vectors rather than components of
target vectors is influenced by the parameter Cr, which takes
a value between 0 and 1. In binomial crossover (the ‘bin’ of
rand/1/bin DE), the trial vector is chosen according to the
following procedure:

1. For the kth component of the trial vector U;, denoted
Ui; k., arandom number ry is chosen such that 0 < r < 1.

2. Ifrp < Cr,the component is taken from the donor vector:
Uix =Vir.

3. If r, > Cr, it is taken from the target vector instead:
Uir = Xk

Fig. 4 Thelaststepina generation of differential evolution. This shows
the process of selection after trial vectors have been chosen for the
entire population. Each target vector is compared with its associated trial
vector, and the better one is retained for the next generation. Here red
indicates trial vectors and black indicates target vectors. Filled circles
have been kept for the next generation, whereas open circles have been
rejected. Note that several points have trial vectors outside the allowed
boundaries; these are rejected automatically. Ellipses are isolikelihood
contours, with more central contours corresponding to higher likelihood
values

4. After all components of U; have been chosen in this fash-
ion, one component is reassigned in order to ensure that
trial vectors are always different from their parent tar-
get vectors. A dimension / is chosen randomly for each
member of the population. The corresponding compo-
nent of the donor vector is then assigned to the target
vector: U; ; = V; ;, irrespective of its previous value.

As Cr increases, the probability that components are cho-
sen from the donor vector increases: for many-dimensional
problems, the percentage of components taken from the
donor vector is approximately Cr (see Ref. [49] for a full
analysis). High values of Cr therefore lead to increased
exploration, as the trial vectors will differ from the target vec-
tors along many dimensions. Low values of Cr are primarily
effective for the special case where the likelihood function is
a separable function of the parameters, because this allows
the algorithm to explore along individual dimensions [e.g.
48]. In the more general case, where the objective function is
non-separable, Cr should be kept high to allow better explo-
ration. A small amount of crossover with the target vectors
remains useful, however, as it improves the diversity of the
population of trial vectors [48].

10.1.3 Selection

The final step in DE is selection, which generates the next
population of vectors. This step is shown in Fig. 4. The value
of the objective function (typically the likelihood) for each
target vector X‘ig (the previous population) is compared with
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the trial vector U; constructed from it using mutation and
crossover. The point with the better likelihood is retained
as a member of the next generation, and becomes one of the
new target vectors X;.g *1 f both have the same likelihood, the
trial vector U; is preferred, in order to allow the population
to move across flat surfaces.

Selection makes DE what is known as a greedy algorithm:
ittakes any improvement offered, and never accepts steps that
would lead to a poorer fit. This allows faster convergence, but
unlike non-greedy sampling methods (e.g. MCMCs), where
poorer fits are sometimes accepted, discovery of the global
minimum is not guaranteed even for infinite running time.

It is possible for trial vectors to be located outside of the
allowed parameter space boundary. This is most common
during the first few generations of the algorithm, when the
population is spread out, allowing very large difference vec-
tors to be produced. However, if a local or global minimum
is located near the edges of parameter space, out of bounds
vectors can occur throughout the minimisation process. The
simplest way to enforce parameter boundaries is to reject any
trial points that lie outside them; for alternatives see Sect. A.2.

10.1.4 Advanced mutation and crossover strategies

Although rand/1/bin DE is simple and popular, many other
variants have been proposed. The simplest variations involve
either a different choice of base vector, or a different method
to calculate the difference vector. The name of the DE strat-
egy is typically written in the form base/difference num-
ber/crossover, where

base: how the base vector, X1 in Eq. 23 and Fig. 2, is
chosen for mutation.

difference number: the number of difference vectors
F (X;2» — X;3) in Eq. 23 and Fig. 2 that are used in muta-
tion.

crossover: the form of crossover used.

Some options for the base vector beyond a random choice
from the population include the current target vector (‘cur-
rent’), the best vector in the population ( ‘best’), or a base vec-
tor made up of a combination of these (e.g. ‘rand-to-best’).
A ‘general’ mutation strategy encompassing several pos-
sible mutation strategies can be written as follows [50]:

0
Vi=Xpest + (1 = VX1 + Y Fy(Xp, —X3,), (24
q=0

where X is the current vector or is chosen randomly as before
and X 3 are chosen randomly from the population. No vec-
tors may be used twice. This form allows rand base vectors
(X1 = Xjand and A = 0), current base vectors (X; = X; and
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A = 0), best base vectors (A = 1), rand-to-best base vectors
(X1 = Xjand and 0 < A < 1), and current-to-best base vec-
tors (X; = X; and 0 < A < 1). It also allows for the use of
Q difference vectors along with a corresponding set {F;;} of
scale factors. Note that there are other forms of mutation that
are not described by this equation.

Using the best individual in the population as the base vec-
tor (e.g. best/1/bin) speeds up convergence, as it reduces stag-
nation in the population — but it makes DE less likely to find
the global minimum compared to simply choosing the base
randomly. This tends to be a good choice for near-unimodal
functions, but poor for highly multimodal functions [48,51].
Using the current vector as the base can slow convergence
because it reduces the diversity of the resulting population
[48], but can be more efficient than randomly choosing the
base because it reduces so-called ‘selection drift bias’ [47].
Combining multiple difference vectors can help combat the
loss of diversity induced by using either the best or current
vector as the base, but may hamper contour-matching [48].

In contrast to the proliferation of mutation strategies, bino-
mial crossover has only one main competitor, exponential
crossover (‘exp’). The lack of additional recipes is mostly a
result of the lesser impact of crossover on performance than
mutation [52]. Exponential crossover was used in the orig-
inal DE algorithm [44], but is generally less popular than
binomial crossover.

In exponential crossover, a length L to be crossed over is
chosen by drawing random numbers between 0 and 1 until
one of them exceeds Cr. L is then set to the total number
of draws required, with the provision that it must be less
than the dimensionality of the parameter space D. A random
dimension d is then chosen from [1, D], and the next L entries
in the donor vector (wrapping around to the first if necessary)
are chosen to contribute to the trial vector. The remaining
D — L components are taken from the target vector.

Exponential crossover is generally considered to perform
less well than binomial crossover. This has been suggested
[51] to be due to the requirement in exponential crossover
that dimensions taken from the target vector must be adja-
cent, whereas in binomial crossover all combinations are pos-
sible. Both forms of crossover suffer from the fact that the
process is not rotationally invariant, as it preferentially acts
along dimensions, and therefore cannot perform identically
on separable and inseparable functions, decreasing efficiency
when working with parameterisations that induce correla-
tions between parameters [48,52]. This is a common feature
of evolutionary algorithms, including e.g. genetic algorithms.

10.1.5 Self-adaptive differential evolution
As with all optimisation strategies, the ideal choice of param-

eters for DE depends on the type of problem to be solved, and
is frequently unclear a priori. The ability for the algorithm to
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adapt its parameters in real time is therefore advantageous.
One example of self-adaptive differential evolution is known
as jDE [53], which compares favourably with classic DE and
other modifications of DE across problem types and in high-
dimension parameter spaces [46,54].

The jDE algorithm is based on classic rand/1/bin DE but
adapts the values of F and Cr as the run progresses. Each
vector in the population is associated with personal values of
F and Cr, which are then used to generate the next genera-
tion of vectors. Before mutation occurs for the ith member
of the population, F; has a chance to change. The same is
true of Cr; immediately before crossover. During selection,
the values of F and Cr belonging to successful vectors are
retained in the next generation of the population. Variants on
the jDE algorithm can extend the self-adaptive behaviour to
other mutation or crossover strategies. We introduce one such
variant, AjDE, which dynamically modifies X in a similar way
over the course of the run. We describe the jDE and AjDE
algorithms, as well as our implementations and variations of
them, in greater detail in Sect. 10.2.2.

10.2 The Diver package

In this section, we introduce Diver, an open-source differen-
tial evolution sampler intended for use in optimisation prob-
lems in physics and astronomy. Diver can be downloaded
either as a source tarball or a git repository from http://diver.
hepforge.org. It is released under an academic use license.

10.2.1 Design and invocation

Diver is a fully-featured, standalone parallel implementa-
tion of differential evolution. Its default mode is to perform
self-adaptive AjDE optimisation, with jDE, rand/1/bin and
all mutation and crossover strategies in between available
through an extensive set of runtime options. It also includes
additional options for outputting derived parameters, stop-
ping and restarting scans, computing approximations to var-
ious Bayesian quantities, and dealing with discrete parame-
ters.

Diver is written in Fortran, and includes wrappers for
calling it from C/C++. It is compatible with gcc 4.4 and
later, and version 11 and later of the intel compiler suite. Par-
allelism in Diver makes use of MPI, and works by simply
dividing each generation up evenly across all MP| processes.
It is invoked by calling the Fortran function diver () or its
C equivalent cdiver () from some user-supplier driver pro-
gram. When calling these functions, the driver program must
pass the address of another, user-supplied, likelihood/ob-
jective function, which Diver then minimises. The package
includes example driver programs and objective functions in
Fortran, C and C++; these can be respectively found in the

example_f, example_c, and example_cpp subdirectories
of the main Diver installation directory.

Synopses of the different source files in Diver, the various
run options it offers, and the format of its outputs can be found
in Appendices A.1, A.2 and A.3, respectively.

10.2.2 Adaptive differential evolution: jDE and A\jDE

We include two options to use self-adaptive evolution, based
on the jDE algorithm initially proposed by Brest et al. [53].
In regular jDE (accessed by setting D= = true), rand/1/bin
evolution is used, but each vector has unique values for F
and Cr, which evolve along with the population.

The evolution of F is controlled by a value 71, which
we take to be 0.1 throughout. The permissible range for F
extends from F; = 0.1 to F,, = 0.9, as values of F' too close
to zero imply no evolution, whereas values too close to 1
prevent convergence. We choose the initial value of F for
each vector randomly from a uniform distribution between
F; and F,,. Before mutating the vectors, we draw a random
number and compare it to 71. If it less than 71, we update F to
anew random value between F; and F,,, and the new value is
used for mutation. Then, during selection, if the trial vector
is accepted, the new value for F is kept as well. If the trial
vector is rejected, the previous value for F is kept instead.

Similarly, the evolution of Cr is controlled by a value 17,
also taken to be 0.1. Unlike F, Cr is allowed to vary between
0 and 1 inclusive, as crossover does not exhibit any patho-
logical behaviour in either limit. For each member of the
population, we initialise Cr to a random value between 0
and 1. For each generation, before crossover we then choose
a trial value for Cr. As for F, we draw a uniform random
deviate and compare it to 15; if it is larger than 17, the trial
value for Cr remains unchanged; if it is smaller, we choose
arandom new value for Cr and use it during crossover. Dur-
ing selection, if the trial vector is kept, the new crossover
parameter is kept as well; if not, the value of Cr reverts to
the previous value.

The justification for this process is that different values of
F and Cr are useful for different classes of problems, but
the preferred values are usually not known. It is presumed
that successful choices of F' or Cr are more likely to lead to
successful trial vectors, and so by tying the evolution of F
and Cr to the evolution of the vectors, desirable values of F
and Cr will be preferentially propagated.

In addition to the standard jDE, we offer the possibility
to use self-adaptive rand-to-best/1/bin evolution. This works
justas in jDE, but with the addition of an adaptive A mutation
parameter, which evolves via a scheme that mirrors the way
Cr is evolved. The addition of this parameter harnesses the
benefits of jDE, while allowing for more aggressive optimisa-
tion, since information about the position of the best member
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of the current generation is used. This option is accessed by
setting lambdajDE = true.

10.2.3 Discrete parameters and parameter-space
partitioning

Diver offers the ability to label one or more parameters as dis-
crete rather than continuous, using the discrete keyword.
This may be desirable because some parameter(s) are indeed
discrete at some fundamental level, or simply as a means of
labelling a set of individual fits that are interrelated in some
way.

The main complication when working with discrete
parameters is that mutation must be a floating-point oper-
ation in DE, in order to ensure that the donor vectors are
valid, to allow for enough variety in potential donor vectors,
and to ensure proper convergence. When treating a parameter
as discrete in Diver, we deal with this by storing the values
of the discrete parameter internally as floating-point values,
so that mutation works as normal, but evaluation of the like-
lihood is done by rounding the parameter to the closest inte-
ger. The output . raw file stores the underlying floating-point
representation of the parameters (to allow runs to be prop-
erly resumed), whereas the desired integer values are output
in a .sam file (we discuss output formats in more detail in
Appendix A.3).

The partitionDiscrete option can also be used to par-
tition the DE population evenly into the allowed values of the
discrete parameters. With this option, no vector is allowed to
change its discrete value. This mode allows simultaneous fit-
ting of multiple objective functions, with the discrete dimen-
sion simply treated as a label for assigning subpopulations to
the different problems. One useful application of this option
is to perform multi-objective optimisation where the value
of each fitness function depends (preferably only weakly) on
the best-fit parameters of the other subpopulations.

10.2.4 Population diversity and duplicate individuals

In order for DE to converge appropriately, it is necessary
to retain sufficient population diversity. Duplicate vectors in
the population lead to artificial drops in diversity. Duplicate
vectors can arise naturally in rand/ or best/ mutation if two
separate vectors in the population are updated using the same
combination of random vectors. Once there are multiple iden-
tical vectors in a population, the diversity of the population
will decrease, making premature convergence more likely.
Even more problematically, duplicate vectors have a ten-
dency to infect the rest of the population: whenever a pair
of duplicates is chosen to create the difference vector dur-
ing mutation, the resulting donor vector will match the third
vector chosen, possibly creating another duplicate. In best/
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mutation, such a process can rapidly lead to an entire popu-
lation matching the ‘best’ vector.

Diver includes a facility for weeding out duplicate vec-
tors as soon as they arise to prevent these problems. When
removeDuplicates = true, the population is examined
after selection. If a set of duplicates is discovered, one is
modified, according to the following rules:

1. If one vector was inherited from the previous generation,
and the other is new, the new vector is reverted to its
previous value.

2. If both vectors are new, the one that improved the most
is kept and the other is reverted to its previous value.

3. The appearance of duplicate vectors in the initial popula-
tion, or inheritance of multiple copies of the same vector
from a previous generation, are strong indications of cod-
ing errors. In these cases, a warning is printed and one
vector is re-initialised to a random point in the parameter
space.

Duplicate removal is disabled by default for current/
mutation (current = true), JDE(§DE = true),and AjDE
(lambdajDE = true), as the presence of duplicates in the
results of these algorithms would be surprising. It is enabled
by default for all other settings, i.e. rand/, best/, or rand-to-
best/ mutation, as these forms of mutation are susceptible to
duplicate creation. If Diver is compiled with MPI support,
duplicate removal is enabled by default regardless of any
other settings, and is recommended as a useful diagnostic for
insuring against MPI library issues.

10.2.5 Approximate posterior and evidence estimates

Diver can compute the Bayesian posterior and evidence from
its samples when using a negative log-likelihood function as
the objective, by using the likelihood samples to perform
Monte Carlo integration of the (pr1or-we1ghted) likelihood.
These calculations can be activated by setting doBayesian
= true and specifying a prior function.

Because DE does not share the property of Bayesian algo-
rithms that the sampling distribution is proportional to the
posterior, this requires a bootstrap estimate of the actual sam-
pling distribution produced in a DE run. This invariably leads
to fairly rough estimates of Bayesian quantities, especially
when the likelihood function is multimodal and/or highly
non-Gaussian, but the results can be useful for some quick
estimates before deploying more expensive algorithms opti-
mised for Bayesian inference.

Diver obtains a bootstrap estimate of its sampling density
by performing a binary space partitioning on the parame-
ter space being scanned, using the actual samples obtained
in a scan. Each sample is sorted into a cell in the par-
titioned parameter space, with cells partitioned further as
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soon as their populations exceed maxNoderop. The parti-
tioning is done alternately in each direction of the parameter
space, so that each cell remains rectangular in the parame-
ters.

The resulting posterior weight for a sample 6 can then be
estimated as

Ne
P(O) = FV(G)H(G)E(G), (25)

where N, is the number of cells, Ny the total number of
samples, V (0) is the parameter volume occupied by the cell
containing the sample 6, 1 () is the prior function (provided
explicitly by prior —note that this is not the prior transform,
but the prior itself), and £(0) is the likelihood, i.e. exp(—x),
where x = —In L is the objective function being sampled.
The corresponding Monte Carlo estimate of the Bayesian
evidence is then

Ns
Z Z P(6;). (26)
i=1

Taking the estimate to be Gaussianly distributed, the lo
uncertainty on the evidence can be approximated from its
variance,

AZ ~\[((P?) = Z2)/N;, 27)

where
R
2y & 200,
(P = EP ©h) (28)

is the mean square posterior.

If dorayesian = true, Diver will continue to sample
until the logarithmic uncertainty on Z reaches or passes
below Ztolerance, i.e.

(=2 ) <iorerine (29)
n Z_Az) = Ztolerance.

Once this convergence criterion has been satisfied, Diver then
further polishes its posterior and evidence estimates by tak-
ing the final binary spanning tree so generated during the
scan, and re-calculating Eq. 25 for each individual of every
population. This improves the final posterior and evidence
estimates because the resulting weights for all individuals
get computed on the basis of the complete tree, rather than
the tree as it was at the time each individual was initially
created.

10.2.6 ScannerBit interface

Because Diver is specifically designed to minimise positive-
definite fitness functions, the Diver plugin for Scan-
nerBit uses the negative of the composite log-likelihood
function provided by GAMBIT as its fitness function. If
desired, ScannerBit will also apply an offset to the log-
likelihood passed to Diver, and have the printer remove
that offset again before printing. This can be useful in
cases where the likelihood normalisation leads to positive
total log-likelihoods; taken without an offset, these like-
lihoods would prevent the fitness passed to Diver from
remaining positive definite. The offset can be specified
with the 1nlike offset option in the likelihood node
of the xeyvalues section of a run’s main YAML file.
If this option is absent, the offset will default to 104
times the value of model invalid_for_lnlike below
(alsoin keyvalues: : 1ikelihood). The full range of Diver
options available from the YAML file is given in Appendix
B.S.

The Diver interface in ScannerBit does not yet make use
of the ability of Diver to scan discrete parameters, as doing
so is not yet supported by ScannerBit itself; this feature is
slated for inclusion in a future revision of GAMBIT.

11 Scanner performance comparisons

By offering the capacity to vary the scanning algorithm and
its operating parameters — whilst keeping all other aspects of
a scan identical — ScannerBit provides a unique testbed for
comparing sampling algorithms. In this section we present
an exploration of the performance of the four major scan-
ners available in GAMBIT 1.0.0, when applied to a phys-
ically realistic likelihood function. The modularity of the
scanner interface allows consistent comparison between both
the algorithms themselves, and between different choices of
algorithm parameters.

This investigation is intended to reveal the strengths and
weaknesses of different sampling algorithms with respect to
typical user requirements. These requirements can be quite
varied, and may include the choice of statistical approach
(frequentist or Bayesian), the time taken for a scan to con-
verge, the reliability of the results, or some combination
of the three. However, for any thorough investigation, the
user should typically take advantage of the unique flexi-
bility offered by ScannerBit to employ a range of algo-
rithms, statistical methods, and scanner parameters in order
to obtain the most complete and robust sampling possi-
ble.

For this demonstration, we work with the scalar singlet
dark matter model. This model has two parameters beyond
the Standard Model (SM): the Higgs portal coupling Ajs, and
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Table 1 Parameters, ranges and central values of the test scans of this
section, for each scan dimensionality. The ranges for most SM parame-
ters correspond to +3¢ variations around the 2014 PDG central values
[63]. For the Higgs, the range is +40 about the 2014 central value
(which encompasses the 2015 40 range [64]). For the up and down
quark masses, we take the central values from the 2014 review, and
scan over a range of +20% around the central values. This is intended
to capture the =30 range implied by the likelihoods in PrecisionBit

[31], which deal with correlated mass-ratio measurements. The nuclear
couplings also incorporate a range of 30 around the best estimates.
The dark matter density has an asymmetric range about the central value,
as the likelihood that we apply to this parameter is log-normal rather
than Gaussian. We refer the reader to Refs. [35,57] for further details
and references on the central values and uncertainties associated with
the local density and nuclear parameters

Parameter Values

Scalar pole mass mg (45, 10*] GeV
Higgs portal coupling Ans (1074, 10]

Varied in 7 and 15-dimensional scans .

Electromagnetic coupling 1 /aMS (mz) 127.940(42)
Strong coupling aﬁ‘TS(mz) 0.1185(18)

Top pole mass my 173.34(2.28) GeV
Higgs pole mass mp 125.7(1.6) GeV
Local dark matter density 00 0.41’8:3 GeVcem™3
Varied in 15-dimensional scans

Nuclear matrix el. (strange) oy 43(24) MeV
Nuclear matrix el. (up + down) o1 58(27)MeV
Fermi coupling x 10° Grs 1.1663787(18)
Down quark mass mﬁ’TSQ GeV) 4.80(96) MeV

Up quark mass muMis(Z GeV) 2.30(46) MeV
Strange quark mass m?’TS(Z GeV) 95(15) MeV
Charm quark mass mé‘TS(mC) 1.275(75) GeV
Bottom quark mass mé"TS(mb) 4.18(9) GeV

the singlet Lagrangian mass parameter pus. We present the
results in the effective parameter space of A,s and m g, where
the physical singlet mass m is given by

2 1 2
ms =,/ g + E)\hsvo (30)

where vp = 246 GeV is the vacuum expectation value of the
Higgs field. The likelihood and posterior are both multimodal
and highly degenerate across several orders of magnitude in
the values of these parameters.

To investigate how performance scales with dimensional-
ity, we introduce additional parameters that enter into the
combined likelihood function. These parameters are well
constrained by unimodal likelihood functions, but still create
a significant challenge for any sampling algorithm due to the
increase in the dimensionality of the parameter space. In par-
ticular, we carry out detailed tests in two, seven and fifteen
dimensions, and one scan with each sampler for dimension-
alities between two and fifteen. We list the free parameters
for each scan in Table 1. For all test scans, we apply a log-
arithmic prior to the singlet parameters Aj;s and mg, and flat
priors to the additional parameters.
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In the following, we only show full results from the fifteen-
dimensional scans. Increasing the dimensionality of the prob-
lem across this particular parameter space does not substan-
tially shift the location nor shape of the final likelihood with
respect to Apg and mg. As a result, the best-fit point and
regions of maximum likelihood remain similar. For compar-
ison, in Appendix E, we give additional detailed results in two
dimensions. The inclusion of additional parameters does sig-
nificantly increase the runtime for the scanning algorithms,
and degrades their ability to locate the maximum likelihood
point. Note that choosing a more complicated model, with
more complicated parameters in the ‘higher’ dimensions,
would only increase the required computing time, making
such an extensive comparison study infeasible. We refer the
interested reader to the companion papers on supersymmet-
ric models [33,34] for applications of Diver and MultiNest
to higher-dimensional multimodal parameter spaces.

The dominant physical constraints on the model that we
consider here come from experiments searching for dark mat-
ter via direct and indirect detection, the observed limit on
the thermal relic abundance of dark matter, and constraints
on the rate of invisible Higgs decays at the Large Hadron
Collider. We also apply the constraint A,s < 10, as larger
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values would violate perturbative unitarity and are therefore
not physically interesting. More details on the model can be
found in accompanying and earlier papers [29,35,55-62].
Here our test function consists of the same likelihood compo-
nents as in Ref. [35]. Although this is a simple, well-studied
extension of the SM, the parameter space is still sufficiently
non-trivial that it constitutes an illustrative test of scanner
performance.

In Sects. 11.1-11.4 we discuss the most appropriate
choices of settings for MultiNest, Diver, T-Walk and GreAT,
respectively. In order to make comparisons, we require fair
metrics with which to compare the outcomes of scans. We
first look at the best value of the log-likelihood found in
each scan, which is crucial for the correct normalisation of
the profile likelihood (Figs. 5, 6, 10 and 13). The results of
this test favour algorithms primarily intended as optimisers,
whilst disadvantaging those mainly designed to map the like-
lihood function or posterior. We therefore also compare the
visual quality of the profile likelihood maps (Figs. 7, 9, 11
and 14), and the corresponding posterior maps (Figs. 8, 12
and 15). This is a more qualitative approach, better suited for
algorithms intended to explore the parameter space.

We also make some additional comparisons between the
four sampling algorithms. In the first two of these tests, we
are interested in the relative performance as a function of
parameter space dimensionality (Sect. 11.5) and the total
CPU time required to complete a scan (Sect. 11.6). Here,
we focus mostly on the value of the best-fit log-likelihood
and the time taken to achieve it. These sections are most rel-
evant for evaluating profile likelihood performance; in Sect.
11.7, we instead focus on the specific merits of different algo-
rithms for mapping the Bayesian posterior. We discuss the
overall implications of these results in Sect. 11.8.

We performed all tests using a high-performance comput-
ing cluster, taking advantage of the ability to run GAMBIT in
parallel across multiple processors. In the interests of making
sensible use of computing resources and time, we ran the two-
dimensional scans on a single 24-core compute node, using
24 MPI processes. For the seven- and fifteen-dimensional
scans, we used 10 nodes, for a total of 240 MPI processes.
For the scans where we compare performance with respect
to dimensionality, a consistent computing environment is
required; here we used 5 nodes for all scans, corresponding
to 120 MPI processes.? The two-dimensional profile likeli-
hood and marginalised posterior maps that we show in the
following subsections were produced with pippi [36], using
150 bins in each dimension.

3 Although GAMBIT is also able to use OpenMP threads for further
(likelihood-level) parallelisation within individual MPI processes [29],
here we limit ourselves to distributed-memory parallelisation with MPI,
seeing as this is the form of parallelisation employed by the scanning
algorithms.

11.1 MultiNest

MultiNest’s ability to accurately evaluate the evidence and
map the posterior is directly affected by the number of live
points used in a scan, with more live points increasing the
chance of finding all relevant modes of the posterior. On the
other hand, more live points means more likelihood evalua-
tions, and requires greater computing resources. The overall
duration of the scan is also influenced by the stopping cri-
terion, which is given by the tolerance on the final evidence
(the estimate of the largest evidence contribution that can be
made with the remaining portion of the posterior volume).
The sampling parameters that we vary are therefore the num-
ber of live points (Njjye, nlive) and the tolerance (tol).

We perform runs with 2000, 5000, 10,000 and 20,000 live
points, and tolerances of 1074,1073,1072 and 10~!. The
values of the best-fit log-likelihoods achieved for scans using
these parameters are shown in Figs. 5 and 6. In Fig. 7, we
present a selection of the profile likelihoods from MultiNest
scans in the full 15-dimensional parameter space; in Fig. 8
we give corresponding marginalised posterior maps.

We see consistent best fits from all scans when tol <
1073, A sufficiently small tolerance appears to provide a
good best-fit value over a large range of n1ive values. On
the other hand, even with larger values of n1ive, setting tol
too large will still negatively impact the quality of the best-fit
point; even with 20,000 live points we still see a poor best-fit
likelihood if the tolerance is greater than 10~3. The number
of live points has a more significant impact on the sampling of
the parameter space, as can be seen in Figs. 7 and 8. In these
plots, a significant difference in the quality of both profile
likelihood and posterior sampling is evident even between
runs done with 2000 and 5000 live points.

On the basis of these results, we recommend an upper
bound on the tolerance of 1073 if MultiNest is to be relied
upon for obtaining the appropriate normalisation for profile
likelihoods. The number of live points required will depend
on the desired quality of the resultant profile likelihood or
posterior contours, and the dimensionality of the parameter
space. In Fig. 7, it is clear that in fifteen dimensions a value
of at least 20,000 for n1ive is required to give fine-grained
sampling of the profile likelihood. Because in most cases one
is interested in a global fit over many parameters, we recom-
mend a value of 20,000 live points as the lower limit. We
note however that this may be reduced somewhat if dealing
with a lower-dimensional parameter space, or if one is only
interested in mapping the posterior at a lower resolution (less
bins) than we have employed here.

11.2 Diver

Diver is a differential evolution optimisation package that is
also highly effective at sampling parameter spaces. The size
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Fig. 5 Best-fitlog-likelihoods in scans of the scalar singlet space using
the Diver and MultiNest scanners, for a range of convergence toler-
ances and a fixed number of working points. Tolerances correspond to
the parameter tol for MultiNest and the parameter convthresh for

of the evolving population is determined by the nr param-
eter, and the threshold for convergence is controlled by the
convthresh parameter.

We examine population sizes of ne = 2000, 5000, 10,000
and 20,000, and convthresh valuesof 1074, 1073, 1072 and
10!, Although these parameters have different definitions
to nlive and tol in MultiNest, we take advantage of the
similarity in the appropriate ranges for these and plot the
scan results on the same axes in Figs. 5 and 6. We see that a
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Diver. Working points correspond to the parameter Njive for MultiNest
and the parameter NP for Diver. Note that the likelihood is dimension-
ful, leading to Lpr > 1 [29]

convthresh value of less than 1073 gives consistent results
for the best-fit log-likelihood at all values of wp.

In two dimensions, both MultiNest and Diver are able to
find roughly the same or equivalently good best-fit points.
The differences in the algorithms become evident in seven
and fifteen dimensions however, where Diver consistently
outperform MultiNest for equivalent parameter values. This
is somewhat expected, given that Diver is designed as an opti-
misation routine, whereas MultiNest is intended to compute
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Fig. 6 Best-fitlog-likelihoods in scans of the scalar singlet space using
the Diver and MultiNest scanners, for different numbers of working
points and fixed convergence tolerances. Working points correspond to
the parameter Njjye for MultiNest and the parameter NP for Diver. Tol-

the Bayesian evidence and sample the posterior distribu-
tion. In two dimensions, the sampling is dense enough
that MultiNest has been able to locate the best-fit point,
but in higher dimensions the task is more suited to an
optimisation-specific routine. Because the maximum like-
lihood is located in the low-mass region in both two and
fifteen dimensions, it is indeed a result of poor sampling
that MultiNest has not located the same best fit that Diver
has achieved (see Appendix E for equivalent plots for two

erances correspond to the parameter to1 for MultiNest and the param-
eter convthresh for Diver. Note that the likelihood is dimensionful,
leading to Lpr > 1 [29]

dimensional scans). We return to this discussion in Sect.
11.8.

In Fig. 9, we investigate the ability of Diver to accurately
map the contours of the profile likelihood. We see that both
the convthresh and NP settings are relevant in reproducing
the desired contours. A convthresh of 1073 appears appro-
priate in fifteen dimensions, along with an x> value of at least
20,000. Howeyver, these requirements become less stringent
in a lower-dimensional parameter spaces (data not shown),
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Fig. 7 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner with a selection
of difference tolerances (to1) and numbers of live points (n11ive). The maximum likelihood point is shown by a white star
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dimensional scan of the scalar singlet parameter space, using the Multi-
Nest scanner with a selection of difference tolerances (to1) and num-
bers of live points (n11ve). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed pos-
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edge of the 1o credible region, and so on). The posterior mean is shown
with a grey bullet point
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Fig. 9 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the Diver scanner with a selection of

difference convergence thresholds (

where they can be reduced by at least an order of magni-
tude whilst still achieving a suitable mapping of the profile
likelihood.

From these tests, we recommend similar settings as for
MultiNest for similar parameters: for a detailed picture of the
profile likelihood a value of 20,000 is recommended for
(although this can be reduced for lower dimensional parame-
ter spaces), and to consistently find the best-fit point an upper
bound of 1073 is recommended for the conver-
gence tolerance.

@ Springer

) and population sizes (

). The maximum likelihood point is shown by a white star

11.3 T-Walk

T-Walk is an ensemble MCMC algorithm. The primary
parameters of interest are the number of chains used during
the scan and the stopping criterion. The latter is controlled by
the parameter sqrtR, which is the square root of the Gelman-
Rubin R statistic, where 1 is perfect. For comparison with
other scanners, we define the equivalent tolerance of T-Walk
scans as tol = sqrtrR —1. The chain number is bounded
below by 1+ projection dimension+ the number of MPI
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Fig. 10 Top row: Best-fit log-likelihoods for two-dimensional scans
using the T-Walk algorithm, as a function of the number of chains used,
for two different convergence tolerances (tol). Middle and bottom
panels: Best-fit log-likelihoods as a function of convergence tolerance
(tol), for T-Walk scans in seven and fifteen dimensions with a fixed
number of chains. Note that the likelihood is dimensionful, leading to
Lpr > 1[29]

processes in use (see Sect. B.3). For two dimensions, we have
alower limit of 27 (24 + 2 4 1), and therefore perform tests
with 27,54, 81 and 108 chains. For higher-dimensional scans,
the increase in the number of MPI processes requires larger
chain numbers, so we choose 256 and 512. We consider tol
values of 0.3, 0.1, 0.03 and 0.01.

The best-fit log-likelihoods from scans using various T-
Walk settings are given in Fig. 10. In two dimensions, we
hold the tolerance fixed and investigate the effect of varying
the chain number. We see no notable trend with chain number,
for either of the tolerance values. For the seven and fifteen-
dimensional scans, we therefore instead focus on varying
the tolerance for a fixed number of chains. This reveals the
expected trend: smaller tolerances result in improvements to
the best-fit log-likelihoods. A significant improvement seems
to occur when rol < 0.1. We also notice no significant differ-
ence between the scans with 256 and 512 chains, consistent
with what we saw in the two-dimensional scans.

In Fig. 11, we show a selection of profile likelihood maps
of the 15-dimensional scalar singlet parameter space. We
immediately see that smaller tolerances are preferable for
a detailed sampling, and doubling the number of chains
has no notable impact on the quality of the sampling. In
Fig. 12, we show a selection of the marginalised posterior
maps of the 15-dimensional scalar singlet parameter space
achieved by T-Walk. Here we see that whilst the main poste-
rior modes appear to be better explored with smaller values
of tol, leading to smoother, better-converged posterior con-
tours, the presence of the minority mode at low mass would
seem to be more evident in scans using a higher tolerance.
This may appear counter-intuitive; why should poorer sam-
pling apparently do better at uncovering small regions such
as this? In reality, this region has been sampled more care-
fully in the scans with lower to1 values, despite appearing
less prominently in the posterior maps. That the sampling in
these regions is better at lower tolerances can be seen from
Fig. 11, where lower tolerances pick up better-fit points in
this region. Nevertheless, the additional samples retrieved
in runs with lower tolerances provide a steadily more accu-
rate indication of relative posterior weights of each of these
modes, gradually leading to the low-mass solution to become
reweighted and disfavoured in the better-sampled posterior
maps of Fig. 12.

Recommending parameters for the T-Walk algorithm is
difficult, due to the sensitivity of the convergence to the rol =
sgrtr —1 parameter. However, values less than ~ 0.1 appear
to be safe for the scans we have conducted here. Increasing
the number of chains above the minimum value does not
appear to result in any improvement in the quality of the
best-fit, nor in the overall sampling. As starting values for
a study using the T-Walk scanner, we therefore recommend
setting rol < 0.1 and leaving chain_number at the default
(minimum) value.

11.4 GreAT

The Grenoble Analysis Toolkit (GreAT [27]) is a traditional
Metropolis-Hastings MCMC able to sample parameters in
parallel using multiple independent chains. The number of
chains is controlled by the nTrialLists parameter, and
the number of points to run each chain for is controlled by
nTrials. No other convergence criteria are available.

For all dimensionalities, we consider nTrials values of
100, 200, 500, 1000, 2000, 5000 and 10,000. For scans in
Ngim = 7 or 15 dimensions, we test nTrialLists values of
Ndim, Ndim + 1 and Ngim + 2. For the two-dimensional scans,
we consider a larger range, setting nTriallLists to 2, 4, 24
and 48. We plot a selection of these results in Fig. 13.

In two dimensions, we see that more chains result in some
improvement in the reliability of the algorithm in uncovering
competitive values of the best-fit likelihood. Unsurprisingly,
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Fig. 11 Profile likelihood ratio maps from a 15-dimensional scan of the scalar singlet parameter space, using the T-Walk scanner with various
numbers of chains and different tolerances. The maximum likelihood point is shown by a white star
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Fig. 12 Marginalised posterior probability density maps from a 15-
dimensional scan of the scalar singlet parameter space, using the T-Walk
scanner with various numbers of chains and different tolerances. The
second to rightmost panel is from a 512-chain scan with a tolerance of
0.1. Note that the colourbar strictly only applies to the rightmost panel,

Fig. 13 also illustrates a tendency for longer chains to uncover
slightly better fits. These trends are both borne out substan-
tially more strongly in seven and fifteen dimensions. Visual
inspection of the profile likelihood maps in Fig. 14 indicates
that beyond nTrials of about 1000, these improvements
in best-fit likelihood with increasing numbers of chains do
not come with any substantial impact on the overall qual-
ity of sampling across the rest of the parameter space. We
do notice a small runtime improvement, however. For exam-
ple, two two-dimensional scans, each with 10,000 samples
per chain, took 119min to complete with nTriallLists =
48, but 165min with nTrialsrLists = 4. The best-fit log-
likelihoods returned by the two scans were equal to the third
significant figure. This timing difference reflects the improve-
ment in acceptance that can be achieved when GreAT is able
to draw on many different chains for constructing its corre-
lation matrix.

In Fig. 15, we show the posterior maps resulting from the
final set of independent samples returned by GreAT after
its thinning process. Clearly, none of the scans we have run
produce enough independent samples for a convergent map
of the posterior, at least at the relatively high bin resolution
that we employ for these tests.
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and that colours map to the same enclosed posterior mass on each plot,
rather than to the same iso-posterior density level (i.e. the transition
from red to purple is designed to occur at the edge of the 1o credible
region, and so on). The posterior mean is shown with a grey bullet point

For all scans, we observe that a minimum value between
1000 and 10,000 for nTrialsisrequired in order to achieve a
consistent value for the best-fit log-likelihood. We also notice
that very low values (below ~1000) map the profile likeli-
hood rather poorly. The value of nTrialLists appears to be
less crucial to the quality of the result; in general, values of
Ngim + 1 and above appear to give relatively stable results
when coupled with nTrials 2 10,000. Substantially longer
chains (nTrials > 10,000) would probably be required to
obtain high-resolution posterior maps.

11.5 The effect of dimensionality on performance

We have studied scanner performance in detail for two, seven
and fifteen-dimensional parameter spaces, by increasing the
number of nuisance parameters; each additional parameter
adds an additional Gaussian component to the likelihood, and
modifies the existing components. We now fix the computing
configuration and scanner parameters (or apply a consistent
scaling with dimensionality, where appropriate), and carry
out scans for every possible dimensionality from two to fif-
teen. The results of these tests are presented in Fig. 16. The
scanner settings we use for these tests are:
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Diver:

T-Walk: chain number = number of MPI processes +

= 20,000,

=1073
MultiNest: n1ive = 20,000, to1 = 1073

Ngim + 1, tol = sartr — 1 =0.05
GreAT: nTrials =2000, nTrialsList = Ngim + 1

To reach convergence, GreAT requires significantly more
likelihood evaluations for a larger number of dimensions.
Although this is undoubtedly in part due to the increased
number of chains used in higher dimensions, even with this
increased number of evaluations, the best-fit log-likelihood is
not competitive with that achieved by either Diver or Multi-
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Fig. 16 Best-fit log-likelihood (left) and number of likelihood evaluations (right) as a function of dimensionality, for all four scanning algorithms,
using a fixed computing configuration and scanner settings. Note that the likelihood is dimensionful, leading to Lgr > 1 [29]

Nest. If we demanded that all scanners must achieve the same
quality of best fit, then it is clear that GreAT would require
an even greater number of function evaluations to achieve
this. Judging from the quality of best fit, the decrease in the
number of evaluations required for convergence by GreAT
in higher dimensions is clearly the result of spurious early
convergence, rather than any increase in performance.
Diver performs extremely well at all dimensionalities,
out-performing the other three scanners in terms of quality of
best fit at Ngim > 10. It also achieves this using a consistent
number of likelihood evaluations across the full dimensional-
ity range. MultiNest is able to achieve a competitive best-fit
log-likelihood up until Ngiy, ~ 10, however this comes with
a steady increase in the number of evaluations with respect to
dimensionality. T-Walk runs for a consistent number of like-
lihood evaluations across all dimensions, despite the required
increase in number of chains, yet the best-fit deteriorates sig-
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nificantly with respect to dimensionality, in much the same
way as it does with GreAT. The ensemble version of the
MCMC algorithm implemented by T-Walk essentially pro-
vides the same best-fit performance as the regular MCMC
(GreAT), but with a significant improvement in efficiency
with increasing dimension. Overall, at least in this parameter
space, Diver appears to be the scanner of choice for larger
dimensions.

11.6 Scanning efficiency

The number of likelihood evaluations required to reach con-
vergence is not the only reasonable metric for scanner effi-
ciency. In general the number of evaluations is used as a proxy
for time, as the likelihood evaluations are generally expected
to be the bottleneck in most scans — but it is also illustrative
to look directly at actual runtime. The efficiency of a scanner



Eur. Phys. J. C (2017) 77:761

Page 29 of 49 761

can be degraded by poor use of parallel processing capa-
bilities, or by complicated calculations performed between
likelihood evaluations. This can lead to a divergence between
the apparent performance assessed purely by number of func-
tion evaluations, and the true walltime needed. We therefore
record the actual CPU time used for all scans, and compare
with the total number of likelihood evaluations in Fig. 17.*

Figure 17 shows that dimensionality has a significant
impact on the relative efficiency per likelihood evalua-
tion of each algorithm. For two-dimensional scans, we see
that T-Walk performs the least efficiently, while the other
algorithms are reasonably similar. However, in the higher-
dimensional parameter spaces, the efficiency of the nested
sampling in MultiNest becomes comparable to the MCMC
in T-Walk, whereas GreAT and Diver remain relatively
efficient. The reduction in performance by MultiNest in
higher dimensions is probably due to the complicated calcu-
lations required to perform its ellipsoidal sampling of multi-
dimensional modes. These calculations must be performed
between each generation of live points. Another potential
cause of the performance reduction in T-Walk and MultiNest
is the intrinsic level of parallelisability of their algorithms,
relative to the other scanners. For problems with larger num-
bers of parameters, we observe that the most efficient sam-
pling algorithms are GreAT and Diver, with both exhibiting
the lowest average latency between likelihood evaluations.

In Fig. 18, we summarise the overall performance of the
algorithms in terms of time and fit quality at each dimen-
sionality. We bin all completed test scans logarithmically in
the total convergence time, and for each sampler, choose the
scan in each bin with the best fit. There are no Diver points in
the longer bins, simply because the longest Diver scans took
less time than the longest scans with other samplers. Diver
clearly outperforms the other algorithms in high dimensions
by this metric as well, finding a better fit in a shorter runtime
than the other three algorithms. It is also important to note the
vertical scales in Fig. 18, where the likelihood values span
a much wider range in seven and fifteen dimensions than in
two. On close inspection however, we can see even in two
dimensions that Diver and MultiNest obtain better fits in less
time than either T-Walk or GreAT.

We also notice that in higher dimensions, although T-Walk
takes less evaluations than GreAT, both take a similar amount
of runtime to reach convergence, suggesting that T-Walk’s
reduced sampling is offset by additional algorithmic com-
plexity requiring more extended calculations between sam-
ples.

4 Here we use 24 processes for the two dimensional scans, and 240
processes for the seven and fifteen-dimensional scans, so time compar-
isons should not be drawn between the two-dimensional plots and the
seven/fifteen-dimensional ones.
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11.7 Posterior sampling

Figures 8, 12 and 15 show the posterior sampling abilities
of T-Walk, MultiNest and GreAT, respectively. The best-
quality posterior in T-Walk took 9 hr, while in MultiNest the
best posterior we show took over 21 hr. The highest-quality
GreAT posterior we show took even longer, and is clearly a
poorer result than what was achieved by T-Walk and Multi-
Nest.

Comparing the quality of the posterior maps achieved
by T-Walk and MultiNest reveals some interesting trends.
Firstly, despite taking less than half the runtime, the best
posterior map returned by T-Walk appears to have given a
better-converged map of the posterior than the best effort by
MultiNest.

We can also see a distinct tendency for the shapes of
the contours returned by MultiNest to erroneously ‘smooth
away’ sharper features in the posterior, which are mapped
far more carefully and accurately by T-Walk. This is most
likely due to the ellipsoidal sampling method intrinsic to
MultiNest, which biases the algorithm towards finding new
live points within elliptically-shaped regions encompasing
its current population of points. This makes it rather easy for
the algorithm to miss sharp features in the posterior, such as
the low-coupling tip of the highest-mass mode in the scaler
singlet parameter space, which would protrude beyond the
approximate contour defined by the bounding ellipsoids in
MultiNest.

We also see that posterior maps become poorer for shorter
scans with both T-Walk and MultiNest, but in quite distinct
ways. In MultiNest, a scan performed with too few live points
or too high a tolerance will give a poorly-sampled posterior
with few favoured regions, essentially because the algorithm
has only managed to locate the most dominant modes of the
posterior at the outset. In contrast, a poorly-converged T-
Walk scan, particularly one with a large to1 value, will typ-
ically instead result in a map that includes all relevant modes
across the parameter space, but with their relative contribu-
tions poorly determined, such that they appear alongside a
number of other, spurious, favoured regions. When inspect-
ing a posterior map, particularly from brief scans, it is impor-
tant to be aware of these differences between the algorithms.

11.8 Discussion

We have investigated the performance of the four major sam-
plers available in ScannerBit as part of GAMBIT 1.0.0, over
a range of algorithmic settings and parameter space dimen-
sionalities. In Table 2, we summarise our recommended val-
ues for the two most important settings of each scanner. These
are intended as starting values that will give reasonably robust
results. However, every parameter space is different and a
publication quality results may require significantly more
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Table 2 The recommended starting parameters for each scanner avail-
able in GAMBIT 1.0.0. Here Ngin, is the dimensionality of the scan and
Nmp) is the number of (distributed-memory) parallel processes available
to GAMBIT

Scanner Parameter Recommendation

MultiNest nlive 2 x 104
tol 103

Diver NP 2 x 10*
convthresh 103

T-Walk chain_number Ngim + Nvpr + 1
sgrtR < 1.01

GreAT nTriallists Ngim + 1
nTrials 10*

stringent settings, in order for final results to be sufficiently
robust. See Sects. 11.2—11.4 for more detailed recommenda-
tions.

We are also able to make detailed comparisons between
the four scanning algorithms. In Sects. 11.5 and 11.6 it
became evident that differential evolution, as implemented
in Diver, consistently out-performs the other algorithms in
the computation of profile likelihoods. This becomes partic-
ularly clear in high dimensions, where Diver leads the other
algorithms in likelihood mapping, the quality of the best fit
found, and overall efficiency.

The true best-fit point for this likelihood is located in the
low-mass region, regardless of the number of additional free
parameters. The scanners did not always locate this point,
and in many cases located a best-fit in one of the high-mass
modes. Although locating this point in two dimensions is
less challenging (see Appendix E), once the dimensionality is
increased, only Diver (with most stringent convergence crite-
ria) was able to successfully locate the best fit in the low-mass
mode. All other scans converged to a best fit in a completely
different mode, demonstrating the value of using alternative
algorithms to fully understand the parameter space.

For careful mapping of the posterior, we find that T-Walk
is the most effective algorithm, followed by MultiNest and
GreAT. T-Walk manages to sample the posterior distribu-
tion at higher resolution in less time than the other two scan-
ners, and avoids the ellipsoidal biases that appear to afflict
MultiNest. For computing low-resolution posteriors how-
ever, MultiNest has the advantage that it requires less param-
eter tuning than T-Walk, and can more quickly identify which
are the most relevant posterior modes.

In many cases, having both Bayesian and frequentist inter-
pretations of results is desirable. This makes it necessary to
use a sampler able to effectively sample the posterior, such
as MultiNest or T-Walk. However, our tests show that this is
best performed after the likelihood function has been care-
fully mapped with another sampler, in order to find all modes.

For example, in Fig. 7, MultiNest has completely missed the
likelihood mode at low mass. This mode was successfully
found by all three of the other samplers. If MultiNest were
to be used exclusively, then this region — which contains best-
fit points degenerate with those in the other modes — would be
completely unexplored. However, with the knowledge gained
from the other scanners, a localised study can be performed
using MultiNest around the low-mass region (a technique
used in Refs. [33,35]), in order to correctly evaluate the
full posterior. In this way, the ability to use complementary
scanners significantly improves the statistical robustness of
results.

For lower-dimensional problems where both posterior dis-
tribution and profile likelihood are required, MultiNest could
potentially be used solo, to save repeating analyses with mul-
tiple scanners. We find that it is able to locate all modes when
scanning only the two-dimensional parameter space, and that
it is reasonably efficient compared with the other algorithms.
In general though, relying on only a single sampling algo-
rithm is risky.

The two MCMC-based scanners available in GAMBIT
1.0.0, T"Walk and GreAT, provide the user with a some-
what more traditional class of sampling methods. Although
these algorithms are demonstrably less effective scanners in
higher-dimensional profile likelihood problems, they may
suit lower-dimensional studies better.

Notably, our tests here are based on only one physical
problem; although this is intended as a realistic example,
no single example could ever represent the full diversity of
problems that might be encountered. Other parameter spaces
and likelihood functions may therefore reveal different trends
to those we have observed with the scalar singlet model.

12 Conclusions

In this paper we have presented ScannerBit, the statisti-
cal and sampling module for the new global fitting pack-
age GAMBIT. ScannerBit manages the overhead associ-
ated with choosing parameter combinations and applying
prior transforms, and offers an extremely flexible framework
into which any existing sampling code can be easily inte-
grated. It is able to perform sampling in standard random,
grid and raster patterns, or employ more sophisticated statis-
tical methods including nested sampling, differential evolu-
tion, Markov Chain Monte Carlo and ensemble Monte Carlo.
It interfaces seamlessly with the GAMBIT printer system to
allow statistical and physical outputs of parameter scans to
be saved to a common format of choice, entirely independent
of the model under investigation or the sampling algorithm
in use. It can also post-process existing sets of samples previ-
ously computed and saved with GAMBIT. ScannerBit can
be used from within GAMBIT, or as a standalone package
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independent of GAMBIT, allowing the user to connect to an
arbitrary likelihood function and sample it using their desired
algorithm.

In addition to ScannerBit itself, we have presented a new
standalone sampling package based on differential evolution:
Diver. Diver features a full suite of differential evolution
variants, from standard rand/1/bin to adaptive and discrete
versions, and additional operation modes designed to pro-
vide approximate Bayesian results. We have also presented a
new implementation of the T-Walk algorithm, implemented
natively in ScannerBit.

We compared the performance of the four main sampling
algorithms interfaced to ScannerBit in GAMBIT 1.0.0:
Diver, MultiNest, T-Walk and GreAT. We found that for pro-
file likelihood analyis at low dimensionality, Diver and Multi-
Nest outperform T-Walk and GreAT, and provide roughly
equivalent performance to each other. At higher dimensions
(10 and above), Diver substantially outperforms the other
three algorithms on all metrics. T-Walk provides a more accu-
rate, timely and complete mapping of the Bayesian posterior
than MultiNest, although MultiNest identifies the primary
posterior mode more quickly.

ScannerBit and GAMBIT can be obtained from gam-
bit.hepforge.org, and are both released under the terms of
the standard 3-clause BSD license.” Diver can be down-
loaded from diver.hepforge.org, or installed automatically
from within GAMBIT by simply typing make diver; it is
released under a license that makes it free to use and dis-
tribute for academic and non-profit purposes.
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Appendix A: Sources, options and outputs of the Diver
package

A.1: Sources

Each of the source files located in diver/src/ contains a
single eponymous Fortran module:

de. £90: the main module of Diver, containing the func-
tion diver (), by which the package is invoked.
init.£90: contains routines to set all parameters for the
run and to initialise the population every generation
mutation.£90: contains routines to allow standard DE
mutation following Eq. 23 and self-adaptive mutation
using jDE or AjDE (see Sect. 10.2.2).

crossover.£90: contains routines to allow binomial or
exponential crossover, or self-adaptive crossover using
jDE or AjDE.

selection.£90: performs selection of the next genera-
tion of vectors, applies boundary conditions, and removes
duplicate vectors to ensure population diversity (see
Sect. 10.2.4). If MPI is used, this is where most MPI
routines are called.

converge. £90: checks whether the population has con-
verged sufficiently to end the current DE run.

io.£90: saves the parameters of the run as well as the
population at regular intervals. Contains routines to con-
tinue a run that was stopped partway through.
evidence.£90: contains routines used for calculating
approximate Bayesian evidence values.
posterior.£90: contains routines used for calculating
approximate Bayesian posterior probability density func-
tions.

detypes. £90: contains interfaces to the likelihood func-
tion and prior, as well as the definitions of the internal data
types used by Diver.

deutils. £90: contains utility routines.

cwrapper.£90: acts as an interface between C/C++
drivers and de. £90.
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A.2: Run options

Options for a Diver run are passed directly as arguments to
diver () or cdiver (). The required arguments are:

double precision func (): The function to optimise,
assumed to be positive definite; should generally corre-
spond to the negative log-likelihood for statistical scans.
See example driving programs for suggested use. Must
take the following arguments:

double precision params: An array of size equal
to the sum of D (the dimensionality of the parameter
space) and nperived, the number of derived quanti-
ties to be output in the run.

integer fcall: The total number of calls to func;
should be incremented appropriately by the objective
function.

logical quit: A flag set by the objective function.
If this is ever set to true, Diver will save and quit at
the end of the current generation.

logical validvector: A flag set by Diver. If this
is false, the point in parameter space represented by
params isoutside the specified parameter boundaries,
and should not be evaluated.

c ptr context: A context pointer, allowing the
driving program to pass arbitrary information to
func. Can be modified in a call to func, and will
retain its value the next time the function is called.

double precision lowerbounds: An array of size D,
giving the desired lower bounds of the parameter space.
double precision upperbounds: An array of size D,
giving the desired upper bounds of the parameter space.
character path: The path to which output files should
be saved.

Other arguments are optional and default to sensible val-
ues if left unspecified. Here we list these in the format
option [default] :

integer nbDerived[0]: The number of derived quanti-
ties to be calculated by the likelihood/objective function.
If cutputsamples iS true, these are saved in human-
readable format along with the original parameters in a
. sam ﬁle

integer discretel[empty]: A vector listing all dimen-
sions of the parameter space that should be treated as
discrete parameters. See Sect. 10.2.3 for details.
logical partitionDiscrete[false]: Evolve
discrete parameters as separate populations. See Sect.
10.2.3 for details.

integer maxciv[2000 if doBayesian else 1]:
The maximum number of ‘civilisations’ to run. A civilisa-

tion is a full DE run with multiple generations, which ter-
minates either because it has converged or reached gener-
ation number maxgen. If doBayesianis true, Diver will
run additional civilisations up to maxciv until the approx-
imate Bayesian evidence has converged; if doBayesian
is false, Diver will simply repeat DE optimisation
maxciv times, and save the results as a single set of sam-
ples.

integer maxgen[300]: The maximum number of gen-
erations for the DE run. Usually the default convergence
criterion will cause Diver to end the DE run before this
number has been reached.

integer NP[10*size(lowerbounds)]: The popula-
tion size. Larger populations take longer to run but are less
likely to become trapped in local minima. Small popula-
tions run more quickly because they require fewer likeli-
hood/objective evaluations per generation, but they lack
diversity and may converge prematurely. The default is
set to 10D; we recommend that NP never be set to less
than D. If Diver is invoked using MPI, the actual popula-
tion size will be increased from the requested size until it
is a multiple of the number of MPI processes to be used.
double precision F[0.7]: The mutation scale fac-
tor(s); see Sects. 10.1.1 and 10.1.4. This should be sup-
plied as an array. The scale factor, and the degree to which
the population is spread out, together determine the radius
around the population in which new points can be pro-
posed. For this reason, = should be smaller than 1, to help
convergence, but not too small, to prevent premature con-
vergence. This option is ignored when 5 DE or 1ambdajDe
is true.

double precision Cr[0.9]: The crossover rate; see
Sects. 10.1.2 and 10.1.4. This option encourages mix-
ing between the trial and target vectors, and can encour-
age search along individual dimensions. This parameter
should be set between 0 and 1, inclusive. If it is set to
0, trial vectors will differ from the target vector along
only one dimension. If it is set to 1, trial vectors will be
entirely unrelated to their target vectors. This option is
ignored when §DE or 1ambdaiDE 1S true.

double precision lambda[0]: A scale factor linking
the best target vector in the population to the initial vector
chosen for mutation; see Sect. 10.1.4. This may take any
value between 0 and 1, inclusive. If 1ambda = 0, the best
vector is not used for mutation. If 1ambda = 1, mutation
will use the best vector as the starting point for all new
vectors. As a result, setting 1ambda > 0 will cause DE to
optimise more aggressively. This option is ignored when
JDE or lambdaiDE 1S true.

logical current[false]: Use the current target vec-
tor as a base for mutation; see Sect. 10.1.4. This option
is ignored when §DE or 1ambdaiDE is true.
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logical expon[false]l: Use exponential crossover
instead of binomial; see Sect. 10.1.4. This option is
ignored when jDE or 1ambdaiDE iS true.

integer bndry[1]: Controls the behaviour when trial
vectors are outside the allowed boundaries of the param-
eter space. Should be set to an integer between 1 and
4:

1 (‘brick wall’): points outside the boundaries are
rejected during the selection phase.

2 (‘random reinitialisation’): For each point outside
the bounds, a random new valid point is chosen.

3 (‘reflection’): points outside the boundaries are
reflected across the limits so that they land inside.
This option is recommended if full exploration of the
edges of parameter space is desired.

>4 (none): boundary conditions are not enforced.
This may lead to the population drifting away from
the initially specified region of parameter space, and
should be used with caution.

logical jDE[true]: Use self-adaptive rand/1/bin DE,
as described in Sect. 10.2.2. If this option is true, the
values set for F, Cr, lambda, current, and expon are
ignored. This option is ignored when 1ambdajDES true.
logical lambdaiDE[true]: Use self-adaptive rand-to-
best/1/bin DE, as described in Sect. 10.2.2. If this option
is true, the values set for F,Cr, lambda, current, expon,
and DE are ignored. If less aggressive optimisation is
required, we recommend that this be turned off, and jDE
used instead.

double precision convthresh[0.001]: The thresh-
old for convergence of one DE population (a ‘civilisa-
tion’). The smoothed fractional improvement in the pop-
ulation over successive generations must drop below this
value for a population to achieve convergence. Assuming
that the likelihood/objective function (func()) has been
chosen to return In £, the smoothed fractional improve-
ment in the mean is defined as

—n+1 .
Zpopulation InLi_y

J
1
dsmooth = — Z 1 - s
noiz f Zpopulation In Z;

(A1)

where i is the generation index, j is the current generation
number, and 7 is the population smoothing length, given
by convsteps.

integer convsteps[10]: The number of generations
over which to smooth the fractional improvement of the
mean population value of the likelihood/objective func-
tion when testing for convergence.

logical removeDuplicates [see Sect. 10.2.4]: Remove
duplicate vectors within a single generation. Turning
this on is generally good for population diversity. Dupli-
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cates are however exceedingly rare when either jDE or
current i$ true, SO keeping removeDuplicates =
true in these cases is not necessary, but can be a use-
ful debug check against MPI problems.

logical doBayesian[false]: Estimate posterior
weights of population members, and the natural log of
the Bayesian evidence In Z; see Sect. 10.2.5.

double precision prior(): The prior function to
be accounted for in approximate Bayesian computa-
tions; see Sect. 10.2.5. Required if doBayesianis true,
ignored otherwise.

integer maxNoderop([1.9]: The population above
which to perform node division in the binary spanning
tree used to estimate posterior weights; see Sect. 10.2.5.
Ignored unless doBayesian is true.

double precision Ztolerance[0.01]:Thefractional
uncertainty in In Z taken to indicate convergence of the
evidence; Sect. 10.2.5. Ignored unless doBayesian is
true.

integer savecount[1]: The number of generations
that should pass between periodic saves of the popula-
tion.

logical resume[false]:Resume from a previousrun.
logical outputSamples[true]: Write samples and
derived quantities in an output .sam file. Even if this
is false, the .sam file will still be written if discrete
is non-empty.

integer init_population_strategy[0]: Strategy to
employ when initialising the first generation. Should be
set to an integer between 0 and 2:

0 (‘one-shot’): initialise each member of the first
generation to a different random point drawn from
between the stated 1 owerbounds and upperbounds,
without regard to its fitness.

1 (‘n-shot’): draw candidate initial population mem-
bers randomly from between lowerbounds and
upperbounds. Accept a candidate if its function
value is below max_acceptable_value, otherwise
attempt to draw an alternative candidate. Continue
until max initialisation attempts 1S reached,
then if a good candidate has still not been found,
accept the next candidate without regard to its fitness.
2 (‘fatal n-shot’): as per 1, but throw a hard error if
max_initialisation_attempts is reached when
initialising any member of the first generation.

integer max_initialisation_attempts[10000]:
Maximum number of times to try to find a valid vector
when initialising each member of the initial population if
init_population_strategy > 0; ignored otherwise.
double precision max acceptable value[10°]:
The cutoff value of the objective function below which to
consider a candidate initial population member ‘accept-
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able’if init population strategy > 0; ignored oth-
erwise.

c_ptr context[C_NULL_PTR]: A raw void callback
pointer, used to pass information from the driver pro-
gram to the objective function. This is typically used to
pass an external function address, which the objective
function then uses to help with its evaluation.

integer verbose[1]: The amount of information to
print to screen. Recognised values are:

0 (‘Quiet’): Only error messages will be printed.

1 (‘Laconic’): Prints warning messages and a sum-
mary at the beginning and end.

2 (‘Chatty’): Prints civilisation-level and basic gener-
ation-level information.

3+ (“Verbose’): Prints detailed information for each
generation.

A.3: Output formats

Diver produces up to four different output files, in plain
ASCII format. The first three of these are always generated,
and are needed for resuming a run.

path . rparam: the complete range of Diver settings in use
in the current run, including optional parameters. The
meaning of each entry in this file can be read off the
comments provided in the routine save run params in
io.£90. This fileis created during the first save operation,
which takes place after savecount generations have been
completed (see Sect. A.2).

path.devo: convergence and other dynamic runtime
information. This is the file to check for evaluating the
progress of a given run. Its contents are as follows:

civilisation number, generation number
Z, (PY), AZ, unpolished Z
Ns, individuals saved, number of calls to func

fitness at best fit Bpeg
raw (non-discretised) parameter values at Opeg
parameter values and derived quantities at Opegt

fitnesses of current population
raw parameters of current population
parameters & derived quantities of current pop.

if jDE or lambdajDE:
F values of current population
Cr values of current population
A values of current population

Jsmooth
individual contributions to &smooth from each of
the last convsteps generations

Further information can be found in the routine save
state of 1i0.£90. Like the . rparam file, this file is cre-
ated during the first save operation.

path . raw: the posterior weight, fitness, civilisation num-
ber, generation number and raw parameter values (in this
order), for every individual so far generated in a scan.
The data for each individual occupies a single line in the
file. In order to allow proper resumption of the run, the
sampled values of any discrete parameters appear as they
are used internally for mutation, i.e. as values of a con-
tinuous parameter. This file is created before the initial
population is generated.

path . sam: all parameter samples, in a similar format to the
.raw file, but with additional columns for each derived
quantity calculated in a scan. The sampled values of any
discrete parameters are also given rounded to their true
discrete values in this file, unlike in the . raw file. This file
is only generated if outputsamples = true and either
discrete is non-empty or nberived # 0. This file is
created immediately after the . raw file.

Appendix B: Scanner options and outputs

For quick reference, here we provide the ScannerBit YAML
file options and output formats for all five of the major scan-
ners mentioned in this paper: the postprocessor (Sect. 6),
GreAT (Sect. 7), T-Walk (Sect. 8) MultiNest (Sect. 9) and
Diver (Sect. 10).

B.1: Postprocessor

The YAML setup required to run the postprocessor spans
two sections of the master YAML file: the usual Scanner
section, plus also the parameters section.® In the scanner
section, the options [and defaults] are as follows:

1ike: The purpose to use as the objective; should gen-
erally match the purpose set for likelihood components
(e.g. in the ObsT.ike section of a GAMBIT YAML file).
reweighted_like: The output label used for the final
resultof add to likeand subtract from like oper-
ations.

add_to_like[empty]: A vector of names of datasets
present in the input samples, presumably log-likelihood
values, to be added to the newly computed 1ike and
output as reweighted_like. (Note that the ‘newly-
computed’ 11ike may be zero if no entries in the GAM-
BIT obs1ike section have been assigned a purpose that
matches 1ike). For example, if the combined likelihood

6 Some of the requirements of the Paramet ers section can be option-

ally implemented in the Priors section instead.
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of a previous scan were labelled "LogLike", and one
were to choose like:New_LogLike as the new com-
posite (log-)likelihood for a new ‘scan’, then the way to
ensure that the old and the new composite log-likelihoods
were automatically summed for every model point would
be to set add_to_like: [LogLike]. The results of this
summation would appear in the new output with the label
by reweighted_like.

subtract_from_likel[empty]l: As per add to_like,
except the old output is subtracted from 1ike.

permit discard old likes[false]l: When set to
false, this option forbids the purpose chosen for 1ike
from clashing with any data label in the input samples.
For example: if the original purpose was LogLike, a
different purpose must be chosen for 1ike, or an error
will be thrown. If this option is set true, then clashes
are permitted, and will be resolved in the new out-
put by replacing the old data with the newly-computed
data (as occurs automatically for all other clashes
between old and new dataset names). This option also
applies to likelihood components listed in add_to_like,
subtract_from_like, and reweighted_like. If setto
false then these names may not be recomputed during
postprocessing.

update_interval[1000]: Defines the number of itera-
tions between messages reporting on the progress of the
postprocessing.

reader: Options under this item specify the format of
the old output file to be read, along with e.g. the path
at which the file is located. The required options differ
depending on which GAMBIT printer was used to save
the results of the previous scan.

The final option, reader, is used to inform the postpro-
cessor of the format and location of the old data that needs to
be reprocessed. In this first release of GAMBIT there are only
two possible printer formats, ascii and hdfs, as described
in [29]. There are therefore at present only two sets of options
that may be specified for the reader. For files created with
the hd£s printer:

type: hdf5

file: Path to the HDF5 file containing the data to be
parsed

group: Group within the HDF5 file containing datasets
to be parsed.

For ascii output:

type: ascii
data_filename: Path to the ASCII file containing the
data to be parsed
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info_filename: Path to the ASCII ‘header’ file that
contains the labelling information for the columns of

data_filename.

Note that the reader need not match the chosen printer in a
postprocessing run; reading samples in ascii and outputting
updated samples in hdf5, or vice versa, is permitted. This
allows GAMBIT samples produced in one format to be easily
converted into any other format.

Note also that where new print overloads have been
defined for one or more printers, as described in Sect. 9.3
of Ref. [29], users wishing to postprocess the resulting data
must also overload the equivalent _retrieve method of the
reader in use, so that it can successfully read the new type in
from the existing scan output. To do this, one needs to follow
the instructions for adding a new print overload in Sect. 9.3 of
Ref. [29], and then also add the body of the new _retrieve
function to the file Printers/src/printers/printer_name
/retrieve_overloads.cpp.

Using the postprocessor scanner also places some spe-
cial requirements on the Parameters and/or Priors sections
of the YAML file. First, the models chosen in the Parameters
section must be a subset of the models that were used for the
original scan. Secondly, the prior_type for all the param-
eters in those models must be set to none. This disables the
standard GAMBIT prior system and allows the postprocessor
to manually set parameter values (see Sect. 3.1.3 for details).

B.2: GreAT

The following options (with defaults in brackets) set the chain
length and number of steps taken used by the GreAT sampler:

nTrialLists[10]: Number of Markov chains to be run.
nTrials([20000]: Number of steps in each Markov
chain.

At the end of the run, the complete statistics for all chains
run (burn-in length, correlation length, number of indepen-
dent samples) are printed out in GreAT’s native format. The
independent samples and their multiplicities are stored and
outputed to the GAMBIT printer system.

B.3: T-Walk

The options available for T-Walk in ScannerBit (with
defaults in square brackets) are:

kwalk_ratio[0.9836]: ratio of walk and traverse to
hop and blow moves. The default is to strongly prefer
walk and traverse moves.
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projection_dimension[4]: dimension of the projec-
tion subspace in which walk and traverse moves are
performed.

walk_distance[2.5]: width of the distribution func-
tion for the distance of the walk move (a,,; see Eq. 11).
traverse distance[6]: width of the distribution func-
tion for the distance of the traverse move (a;, see Eq. 15).
gaussian_distance[2.4]:Gaussian jump parameter d
for the hop and blow moves. See Eq. 19.
chain_number[l+projection_dimens ion+number of
MPI processes] : total number of MCMC chains. T-Walk
will be highly inefficient if this parameter is set to any-
thing less than the default.

hyper grid[true]: confines the search to the hyper-
cube defined by the priors.

sgrtR[1.001]: the version of T-Walk in ScannerBit
uses the Gelman-Rubin convergence diagnostic v/R [43]
to determine when a scan has converged. This compares
the inter-chain dispersion to the total dispersion of each
parameter. Values closer to 1 are better converged; when
V'R drops below the value given for =qrtr, the scan
terminates.

The T-Walk scanner also outputs various variables asso-
ciated with the scan to the GAMBIT printer system:

mult: Multiplicity (posterior weight) of each sample.
chains: Chain number for each sample. Rejected pro-
posal points are assigned the number —1.

B.4: MultiNest

The ScannerBit plugin that runs the MultiNest sampler
takes the following YAML options, which it passes directly
through to the external MultiNest library (defaults are given
in square brackets):

1s[true]: do nested importance sampling?

mmodal [true]: do mode separation?

ceff[false]: run in constant efficiency mode? Setting
this true can result in poor evidence estimates.
nlive[1000]: number of live points.

efr[0.8]: required efficiency (only relevant if ceff =
true).

tol[0.5]: stopping tolerance; the scan halts when the
ratio of the estimated remaining unsampled evidence to
the current estimate of the evidence drops below this
value.

nClsPar [ndims]:number of parameters to do mode sep-
aration on. The default is to do separation on all param-
eters being scanned.

updInt [1000]: update interval; this sets the number of
iterations between output file updates and any feedback

passed to standard output. The MultiNest dumper func-
tion, which handles the calls to the GAMBIT printer, runs
every 10*updInt iterations.

7to1[-10°°7: the threshold in the logarithm of the evi-
dence below which to ignore modes of the posterior.
maxModes [100]: expected maximum number of modes
(used only for memory allocation).

seed[-1]: seed to use for the internal MultiNest random
number generator. If this is negative, the seed is taken
from the system clock.

fb[true]: provide feedback on run progress to standard
output?

outfile[true]: write native MultiNest output files?
ScannerBit does not add prior-transformed parameter
values nor auxiliary observable values to the native Multi-
Nest output, so this output is not very useful for analysis
purposes. However, the native outputs are required for
MultiNest to be able to resume scans that were previ-
ously interrupted. We recommend leaving this option set
unless running scans that will definitely not need to be
resumed.

maxiter[0]: maximum iterations permitted; a non-
positive value is interpreted to mean infinity.

There are several other options that MultiNest ordinar-
ily requires when run outside of ScannerBit, but for which
ScannerBit can infer appropriate values and set automat-
ically. These cannot be set in the scanner section of the
YAML file (although some can be changed indirectly by mod-
ifying the scan setup elsewhere):

Number of parameters (ndims): ScannerBit sets this
option according to the number of varying parameters
that exist in the model being scanned.

Size of ‘cube’ array (npar): This is set to ndims+2. The
first ndims slots contain the hypercube parameters, and
in the extra two slots ScannerBit stores an ID number for
each point, plus the MPI rank of the process that produced
it. Together these two numbers uniquely identify every
point sampled in a scan. These numbers are also stored
in the GAMBIT printer system output, so they can be
used to correlate the native MultiNest output with the
GAMBIT printer output.

Resume mode (resume): ScannerBit activates resume
mode by default unless the -r switch (for ‘restart scan’)
is given at the command line.

Minimum loglike (1ogZero): points withln £ < logzero
will be ignored by MultiNest. This is set to 0.9999 times
the value of model invalid for 1nlike belowinthe
likelihood node of the Keyvalues section of the main
YAML file.

Initialise MPI (initmpT): This is set to false because
ScannerBit handles the initialisation of MPI.
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Note that GAMBIT sets 1ogZero to slightly more than
model invalid for Inlike below. Thisis so thatinvalid
pOhH& asﬁgned InL = model_invalid_ for 1nlike_
elow by the likelihood container [29], are treated as having
zero likelihood by MultiNest. This is the desired behaviour
during live point generation, as it prevents any of the initial
live points being invalid.

During live point replacement however, this can pre-
vent efficient parallelisation, as MultiNest requires all MPI
nodes to continue testing proposed points until they each
find one with In£ > logzero. In complicated parame-
ter spaces, where the ellipsoids encompass large regions
of invalid parameter space, this can lead to many nodes
idling whilst they wait for a small number of nodes to find
their valid points, even if one of the points already found
has a high enough likelihood to use for live point replace-
ment. To circumvent this, following live point generation,
when the MultiNest dumper function first runs, the Multi-
Nest plugin communicates to ScannerBit and GAMBIT
that likelihoods for invalid points should no longer be set
to model_invalid_for_1Inlike_below, but instead to the

value of the alternative optionmodel_invalid for Inlike_

below_ alt.Thiskeycan alsofoundinthe 1ikelihoodnode
of the keyvalues section of the main YAML file. The value of
model_invalid_for_lnlike_below_alt defaults to half
model_invalid_for_lnlike_below. Whenever itis set to
more than logzero (i.e. 0.9999 times model_invalid_ for
_1Inlike_below), MultiNest considers all samples found to
be valid, and does not demand additional samples before
evaluating whether those found are appropriate for live point
replacement. We find that this often results in more than an
order of magnitude improvement in performance when run-
ning MultiNest with O(100) or more MPI processes.

B.5: Diver

The YAML entry xeyvalues::likelihood::lnlike
offset can be used to set the offset to be applied to the log-
likelihood function passed to Diver, in order to maintain pos-
itive definiteness of the fitness function; this defaults to 104
times KeyValues::likelihood: :model invalid for
Inlike_below.

The Diver interface in ScannerBit provides almost all of
the run options mentioned in Sect. A.2, configurable directly
from the Diver entry in the main YAML file. With a few
exceptions, these options have the same names and default
values as in Diver itself. The exceptions are:

— wp has no default, and must be specified in the YAML file

— maxgen defaults to 5000, not 300

— bndry defaults to 3, not 1

— removeDuplicates defaults to true, regardless of other
options
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— outputsSamples is instead referred to by the YAML
opﬁon full_native_output

— init_population_strategy defaults to 2, not 0

— max_acceptable value defaults to 0.9999 times the
value of model invalid for Inlike below in the
likelihood node of the Keyvalues section of the main
YAML file

— verbose is instead referred to by the YAML option
verbosity, and defaults to 0 instead of 1.

Note that doBayesian is not available as a YAML option,
and is hard-coded to false; there are multiple other scan-
ners available in ScannerBit more efficient and accurate
at scanning the Bayesian posterior than Diver. Correspond-
ingly, maxNodePop and ztolerance are not offered as YAML
parameters either. Any user especially interested in obtain-
ing posteriors from Diver running within ScannerBit should
find this relatively easy to recode by comparison with e.g. the
MultiNest or GreAT interface.

Appendix C: Custom priors

ScannerBit allows for users to add their own priors.
These should be declared inside the priors namespace,
in new headers placed in ScannerBit/include/gambit/
ScannerBit/priors, and new source files placed in
ScannerBit/src/priors.

Declaration of a new prior prior_name, arising from a new
class prior_class, takes the form:
class prior_class public BasePrior
{

public:

prior_class (const std::vector<std::string>&
params, const Options& options)
BasePrior (params, cube_size)

{//insert optional initialisation code}

void transform(const std::vector<double>&
unitpars, std::unordered_map<std::string,
double>& outputMap) const
{//insert non-optional transformation code}
}i

LOAD_PRIOR (prior_name, prior_class)

Given this recipe, the only real input required of a user when
implementing a new prior is to decide on its dimensionality
(cube_size), and to write the body of its transformation func-

tion (prior_class: : transform).
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The class defining the user-specified prior inherits from
the abstract base class Baseprior. This class has the follow-
ing members:

BasePrior (std: :vector<std::string>, int):
Base class constructor. Takes in a vector of strings that
defines the parameter names, and an integer that specifies
the dimension of the unit hypercube to be operated on by
this prior. Typically this will be 1, or the entire parameter
space, available by simply calling the size () method on
the vector passed as the first argument.

void transform(std::vector<double>,
std::unordered_map<std::string, double>): A
pure virtual function that defines the prior transforma-
tion. Takes as input a vector of doubles with the input
unit hypercube values, converts them to the actual model
parameters, and stores them in the unordered map passed
(by reference) as the second argument.

unsigned int size(), unsigned int& sizeRef():

Returns the dimension of the input unit hypercube.
void setSize (int):Setthe unithypercube dimension.
std: :vector<std: :string> param_names: A
protected member variable (i.e. accessible from derived
classes only), which contains the names of the parameters
as passed to the constructor.

A user-defined prior is registered in the ScannerBit prior
database by invoking the following macro after the class dec-
laration:

LOAD_PRIOR (prior_name, prior_class) Macro that loads
the prior defined in class prior_class, and assigns it the
internal name prior_name.

Here we give a worked example of the declaration of a cus-
tom prior. This prior is contained in the ScannerBit source
file ScannerBit/include/gambit/ ScannerBit/priors/
dummy . hpp. This prior simply transforms the unit hypercube
to the same unit hypercube.

namespace Gambit

{

namespace Priors

{

class Dummy :

{

public BasePrior

public:

Dummy (const std::vector<std::string>&
param, const Optionsé&)
BasePrior (param, param.size())

{3

void transform(const std::vector<double>&
unitpars, std::unordered_map<std::string,
double>& outputMap) const
{
auto it_vec = unitpars.begin();
for (auto it = param_names.begin(),
end = param_names.end(); it != end;
it++)
{

outputMap[*it] = *(it_vec++) ;

Y

LOAD_PRIOR (dummy, Dummy)

Here, the Dummy class inherits from the BasePrior class.
The constructor passes the entered parameter names to the
BasePrior constructor, as well as the hypercube size. The
transform function transforms a vector<double> repre-
senting the unit hypercube into actual parameter values,
which are stored in the output map. In this case, the hyper-
cube values are directly stored in the output map. Lastly, the
Dummy prior is loaded into the prior system and given the name
dummy, by calling the macro LOAD PRIOR (dummy, Dummy).

Appendix D: Plugin Declaration and Interface

In the following subsections, we go through the definition,
design, and operation of plugins in detail, starting with their
declaration in Sect. D.1. ScannerBit provides a broad suite
of utility functions that can be called from plugins. We first
deal with the functions available to all plugins, for access-
ing information in the initialisation file of a scan (Appendix
D.2), the chosen prior transformation (Appendix D.3), and
the GAMBIT printers (Appendix D.4). We then list utility
functions available only to scanner (Appendix D.5) or objec-
tive (Appendix D.6) plugins.

D.1: Plugin declaration

Source code for a plugin plugin_name is located within a direc-
tory ScannerBit/src/plugins_kind/plugin_name. Headers are
found in ScannerBit/include/gambit/ ScannerBit/
plugins_kind / plugin_name. Here plugins_kind is either scanners
Or objectives.

Code for all plugins follows the same basic layout (with
plugin_kind either scanner or objective):
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#include "plugin_kind_plugin.hpp"

plugin_kind_plugin (plugin_name, version(...))
{

environmental_macros
plugin_constructor {...}
return_type plugin_main(args) {...}

plugin_deconstructor {...}

}

The plugin body can contain three blocks of code: a
plugin_constructor, a plugin_main, and a plugin_
destructor. The utility functions detailed in the fol-
lowing subsections can be accessed from within any of
these three blocks. The plugin_constructor and plugin_
deconstructor blocks will run when the plugin is loaded
and unloaded, respectively. The code here can used to ini-
tialise, allocate, or deallocate variables needed by the plugin.
The plugin_main block defines the function that will be run
by the plugin. The form of the arguments for plugin main
required by ScannerBit depends on whether the plugin is a
scanner plugin or an objective (test function) plugin.
For scanner plugins, plugin_main must take the form

void plugin_main() { code }

where code is the code that actually drives a statistical sam-
pling algorithm. We give a full example of a minimal scanner
plugin in Appendix D.5.1.

Objective plugins can be further categorised into ‘likeli-
hood’ plugins, which compute likelihoods, and ‘prior’ plu-
gins, which provide the transformation function needed to
implement a ScannerBit prior (see Sect. 3). For likelihood
plugins, plugin_main must be of the form

double plugin_main(const std::vector<double>&)

whereas for prior plugins, the required form is

void plugin_main(const std::vector<double>&,
std: :unordered_map<std::string, double>&)

We give a worked example of a minimal likelihood-oriented
objective plugin in Appendix D.6.1.

Each plugin is built in a separate programming environ-
ment, with its own user-specified library dependencies and
compile-time options. A set of environmental_macros that define
the compilation environment can be declared at the begin-
ning of a plugin. These macros can be used to define addi-
tional compilation flags, required libraries, required headers,
or required entries in the input YAML file of a scan. The
following macros are available:

regd_inifile_entries("X","Y", ...):Indicatesthat
the plugin will not be permitted to load unless the YAML
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node corresponding to the plugin in question, in the
YAML input file of the scan, contains the options X and Y.
Any number of required entries can be given as a comma-
separated list.

cxx_flags (flag_string) : Additional flags to append to the
compilation commands for this plugin.
reqd_libraries("A","B",...): Tells ScannerBit to
search for and link the libraries A and B if using this
plugin. Any number of libraries can be given as acomma-
separated list.

regd_headers("C","D", ...):Specifies that the head-
ers C and D must exist for the plugin to compile; any
number of headers can be given in a comma-separated
list. Like libraries, ScannerBit will automatically search
for the specified headers.

If a library or a header listed in regd libraries or
reqd_headers is in a non-standard location, or if Scanner-
Bit is unable to locate it, the location can be specified in the
config/scanner_locations.yaml Orconfig/objective
_locations.yaml configuration files.” Entries in the con-
figuration files follow the format

plugin_name :
plugin_version :
- inc: include_dir
- lib: library_path

This entry gives the locations of the libraries and head-
ers needed for version plugin_version of the plugin plugin_
name. Note that libraries require full paths, whereas headers
require only an include directory. The plugin version can be
given as “any_version”, in which case the indicated library
and/or header locations will be applied to every version of
the plugin. If the config/scanner_locations.yaml oOr
config/objective_locations.yaml configuration files
do not exist, or a relevant entry is missing from them for
a given plugin, then ScannerBit will use any relevant entry
it can find in the files config/scanner_locations.yaml.
default and config/objective_locations.yaml.
default. These .default files ship with ScannerBit
and should not be modified; it is up to the user to cre-
ate config/scanner_locations.yaml and/or config/
objective_locations.yaml if they wish to override or add
to any of the defaults.

7 Note that the current version of ScannerBit locates both libraries
and headers at cmake time, not at runtime. This means that cmake
must be run (or re-run) and ScannerBit rebuilt after scanners are built
or moved. This is in contrast to the GAMBIT backend system, which
locates and loads backend libraries entirely at runtime. It is expected
that future versions of ScannerBit will dynamically load the shared
plugin libraries, in line with GAMBIT backend practice.
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D.2: Interface to input file

Detailed instructions on how to construct and format a YAML
input file for a scan are given in Sect. 4. To extract entries
from this file, the following functions are provided to both
scanner and objective plugins:

ret_type
key, ret_type default_value): Retrieves the value
assigned to the YAML key key. If key is not present
in the relevant part of the YAML file, an optional
default_value to be returned can be specified. If no
default is given, and the key is absent from the YAML
file, ScannerBit will throw an error. The return value
obtained will be interpreted as a quantity of type rer_rype.
Note that the key default_output_path will always
return a value; if this key is not set in the YAML file,
the output defaults to scanner_plugins/plugin_name
(where plugin_name is the name of the plugin calling
get_inifile_value). This is true for both scanner and
objective plugins, although only scanner plugins are typ-
ically expected to generate output files.

get_inifile_value<ret_type>(std::string

YAML: :Node get_inifile_node(std::string key):

Retrieves an entire YAML node with a given ey from the
input YAML file.

D.3: Interface to prior object

Both scanner and objective plugins can directly access the
prior transformation object used in any given scan, via the
function get_prior (). See Appendix C for details of how
to use this object.

D.4: Interface to GAMBIT printer system

Within the body of a ScannerBit plugin, the get_printer ()
function can be called to obtain an object that acts as an inter-
face to the GAMBIT the printer system. GAMBIT’s printer
system removes the need for scanners or their plugins to
directly output sampled parameter values, as this responsibil-
ity is taken on by ScannerBit itself. The printer system also
removes any need for scanners to output total likelihoods,
individual likelihood components or observables; these are
to be printed by objective plugins themselves, or in the case of
GAMBIT, by the likelihood container (which s in effect just
a very sophisticated likelihood plugin). This arrangement is
designed to increase modularity, by allowing individual like-
lihoods to print their own — potentially highly model-specific
— results, without the need to modify any scanner or scanner
plugin code. Printing of scanner-specific quantities (such as
posterior weights or chain multiplicities) must be handled by
the scanner plugins themselves, and these quantities must be
uniquely associated with specific parameter combinations.

This is accomplished by assigning each parameter combi-
nation a unique point ID number via which the printer can
associate any future outputs with a specific parameter com-
bination.

The basic
printer_interface Object returned by get_printer ().
This object offers the following useful member functions:

interface is contained within the

printer* get_stream(std::string name): Gets a
pointer to the printer stream name. If no name is spec-
ified, the main printer is returned.®

void new_stream(std::string name, YAML: :Node
option): Create a new printer stream named name,
using the options contained in a YAML node option
(which is itself optional). This typically only needs to
be done on the MPI master process (See Ref. [29]). To
then ensure that all MPI processes are aware of the new
streams, the helper functionvoid assign_aux_numbers
(std::string namel, std::string name2, ...)
should be called by all MPI processes.

bool resume mode (): Returns true if the printers have
resumed writing to the outputs of a previous scan. Gen-
erally, scanner plugins should take their cue on whether
or not to resume a previous run from the printers.

At the heart of the printer system are the printer stream
objects. These objects provide the necessary methods for
printing values and associating them with a given point ID.
The printer stream is manipulated using the following mem-
ber functions:

void reset(bool force): Deletes output that was
already in the stream. By default, the main printer cannot
be reset; to override this behaviour, set force to true.
void print (value_type value, std::string name,
int rank, unsigned long long int id): This
function prints the actual output, sending a single datum
of the given value and value_type to the printer. The output
is identified as being the quantity name, and correspond-
ing to the parameter combination uniquely identified by
the point id and MPI rank.

Scanner-specific output files not associated with the GAM-
BIT printer system should typically be saved in the default
scanner output path, which is accessed with get_inifile
value<std: :string>("default_output_path") ,and set
to scanner_plugins/plugin_name by default.

8 Note that printer is just a local ScannerBit typedef of the
GAMBIT printer base class.
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D.5: Scanner plugins

Scanner plugins receive access to an additional pair of utility
functions and a class, for obtaining likelihood functors and
scanner information:

unsigned int get_ dimension (): Gets the dimension
of the unit hypercube being explored.

void* get_ purpose(std::string purpose): Gets a
pointer to a functor that is able to compute the quantity
corresponding to purpose. In GAMBIT scans, purpose
is conventionally "LogLike", and the functor returned
will be a direct conduit to the likelihood container.
like ptr: A functor class used to contain the output of
get_purpose, primarily designed to act as the local rep-
resentation of the likelihood function within a plugin. A
like ptr can be called as if it were a function with sig-
nature double (conststd::vector<double>&).Typ-
ically, within a scanner plugin, the scanner passes a vec-
tor of unit hypercube parameter values to the Tike ptr.
This functor automatically performs any required prior
transformation, computes the quantities corresponding
to its purpose, and sends the corresponding quantities
and hypercube parameters to the printer. The 1ike ptr
nkﬂnberfuncﬁon<iisableiexternalishutdown()Can
also be used from the plugin constructor to tell the objec-
tive function not to carry out its own shutdown procedure,
but to simply set an internal qui t flag (referred to in Ref.
[29]) and rely on the scanner to terminate the scan itself.

D.5.1: Scanner plugin example

Here we give a simple example of a scanner plugin declara-
tion, which closely follows one contained in the ScannerBit
source code (ScannerBit/src/scanners/random.cpp).
The example declares a scanner plugin named random, ver-
sion 1.0.0-example. This scanner enters number random
points in the functor corresponding to the purpose specified
by the 1ike YAML file option.

#include "scanner_plugin.hpp"

scanner_plugin (random, version(l, 0, 0, example))
{

regd_inifile_entries ("number") ;

like_ptr loglike;

int num, dim;

plugin_constructor

{
std::string purpose =
get_inifile_value<std::string>("like")
loglike = get_purpose (purpose) ;

num = get_inifile_value<int>("number") ;
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dim = get_dimension() ;

int plugin_main (void)
{

std::vector<double> a(dim) ;

for (int j = 0; J < num; Jj++)
{
for (int 1 = 0; i1 < dim; 1++)
{
ali] = Gambit::Random::draw() ;
}
loglike(a);

}

return 0;

plugin_deconstructor

{

std::cout << "no more plugin" << std::endl;

The actual scanner code is declared within the
plugin _main function, and randomly draws a parameter
point from the hypergrid via the line

al[i]l] = Gambit::Random::draw() ;

When the plugin is loaded, the plugin_ constructor func-
tion is run, initialising the variables loglike, num, and
dim. The likelihood calculations and printing are done by
the line loglike(a). When the plugin is unloaded, the
plugin_deconstructor function runs, and indicates to
stdout that the plugin has been unloaded. At the top of the
Iﬂugﬂldeckﬁaﬁonﬁhereqdfinifileientries("number")
macro indicates that the inifile entry number is required in
order to use this scanner (see Sect. 3.2).

D.6: Objective plugins

In addition to the general plugin functions described in Sects.
D.2-D.4, objective functions are provided with utility func-
tions that can be used to probe the parameters being scanned,
set the hypercube dimension and print parameters:

std::vector<std::string>& get_keys (): Retrieve
the names of all the parameters being scanned over.
void set_dimension(unsigned int dim):Forphk
gins that will be used as priors. Sets the hypercube dimen-
sion that will be operated on by the prior to dim.

void print_parameters(std: :unordered_map<
std::string, double> map): Prints the contents of a
map from strings to double-precision floating-point vari-
ables. Typically used to print a set of parameters, where
the map associates parameter names with their values.
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D.6.1: Objective plugin example

Here we give a simple example of an objective plu-
gin declaration contained in the ScannerBit source code
(ScannerBit/src/objectives/examples.cpp). This
example declares a scanner plugin EggBox, version 1.0.0.
It returns a likelihood of the form:

P(x,y) = [2+cos (%x) cos (%y)]5 2)

#include "objective_plugin.hpp"

objective_plugin(EggBox, version(l, 0, 0))
{
std::pair <double, double> length;

unsigned int dim;

plugin_constructor
{
dim = get_keys () .size();

if (dim != 2)
{

scan_err << "EggBox: Need two parameters."

<< scan_end;

}
length = get_inifile_value<std::pair<double,
double> > ("length", std::pair<double,
double>(10.0, 10.0));

double plugin_main(std::unordered_map
<std::string,double> &map)
{

print_parameters (map) ;

double params|[2];
params [0] = map[get_keys () [0]]*length.first;
params[l] = mapl[get_keys () [1l]]*length.second;

return 5.0*std::1log (2.0 +
std::cos(params[0]*M_PI_2) *
std::cos(params[1]*M_PI_2));

Inthe plugin_constructor, the hypercube dimension is
obtained by testing how many parameters are returned from
the get_keys () function. If the hypercube dimension does
not match expectations, a runtime error is thrown with the
scan_err and scan_end macros. The constructor initialises
the scale length for each of the hypercube dimensions with
the values assigned to the length key in the input YAML
file. If no values are specified, both lengths default to 10.
The plugin_main function does the actual likelihood cal-
culation, as it is the function run by the scanner for every

parameter combination. For each likelihood evaluation, the
plugin main receives an unordered_map with the param-
eter names and values, which it uses to compute the value of
the likelihood. The contents of the map are printed with the
command print_ parameters (map).

Appendix E: Scanner comparisons in a two-dimensional
parameter space

The scanner comparisons presented in Sect. 11 are based on
about 16 separate scans for each scanner in two, seven and
fifteen dimensions. We also included results from 52 more
scans to cover each dimensionality between two and fifteen.
However, for clarity we only displayed two-dimensional pro-
file likelihoods for the 15-dimensional scans (Figs. 7, 8, 9,
11, 12, 14 and 15). In this Section we present the equivalent
plots to these for the two-dimensional scans. In some cases,
where the optimal settings depends strongly on dimension-
ality, we have chosen different sampler settings in two than
in fifteen dimensions, so as to allow a meaningful compari-
son.

E.1: MultiNest & Diver

The profile likelihoods for MultiNest and Diver are pre-
sented in Figs. 19 and 21 respectively. The marginalised
posterior for MultiNest is given in Fig. 20. For both Multi-
Nest and Diver, we present scans with the same settings
as used for the 15-dimensional equivalent (Figs. 7, 8 and
9).

The quality of the profile likelihood is dramatically better
in the two-dimensional scans than in the fifteen-dimensional
equivalents. Although MultiNest did not sample the low-
mass region at all in fifteen dimensions, it has been well
sampled in two. The maximum likelihood point is located
in the low-mass mode in all scans presented in Figs. 19
and 21. This is in good agreement with the analysis in
Figs. 5 and 6, in which the maximum likelihood was eas-
ily achieved in two dimensions with less stringent scanner
settings.

The marginalised posteriors in Fig. 20 show some qualita-
tive differences to their 15-dimensional counterparts in Fig.
8. The primary difference is that the low-mass region shows
in two dimensions, but not in fifteen. This is because in two
dimensions, the low-mass region does not suffer from the
same fine-tuning penalty (imposed by the integration over the
nuisance parameters) as in fifteen dimensions. This penalty
is due to the dependence of the exact location and shape of
the low-mass region on the values of the 13 nuisance param-
eters included in the 15-dimensional scan. This reduces the
ratio of the posterior mass of the low-mass mode to the pos-

@ Springer



761 Page 44 of 49

Eur. Phys. J. C (2017) 77:761

GAMBIT 1.0.0 GAMBIT 1.0.0

MultiNest
nlive: 20,000

Prof. likelihood

20 25 3.0 35 20 25 3.0 35
log;o(ms/GeV) logo(ms/GeV)

GAMBIT 1.0.0

GAMBIT 1.0.0

YV oner [)06({1{9){1[ a[gord

Xty o —

20 25 3.0
log,o(ms/GeV

20 25 3.0
logo(ms/GeV

— w
ot

— w

Fig. 19 Profile likelihood ratio maps from a 2-dimensional scan of the scalar singlet parameter space, using the MultiNest scanner with a selection
of difference tolerances (to1) and numbers of live points (n11ive). The maximum likelihood point is shown by a white star
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Fig. 20 Marginalised posterior probability density maps from a 2-
dimensional scan of the scalar singlet parameter space, using the Multi-
Nest scanner with a selection of difference tolerances (to1) and num-
bers of live points (n1 ive). Note that the colourbar strictly only applies
to the rightmost panel, and that colours map to the same enclosed pos-
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Fig. 21 Profile likelihood ratio maps from a 2-dimensional scan of the scalar singlet parameter space, using the Diver scanner with a selection of

different convergence thresholds (

terior mass of the high-mass mode in the fifteen-dimensional
scan.

E.2: T-Walk

The profile likelihoods and marginalised posteriors for two-
dimensional T-Walk scans are presented in Figs. 22 and 23,
respectively. We use different T-Walk settings compared to
Figs. 11 and 12. This is primarily dictated by the dimensional
dependence of the optimal number of chains, chain_number,
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) and population sizes (

). The maximum likelihood point is shown by a white star

as discussed in Sects. 11.3 and B.3. We find that values of tol
~ 0.1 causes very rapid convergence in two dimensions, even
before any meaningful sampling can occur. This behaviour
can be seen in the right-most plot of Fig. 22, where tol =
0.03. We therefore use different settings, more appropriate
for the two-dimensional parameter space.

We find that T-Walk samples the profile likelihood very
well in two dimensions when tol < 0.01. The number
of chains appears to have less influence on the quality of
the sampling, but dramatically increases the runtime. The
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Fig. 24 Profile likelihood ratio maps from a 2-dimensional scan of the scalar singlet parameter space, using the GreAT sampler with various
numbers of chains (nTrialLists) and chain lengths (nTrials). The maximum likelihood point is shown by a white star

scans of the two left-most plots in Fig. 22 took ~4 h
(chain_number = 54) and ~18 h (chain_number = 108).

Although the sampling of the profile likelihood is much
more complete in these two-dimensional scans than in the 15
dimensional case, there is no significant improvement in the
marginalised posteriors (Fig. 23). However, we do see that
the low-mass region appears within the two-sigma contours
(as discussed in Sect. E.1).

E.3: GreAT

The profile likelihoods and marginalised posteriors for
GreAT scans in a two-dimensional parameter space are pre-
sented in Figs. 24 and 25, respectively. The scanner settings
in these plots are equivalent to those in Figs. 14 and 15, except
fornTriallists, whichis set to Ngim = 2 or Ngim +2 = 4.

The two left-most plots of Fig. 24 clearly show that these
settings are excessive for sampling the profile likelihood in
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Fig. 25 Marginalised posterior ratio maps from a 2-dimensional scan
of the scalar singlet parameter space, using the GreAT sampler
with various numbers of chains (nTriallLists) and chain lengths
(nTrials). Note that the colourbar strictly only applies to the right-
most panel, and that colours map to the same enclosed posterior mass

two dimensions. Even though all panels in Fig. 24 exhibit
well-sampled profile likelihoods, one can make an optimal
choice when considering the computing time taken. From
left to right, the scans took ~5, 3h, 8 and 17 min. Only in the
quickest two scans does some degradation of the contours
and sampling begin to appear. In contrast to the quality of
the profile likelihood, we see in Fig. 25 that even with a long
scan, in two dimensions the marginalised posterior is not well
sampled by GreAT.

E.4: Summary

We have presented profile likelihoods and marginalised pos-
teriors for scans of a two-dimensional parameter space,
directly comparable to the 15-dimensional case presented
in Sect. 11. These plots show that the inclusion of the addi-
tional 13 nuisance parameters does not significantly alter the
joint profile likelihood of A;s and mg. We find that sampling
performance is significantly improved, demonstrating that
although the additional 13 parameters are well constrained
by unimodal likelihoods, their inclusion creates a significant
challenge for the sampling algorithms.

Appendix F: YAML input file example

Below is an example YAML input file for ScannerBit_
standalone that uses the custom prior defined in Appendix
C, and the scanner and objective plugins declared in Appen-
dices D.5.1 and D.6.1.

Parameters:
EggBox:
param_0:
range: [0, 1]
param_1:
prior_type: dummy
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transition from red to purple is designed to occur at the edge of the 1o
credible region, and so on). The posterior mean is shown with a grey
bullet point

Scanner:
use_objectives: eggbox_like
use_scanner: random_scanner

objectives:
eggbox_like:
plugin: EggBox
purpose: loglike
length: [12, 12]

scanners:
random_scanner:
plugin: random
point_number: 2000
like: loglike

Printer:
printer: ascii
options:

output_file: "results.txt"

KeyValues:
likelihood:
model_invalid_for_1lnlike_below: -1leb5

Here, the model chosen for scanning is actually given as
EggBox, which is the name of an objective plugin. Although
we have not discussed such usage earlier in this paper, an
objective plugin can in fact even be listed as a model when
it provides the likelihood that is to be scanned, as is done
here. This can be useful for avoiding any need to explic-
itly define a new model in GAMBIT format when all one
is interested in is computing some external function pro-
vided by an objective plugin. In this case, the names given
to parameters in the YAML file are entirely arbitrary. Here,
the parameter param 0 is defined to have a flat prior in the
range [0,1], and parameter param_1 is defined to use the
custom prior dummy. Next, the objective and scanner plug-
ins are defined in the Scanner section. The eggbox_like
objective is selected with the use_objectives directive,
and the random_scanner scanner is selected as the chosen
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scanner via the use_scanner directive. The eggbox_1ike
objective is defined to use the EggRox plugin, with purpose
set to loglike, and the option length set to [0, 11. The
random_scanner scanner is set to use the random plugin,
with functions assigned the purpose 1oglike used to make
up the likelihood function that it will call. The point number
option is set to ensure that 2000 samples are taken.

Appendix G: Glossary

Here we explain some terms that have specific technical def-
initions in GAMBIT.

backend An external code containing useful functions (or
variables) that one might wish to call (or read/write) from
a module function.

backend function A function contained in a backend. It
calculates a specific quantity indicated by its capability.
Its capability and call signature are defined in the back-
end’s frontend header.

backend requirement A declaration that a given module
function needs to be able to call a backend function or
use a backend variable, identified according to its capa-
bility and type(s). Backend requirements are declared in
module functions’ entries in rollcall headers.

backend variable A global variable contained in a back-
end. It corresponds to a specific quantity indicated by
its capability. Its capability and type are defined in the
backend’s frontend header.

capability A name describing the actual quantity that is cal-
culated by a module or backend function. This is one
possible place for units to be noted; the other is in the
documented description of the capability (see Sect. 10.7
of Ref. [29]).

dependency A declaration that a given module function
needs to be able to access the result of another module
function, identified according to its capability and type.
Dependencies are declared in module functions’ entries
in rollcall headers.

dependency resolver The componentof the GAMBIT Core
that performs dependency resolution.

dependency resolution The process by which GAMBIT
determines the module functions, backend functions
and backend variables needed and allowed for a given
scan, connects them to each others’ dependencies and
backend requirements, and determines the order in
which they must be called.

frontend The interface between GAMBIT and a given back-
end, consisting of a frontend header plus optional
source files and type headers.

frontend header The C++ header in which the frontend to
a given backend is declared.

likelihood container The interface between ScannerBit
and the graph of module functions created by the depen-
dency resolver. It returns the total combined likelihood
for any given set of model parameter values.

model A GAMBIT modelis defined as a collection of named
parameters, intended for sampling by a scanning algo-
rithm according to some prior. The scanner and prior are
both chosen at runtime.

module A subset of GAMBIT functions following a com-
mon theme, able to be compiled into a standalone
library. Although module often gets used as shorthand
for physics module, this term technically also includes
the GAMBIT scanning module ScannerBit.

module function A function contained in a physics mod-
ule. It calculates a specific quantity indicated by its capa-
bility and type, as declared in the module’s rollcall
header. It takes only one argument, by reference (the
quantity to be calculated), and has a void return type.

physics module Any module other than ScannerBit, con-
taining a collection of module functions following a
common physics theme.

printer The main object handling GAMBIT output. Mul-
tiple versions of this object exist (and new ones can be
written), for handling output to different formats. Users
select which printer they want to use via the master ini-
tialisation file (Sect. 6.6 of Ref. [29])

purpose A tag attached to a request made by a user in the
ObsLikes section of their YAML file. The tag is used
by the scanner and likelihood container to select which
module functions to include in the combined likelihood
and use for directing the scan.

scanner plugin An interface in ScannerBit to an external
code for parameter sampling, i.e. a scanner.

test function plugin An interface in ScannerBit to a test
function, which may be used for testing purposes as the
objective function for a scan, in place of the output from
the likelihood container.

rollcall header The C++ header in which a given physics
module and its module functions are declared.

type A general fundamental or derived C++ type, often refer-
ring to the type of the capability of a module function.
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