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Abstract Three-flavoured neutrino oscillations are investi-
gated in the light of the Leggett–Garg inequality (LGI). The
results obtained are: (a) The maximum violation of the LGI
is 2.17036 for neutrino path length L1 = 140.15 km and
�L = 1255.7 km. (b) The presence of the mixing angle
θ13 enhances the maximum violation of LGI by 4.6%. (c)
The currently known mass hierarchy parameter α = 0.0305
increases the maximum violation of LGI by 3.7%. (d) The
presence of a CP-violating phase parameter enhances the
maximum violation of LGI by 0.24%, thus providing an
alternative indicator of CP violation in three-flavoured neu-
trino oscillations. The outline of an experimental proposal is
suggested whereby the findings of this investigation may be
verified.

1 Introduction

The Leggett–Garg inequality (LGI) [1] is useful to test the
quantumness of a system through successive measurement
outcomes at different times on the same system. In a previ-
ous work [2] we showed that two-state neutral kaon oscil-
lations and two-state neutrino oscillations are quantum phe-
nomena by demonstrating that the LGI is violated in both
cases.

Note that the kaon and neutrino cases comprised two
different kinds of two-state quantum systems. Oscillations
between K 0 and K̄ 0 states indicate a decaying two-state
oscillating quantum system. On the other hand, neutrino
oscillations between the two-flavour eigenstates νe and νμ

signify a conservative two-state quantum system. In [2] for a
decaying kaon system, the maximum violation of LGI in the
presence of CP violation is when the correlatorC = 2.36463
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(defined below in Sect. 2), while in the absence of CP viola-
tion the LGI violation is maximum when C = 2.36448. This
is significantly smaller than the Tsirelson bound for the LGI
in two-state system given byCTsirelson = 2

√
2 = 2.82843. In

the case of conservative two-flavour neutrino oscillations the
maximum violation of LGI is when C = 2.76000. Similar
work has also been done in two-state neutrino oscillations
[3]. There the authors have demonstrated how oscillation
phenomena can be used to test for violations of the clas-
sical bound by performing measurements on an ensemble of
neutrinos at distinct energies.

The existence of neutrino mass has been a subject of keen
interest over the last 50 years [4–6]. In 2001 the third gen-
eration of neutrinos (tau neutrino) was discovered by the
DONUT collaboration [7]. Exhaustive details regarding var-
ious aspects of neutrino masses and oscillations can be found
in [8,9] and the references therein. The next investigation,
therefore, logically should be the LGI in the scenario of three-
flavoured neutrino oscillations, both without and with CP vio-
lation. This is what we set out to accomplish in the present
work. The effect of CP violation for three-flavoured neutrino
oscillations may stimulate further investigations in this area.
We also consider matter interactions with the neutrino. Here
we have analysed the LGI in the context of two small param-
eters, viz. the sine of the mixing angle θ13, sin θ13 << 1 and
the mass hierarchy parameter α << 1. Note that the mix-
ing angles are Eulerian angles relating the set (νe, νμ, ντ )
to the mass eigenstates (ν1, ν2, ν3) in the relevant space as

shown in Fig. 1, while α ≡ �m2
21

�m2
31

with �m2
21 ≡ m2

2 − m2
1,

�m2
31 ≡ m2

3 − m2
1, where mi , i = 1, 2, 3, denotes the mass

of the i th species of neutrino.
In Sect. 2, we give a brief introduction of LGI. In Sect. 3

we discuss the three-flavoured neutrino oscillations. In Sect.
4 the LGI is evaluated and analysed. In Sect. 5 an outline
is given of how one can actually experimentally verify the
LGI in three-flavoured neutrino oscillations. Section 6 sum-
marises our results. Appendix is in Sect. 7.
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Fig. 1 Neutrino mixing angles without CP violation as Euler angles
relating (νe, νμ, ντ ) to the mass eigenstates (ν1, ν2, ν3)

2 Leggett–Garg inequality

Bell’s inequality (BI) [10] is based on the assumption of local
realism—an intrinsic property of classical physics. Violation
of local realism signifies quantum phenomena. BI is a testable
algebraic inequality constructed from certain combination of
correlation functions for the outcomes of an observable quan-
tity measurement on two spatially separated systems at the
same instant of time. BI is violated by quantum physics in
the presence of quantum entanglement between two spatially
separated systems and implies that the quantum world is non-
local [11–16]. Leggett and Garg [1] constructed another alge-
braic inequality based on the assumption of macrorealism in
terms of time separated correlation functions corresponding
to the successive measurement outcomes at different times
on a single system.

The assumptions underlying the LGI [1] are macroscopic
realism (MR) and noninvasive measurability (NIM). MR
means that a macroscopic system during its time evolution, is
(at any instant time) in a definite one of the available states.
NIM means it is possible in principle to determine which
of the states the system is in, without affecting the states
themselves or the system’s subsequent dynamics. These two
aspects together constitute macrorealism.

Consider a two-state system and an observable quantity
Q(t) such that whenever Q(t) is measured it takes values
+1 or −1 depending on whether it is in state 1 or state 2,
respectively. Next consider a collection of runs starting from
identical initial conditions such that in the first set of runs Q
is measured at times t1 and t2; in the second at t2 and t3; in the
third at t3 and t4; in the fourth at t1 and t4 (t1 < t2 < t3 < t4).
From such measurements it is straightforward to determine
the temporal correlation function Ci j ≡ 〈Q(ti )Q(t j )〉. Any
physical system obeying the assumptions of a macrorealis-
tic theory will then give the Leggett–Garg inequality [1]:

C ≡ C12 + C23 + C34 − C14 ≤ 2. (1)

A wide range of quantum systems violate the upper bound
of the LGI. This allows one to use the LGI to probe quan-

tum mechanics (QM) in the macroscopic regime [17–34]. A
detailed review on LGI is given in [35].

The Legget–Garg Inequlity involves the time parameter
whereas the relevant probabilities (given below in Sect. 3
onwards) are expressed in terms of the base line length
parameter L . But L = ct , c is the velocity of light. So t
is automatically present. Now the correlations in time are
transcribed into correlations in length.

Consider an n-state system. As before, measurements of
a macroscopic property Q can yield only two values ±1, i.e.
Q is a dichotomic variable. If some states (say k states where
k < n) take the value +1 then all the remaining n − k states
will take the value −1. This is no problem because states with
the same value of Q may be considered as microscopically
distinct states with the same macroscopic property Q. MR
and NIM then imply that the system has a definite value
of Q at all times and this value is independent of previous
measurements on the system. Therefore, the bound for Eq.
(1) in macrorealistic theories remains the same.

We now consider LGI in the three-flavoured neutrino
oscillations.

3 Three-flavoured neutrino oscillations

During propagation neutrinos undergo oscillations between
the three-flavoured eigenstates νe, νμ and ντ . Consider
the standard parameterisation of the Pontecorvo–Maki–
Nakagawa–Sakata (PMNS) matrix U that mixes the three
neutrino flavour states [36,37]:

U =⎛
⎝
c12c13 s12c13 s13e−iδCP

−s12c23 − c12s13s23eiδCP c12c23 − s12s13s23eiδCP c13s23

s12s23 − c12s13c23eiδCP −c12s23 − s12s13c23eiδCP c13c23

⎞
⎠

(2)

where θi j are the mixing angles, ci j ≡ cos θi j , si j ≡ sin θi j
and δCP is the Dirac-type CP-violating phase. If Pαβ ≡
P(να → νβ) is the transition probability from one neutrino
flavour α to another flavour β, then in general the functional
dependence of Pαβ is

Pαβ = Pαβ(�m2
21,�m2

31, θ12, θ13, θ23, δCP, E, L , V (x))(3)

where α, β ≡ e, μ, τ . Here �m2
i j ≡ m2

i −m2
j with mi being

the mass of the i th species. E is the neutrino energy, L is
the baseline length, and V (x) is the matter-induced effective
potential, x ∈ [0, L] is the coordinate along the neutrino
path.

�m2
i j , θi j ’s and δCP are fundamental parameters and the

same for all experiments. On the other hand E , L and V vary
from experiment to experiment.

In [38] complete sets of series expansion formulae for neu-
trino oscillation probabilities in matter of constant density
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have been calculated taking into account the three flavours.
We will consider the neutrino energies of the order of 1
GeV. Therefore we consider the appropriate double expan-
sion given in [38] up to the second order in both mass hier-

archy parameter α ≡ �m2
21

�m2
31

and s13 = sin θ13.

Let us start with an electron-neutrino beam at time t = 0,
i.e. L = 0. After time t , i.e. distance L = ct , the probability
of finding νe, νμ and ντ are, respectively [38],

Pνe = 1 − α2 sin2 2θ12
sin2

( V L
2

)
(

2EV
�m2

31

)2

−4s2
13

sin2
{(

2EV
�m2

31
− 1

)
�m2

31L
4E

}

(
2EV
�m2

31
− 1

)2 , (4)

Pνμ = α2 sin2 2θ12c
2
23

sin2
( V L

2

)
(

2EV
�m2

31

)2 + 4s2
13s

2
23

×
sin2

{(
2EV
�m2

31
− 1

)
�m2

31L
4E

}

(
2EV
�m2

31
− 1

)2 + 2αs13 sin 2θ12 sin 2θ23

× cos(
�m2

31L

4E
−δCP)

sin
( V L

2

)
(

2EV
�m2

31

)
sin

{(
2EV
�m2

31
− 1

)
�m2

31L
4E

}
(

2EV
�m2

31
− 1

) ,

(5)

Pντ = α2 sin2 2θ12s
2
23

sin2
( V L

2

)
(

2EV
�m2

31

)2 + 4s2
13c

2
23

×
sin2

{(
2EV
�m2

31
− 1

)
�m2

31L
4E

}

(
2EV
�m2

31
− 1

)2 − 2αs13 sin 2θ12 sin 2θ23

× cos(
�m2

31L

4E
− δCP)

sin
( V L

2

)
(

2EV
�m2

31

)
sin

{(
2EV
�m2

31
− 1

)
�m2

31L
4E

}
(

2EV
�m2

31
− 1

) .

(6)

So it is easy to say that after travelling the distance L , the
probability of obtaining νe, νμ and ντ are given by Eqs. (4),
(5) and (6), respectively. The joint probability of finding the
neutrino with flavours νe and νμ after travelling the respective
distances L1 and L2 (L2 > L1) is then

Pνe,νμ (L1, L2) = Pνe (L1) × Pνμ(L2 − L1)

=
⎡
⎢⎣1 − α2 sin2 2θ12

sin2
( V L1

2

)
(

2EV
�m2

31

)2 − 4s2
13

×
sin2

{(
2EV
�m2

31
− 1

)
�m2

31L1
4E

}

(
2EV
�m2

31
− 1

)2

⎤
⎥⎦

⎡
⎢⎣α2 sin2 2θ12c

2
23

sin2
( V (L2−L1)

2

)
(

2EV
�m2

31

)2

+4s2
13s

2
23

sin2
{(

2EV
�m2

31
− 1

)
�m2

31(L2−L1)

4E

}

(
2EV
�m2

31
− 1

)2 + 2αs13 sin 2θ12

× sin 2θ23 cos
(�m2

31(L2 − L1)

4E
− δCP

) sin
( V (L2−L1)

2

)
(

2EV
�m2

31

)

×
sin

{(
2EV
�m2

31
− 1

)
�m2

31(L2−L1)

4E

}
(

2EV
�m2

31
− 1

)
⎤
⎥⎦ . (7)

Similarly one can find the other eight joint probabilities:
Pνe,νe (L1, L2), Pνe,ντ (L1, L2), Pνμ,νe (L1, L2), Pνμ,νμ

(L1, L2), Pνμ,ντ (L1, L2), Pντ ,νe (L1, L2), Pντ ,νμ(L1, L2),
Pντ ,ντ (L1, L2). The transition probabilities required to eval-
uate the above joint probabilities are given in detail in [38].

4 Evaluating and analysing LGI for three flavours
of neutrino

In the three-flavoured neutrino oscillations, we assume that
the dichotomic observable Q takes the value +1 when the
system is found in the electron-neutrino flavour state νe. Q
takes the value −1 if the system is found in any one of the
muon neutrino νμ or tau neutrino ντ states. Then the corre-
lation function C12 can be evaluated by using all the 9 joint
probabilities as

C12 = 〈Q(L1)Q(L2)〉
= Pνe,νe (L1, L2) − Pνe,νμ(L1, L2) − Pνe,ντ (L1, L2)

−Pνμ,νe (L1, L2) + Pνμ,νμ(L1, L2) + Pνμ,ντ (L1, L2)

−Pντ ,νe (L1, L2) + Pντ ,νμ(L1, L2) + Pντ ,ντ (L1, L2).

(8)

The exact expression of C12 is given in the appendix. An
interesting point in the expression forC12 is that for a neutrino
beam with given energy the correlation C12 shows depen-
dence on L1 as well as the spatial separation (L2 − L1). It
is also important to note that in the case of two-flavoured
neutrino oscillations the correlation function depends only
on the spatial seperation (L2 − L1) [2]. The other correla-
tion functions, viz., C23, C34 and C14 can be calculated in
the same way and they exhibit similar features. Next one can
evaluate the correlation functionC defined in Eq. (1) in order
to study the maximum violation of LGI for three-flavoured
neutrino oscillations. Varying the spatial separations, it is
found that the maximum value of C is attained essentially
when all the spatial separations are taken to be same, i.e.
(L4 − L3) = (L3 − L2) = (L2 − L1) = �L and the cor-
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Fig. 2 Correlation C as a function of �L in km for L1 = 140.15 km.
C attains its maximum value 2.17036 at �L = 1255.7 km

relation function C under this condition depends on �L and
L1.

We have calculated the maximum value of C using the
latest experimentally determined values given in [39]. These
are �m2

21 = 7.50 × 10−5eV 2, �m2
31 = 2.457 × 10−3eV 2,

θ12 = 33.48◦, θ23 = 42.3◦, θ13 = 8.50◦, δCP = 306◦. Here

the potential [38] V = 7.56 × 10−14
(

ρ

g/cm3

)
YeeV, where

ρ is the matter density along the neutrino path and Ye is
the number of electrons per nucleon. For terrestrial matter
Ye 
 0.5 [38]. For practical purposes taking ρ constant is
a very good approximation [40–42]. A typical value of the
matter density is ρ = 3g/cm3 [38]. So the potential V takes
the valueV = 11.34×10−14eV . Here we consider the energy
of neutrino to be 1 GeV. Further, we consider various choices
of L1 and �L and find that the maximum value of C reaches
2.17036 for L1 = 140.15 km and �L = 1255.7 km. It is
important to note that the maximum QM violation of LGI in
this case is significantly smaller than the maximum value of
C = 2.76 we calculated in [2] in the case of two-flavoured
neutrino oscillations. For the given value of L1 = 140.15
km, the variation of the quantity C with �L is shown in
Fig. 2.

Now we investigate how the mixing angle θ13 affects the
maximum value of C . If we put θ13 = 0, the maximum value
of C = 2.07762 for L1 = 638 km and �L = 1376.34 km.
This is much lower than the actual value (2.17036) when
θ13 �= 0. This value still belongs to the quantum domain
because it is larger than 2. So the presence of the mixing
angle θ13 in three-flavour neutrino oscillations enhances the
maximum violation of LGI by an amount of 0.09274. If we
increase θ13 from zero degree we see that the maximum value
of the quantity C also increases. This means increasing the
mixing angle θ13 also increases the quantumness of the three-
flavoured neutrino oscillations. The variation of C with θ13

is shown in Fig. 3 below
One of the key parameters in three-flavour neutrino oscil-

lations is the small mass hierarchy parameter α ≡ �m2
21

�m2
31

.

(a)

(b)

Fig. 3 a C versus �L in km for different values of the mixing angle
parameter θ13. Here L1 = 140.15 km. Blue 0◦, orange 4◦, green 6◦, red
8.5◦ (actual experimentally measured value), violate 12◦. b We focus
around the region where the value of C is maximum. The maximum
value of C increases with the increase of the value of the mixing angle
θ13

In this section we investigate the dependence of C on α. If
we put α = 0, i.e. m1 = m2, the maximum value of C
becomes 2.09606 for �L = 1252.74 km. It is interesting
to note that although now m1 = m2 the maximum bound
of the quantity C is greater than 2, i.e., we are still in the
quantum domain. For two-state neutrino oscillations [2], the
condition m1 = m2 implies that the maximum value of C is
2, i.e. one is in the classical domain!. This is logical because
this means there is only one neutrino mass, so there cannot
be any oscillations. However, for three-state neutrino oscil-
lations there are three neutrino masses and if two of them
become equal then also there will exist possibility of neutrino
oscillations because now there are effectively two masses.
In the present case the presence of the non-zero value of
α increases the maximum value of C as shown in Fig. 4.
In Fig. 4 blue, orange, green and red color graphs corre-
spond to the behaviour of the quantity C for values of α =
0, 0.01, 0.0305 (actual experimentally measured value) and
0.06, respectively. For the present experimentally measured
value of α the maximum value of the quantity C increases
by about 3.7%. So the presence of non-zero α increases the
quantumness in three-flavoured neutrino oscillations.

Next consider the effect of the CP-violating phase param-
eter δCP on the maximum value of C . If we ignore δCP in

123



Eur. Phys. J. C (2017) 77 :260 Page 5 of 7 260

(a)

(b)

Fig. 4 Behaviour of the quantity C with the variation of �L in km for
different values of the mass hierarchy parameter α is shown in Fig. 4a.
Here L1 = 140.15 km. Blue, orange, green and red color graphs are
the behaviour of the quantity C for the value of α = 0, 0.01, 0.0305
(actual experimentally measured value) and 0.06. In the Fig. 4b we
focus around the region where the value of the quantity C is maximum.
From Fig. 4 we observe that the maximum value of C increase with the
increase of the value of the mass hierarchy parameter α

the expression for C , the maximum value of C reduces to
2.16553 for L1 = 140.15 km and �L = 1253.8 km. So
presence of δCP actually enhances the maximum violation of
LGI by an amount 0.00483. This is a significant enhance-
ment. Thus CP violation actually enhances the quantumness
of the three-flavoured neutrino oscillations. It is worth men-
tioning that in the case of neutral kaon oscillations the pres-
ence of CP violation increases the maximum violation of LGI
by an amount 0.00015 [2] which is a 0.008% enhancement,
whereas here the increase is 0.24% i.e. a 30-fold increase.
Therefore, so far as LGI is concerned, the effect of the CP
violation is much more in three-flavoured neutrino oscilla-
tions compared to neutral kaon oscillations. In Fig. 5 we focus
around the region where the quantity C takes its maximum
value both with and without CP violation for experimentally
obtained value of α = 0.0305.

5 A proposal for experimental verification

To test experimentally the maximum violation of LGI for
three-flavoured neutrino oscillations the first thing necessary
is the determination of the correlation function C12. For this

Fig. 5 Variation of the quantity C as a function of �L in km with and
without CP violation for L1 = 140.15 km is shown in Fig. 5. Here we
focus around the region where the quantity C takes its maximum value
both with and without CP violation. The solid curve is the behaviour
of C including CP violation and the dashed curve is the behaviour of
C without CP violation. Figure 5 tells that the presence of CP violation
enhances the maximum QM violation of LGI

purpose the observable quantity Q has to be measured at
two different times t1 and t2 (t2 > t1) or equivalently at two
different base line lengths L1 and L2 where L2 > L1. As
already mentioned Q takes the value +1 when the system
is found in the electron-neutrino flavour state. Otherwise Q
takes the value −1. So

C12 = P++(L1, L2) − P+−(L1, L2) − P−+(L1, L2)

+P−−(L1, L2), (9)

where P++(L1, L2) = Pνe,νe (L1, L2) is the joint prob-
ability of finding the system in the electron-neutrino flavour
state at both the distances L1 and L2. Similar arguments hold
for the other 3 joint probabilities:

P+−(L1, L2) = Pνe,νμ(L1, L2) + Pνe,ντ (L1, L2),

P−+(L1, L2) = Pνμ,νe (L1, L2) + Pντ ,νe (L1, L2),

P−−(L1, L2) = Pνμ,νμ(L1, L2) + Pνμ,ντ (L1, L2),

+ Pντ ,νμ(L1, L2) + Pντ ,ντ (L1, L2).

Note that the scripted probabilities P are the ones that
are actually measured. These are related to the theoretically
calculated unscripted probabilities as shown above. This is
necessitated by the fact that here more than one state can
have the same value for the dichotomic variable Q.

It is to be noted that to experimentally verify the maximum
violation of LGI the first measurement of Q at length L1

must satisfy NIM. Otherwise the measurement process will
destroy the state of the system and measurement of Q at the
later length L2 will be meaningless as the state has already
been disturbed. This (NIM in the first measurement) can be
ensured using the negative result measurement (NRM) [43]
as follows.

Let the measuring set-up be arranged so that if the probe is
triggered, Q(L1) = +1, while if it is not triggered, Q(L1) =
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−1. This ensures that while the untriggered probe provides
information as regards the value of Q, there is no interac-
tion occurring between the probe and the measured particle.
So NIM is satisfied. Now use only the results of untriggered
runs for which Q(L1) = −1. Follow this by the measure-
ment of Q at L2. These results can be used for determin-
ing the joint probabilities P−+(L1, L2) and P−−(L1, L2).
Similarly, for determining the other two joint probabilities
P+−(L1, L2) and P++(L1, L2) occurring in C12, the mea-
suring set-up can be inverted so that a value of Q(L1) = −1
triggers the probe, while for Q(L1) = +1 it does not. In this
way, one can determine C12 and all the two-time correlation
functions occurring in LGI by ensuring NIM through the use
of the NRM procedure for the first measurement of any pair.
Then one can calculate the total correlation C using Eq. (1)
and experimentally verify our results as regards the maxi-
mum violation of LGI in the case of three-flavour neutrino
oscillations.

6 Concluding remarks

In this work we have investigated the violation of the LGI in
the case of three-flavoured neutrino oscillations. Our findings
are as follows:

1. The maximum value of the correlation C is 2.17036 for
L1 = 140.15 km and �L = 1255.7 km.

2. The violation of the classical bound of C given by LGI
for three-flavoured neutrino oscillation is 8.5%. Note that
in the case of two-flavoured neutrino oscillations [2] this
violation was 38%. So the maximum violation of LGI in
the case of three-flavour neutrino oscillations is signifi-
cantly lower than themaximumviolation for the two-state
neutrino oscillation.

3. If we put θ13 = 0, the maximum value ofC is 2.07762 for
L1 = 638 km and �L = 1376.34 km. This is much lower
than (2.17036) which is obtained for the experimental
value of θ13 = 8.5◦. So the presence of θ13 enhances
the maximum violation of LGI by the amount 0.09274
i.e.4.6%. Increasing θ13 increases the maximum value of
C (Fig. 3).

4. For the mass hierarchy parameterα = 0, i.e.m1 = m2 the
maximum value of C is 2.09606 for �L = 1252.74 km.
Note that although now m1 = m2 the maximum bound
of C is greater than 2, i.e., we are still in the quantum
domain. For two-state neutrino oscillations, [2] m1 =
m2 implied that the maximum value of C is 2, i.e. the
classical domain. α = 0.0305 increases the maximum
value of the quantity C by 3.7% as shown in Fig. 4.

5. If δCP = 0 in the expression for C , the maximum value
of C reduces to 2.16553 for L1 = 140.15 km and
�L = 1253.8 km. So the presence of a CP-violating

phase parameter actually enhances the maximum viola-
tion of LGI by an amount 0.00483 which is 0.24%, a sig-
nificant enhancement (Fig. 5). Compare this to the case
of neutral kaon oscillations where including CP violation
increased the maximum violation of LGI by 0.008% [2].
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7 Appendix

The exact expression of the correlation function C12 is given
by

C12 = Pνe,νe (L1, L2) − Pνe,νμ(L1, L2) − Pνe,ντ (L1, L2)

−Pνμ,νe (L1, L2) + Pνμ,νμ(L1, L2) + Pνμ,ντ (L1, L2)

−Pντ ,νe (L1, L2) + Pντ ,νμ(L1, L2) + Pντ ,ντ (L1, L2)

=
⎡
⎢⎣1 − α2 sin2 2θ12

sin2
( V L1

2

)
(

2EV
�m2

31

)2

−4s2
13

sin2
{(

2EV
�m2

31
− 1

)
�m2

31L1
4E

}

(
2EV
�m2

31
− 1

)2

⎤
⎥⎦

×
⎡
⎢⎣1 − 2α2 sin2 2θ12

sin2
( V (L2−L1)

2

)
(

2EV
�m2

31

)2 − 8s2
13

×
sin2

{(
2EV
�m2

31
− 1

)
�m2

31(L2−L1)

4E

}

(
2EV
�m2

31
− 1

)2

⎤
⎥⎦

−
⎡
⎢⎣α2 sin2 2θ12c

2
23

sin2
( V L1

2

)
(

2EV
�m2

31

)2

+4s2
13s

2
23

sin2
{(

2EV
�m2

31
− 1

)
�m2

31L1
4E

}

(
2EV
�m2

31
− 1

)2 + 2αs13

× sin 2θ12 sin 2θ23 cos(
�m2

31L1

4E
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× sin
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2

)
(

2EV
�m2

31

)
sin

{(
2EV
�m2

31
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)
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31L1
4E

}
(
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�m2

31
− 1

)
⎤
⎥⎦
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×
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31
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}
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31
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)
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}
(
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)
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31(L2 − L1)

4E
− δCP)

− sin δCP sin
(�m2

31(L2 − L1)

4E

)}
− 1

]

−
⎡
⎢⎣α2 sin2 2θ12s

2
23

sin2
( V L1

2

)
(

2EV
�m2

31

)2 + 4s2
13c

2
23

×
sin2

{(
2EV
�m2

31
− 1

)
�m2

31L1
4E

}

(
2EV
�m2

31
− 1

)2

−2αs13 sin 2θ12 sin 2θ23 cos(
�m2

31L1

4E
− δCP)

sin
( V L1

2

)
(

2EV
�m2

31

)
sin

{(
2EV
�m2

31
− 1

)
�m2

31L1
4E

}
(

2EV
�m2

31
− 1

)
⎤
⎥⎦

[
2α2 sin2 2θ12s

2
23

sin2
( V (L2−L1)

2

)
(

2EV
�m2

31

)2

+8s2
13c

2
23

sin2
{(

2EV
�m2

31
− 1

)
�m2

31(L2−L1)

4E

}

(
2EV
�m2

31
− 1

)2

−4αs13 sin 2θ12 sin 2θ23
sin

( V (L2−L1)
2

)
(

2EV
�m2

31

)

×
sin

{(
2EV
�m2

31
− 1

)
�m2

31(L2−L1)

4E

}
(

2EV
�m2

31
− 1

)

{
cos

(
�m2

31(L2 − L1)

4E
− δCP

)

− sin δCP sin
(�m2

31(L2 − L1)

4E

)}
− 1

]
. (10)
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