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Abstract We consider the Schwarzschild black hole and
show how, in a theory with limiting curvature, the physical
singularity “inside it” is removed. The resulting spacetime
is geodesically complete. The internal structure of this non-
singular black hole is analogous to Russian nesting dolls.
Namely, after falling into the black hole of radius rg , an
observer, instead of being destroyed at the singularity, gets
for a short time into the region with limiting curvature. After
that he re-emerges in the near horizon region of a space-
time described by the Schwarzschild metric of a gravitational
radius proportional to r1/3

g . In the next cycle, after passing
the limiting curvature, the observer finds himself within a
black hole of even smaller radius proportional to r1/9

g , and so
on. Finally after a few cycles he will end up in the spacetime
where he remains forever at limiting curvature.

1 Introduction

The problem of singularity within black holes has remained,
since a long time, one of the most intriguing problems in the-
oretical physics. Although such a singularity is hidden by the
event horizon, one can imagine that an observer can decide
(at least in a gedanken experiment) to travel inside the black
hole and the legitimate physical question which arises is:
what will this observer see being inside the black hole and
in particular as he approaches the singularity? In the case
that the black hole has a huge mass he will have more than
enough time to make the needed experiments to measure how
the tidal forces are changing. If General Relativity is valid
up to arbitrary high curvatures then the theory predicts that,
irrespective of what any observer will do, he will finally be
destroyed by the infinite curvatures. In fact, assuming uni-
versal applicability of Einstein’s theory, and imposing energy
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dominance conditions on the state of matter, Hawking and
Penrose have proved that space-times with black holes cannot
be geodesically complete [1]. It is well known that these con-
ditions are not always valid and for instance the condensate
of a scalar field or cosmological constant violates some of
them. In this case the singularity can, in principle, be avoided
and the spacetime can become geodesically complete. For
example Ref. [2] considered the possibility of removing the
singularity by forcing the contracting space inside the black
hole to get to the de Sitter bouncing state. This opens the
fascinating possibility of “gedanken travelling” to another
universe via a black hole (of course only for those who could
survive the extremely high curvatures at which the bounce is
supposed to take place). However, although this idea by itself
does not contradict any basic physical principles the authors
of [2] were not able to provide any concrete example where
such an idea could be realized constructively.

Normally the majority of research redirects the question
of singularities to the yet unknown nonperturbative quan-
tum gravity (which in turn could well be part of some yet
unknown fundamental unified theory). In fact it is clear that
quantum corrections to General Relativity become extremely
important at Planckian curvatures and could easily modify
or resolve the singularities. Therefore, one cannot say that
such hopes are completely unjustified. However, until now,
the perturbative treatment of these corrections has led to an
extremely messy picture and did not give even the slightest
constructive hints of how the problem could be treated and
solved in a fully nonperturbative quantum gravity. Numerous
attempts to address this question did not lead to any reliable
progress. Therefore in this paper we will use a completely
different approach. Instead of exploiting quantum effects we
will try to resolve the problem of singularities fully at the
classical level by incorporating the idea of a limiting curva-
ture [3–8], assuming that Einstein’s equations are modified
at curvatures well below the Planckian curvature. There is
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nothing that forbids this idea because Einstein’s equations
have been checked experimentally only for curvatures well
below the Planckian ones. If the limiting curvature is below
the Planck value the inevitable quantum effects, due to for
instance particle production and vacuum polarization, can
be ignored and the theory will be under control and would
remain completely reliable up to the highest possible cur-
vatures. In particular, in [9] we have suggested a concrete
theory with limiting curvature and have shown that cosmo-
logical singularities in this theory are fully removed. In this
paper we consider how a black hole is modified in our theory
and what happens close to the singularity inside a black hole.
We would like to point out that removing singularities can
have severe consequences for questions broadly discussed in
the literature, such as the so-called “information paradox”
and the fate of remnants of the minimal mass which can, in
principle, survive after the Hawking evaporation is over. We
will discuss these questions in more detail after obtaining the
solution for a nonsingular black hole.

2 Theory with limiting curvature

Consider the theory described by the action [10,11]

S =
∫ (

−1

2
R + λ

(
gμν∂μφ∂νφ − 1

) + f (χ)

)√−gd4x,

(1)

where χ = �φ, λ is a Lagrange multiplier and we have set
8πG = 1. As we have shown in Ref. [9] the usual matter does
not play any significant role in resolving anisotropic singu-
larities. Therefore to simplify the formulas we will omit here
its contribution to (1). It immediately follows from variation
of the Lagrange multiplier λ that the scalar φ always satisfies
the constraint

gμν∂μφ∂νφ = 1. (2)

Therefore the term f (χ) , irrespective of any power of χ,

does not lead to the propagation of extra degrees of free-
dom which, otherwise, could be ghosts. The constraint (2)
imposes a very strong restriction on the variable φ and in the
synchronous coordinate system with metric

ds2 = dt2 − γik(t, x
l)dxidxk, (3)

it has the most general solution [12]

φ = ±t + A, (4)

unless this particular coordinate system does suffer from
coordinate singularities. Thus the field φ plays the role of
time and the constant of integration A reflects the time shift
symmetry. In this coordinate system

χ = �φ = 1√−g

∂

∂xμ

(√−ggμν ∂φ

∂xν

)
= γ̇

2γ
, (5)

with γ = det γik and where by a dot we denote the time
derivative. Thus, the function f (χ) allows one to introduce,
in a completely covariant way, the metric and its first deriva-
tive in the “game” when we try to find a simple modification
of General Relativity where singularities can be avoided. In
this sense the action (1) must be treated as a modification
of Einstein’s gravity. The only extra new degree of freedom
which appears here is mimetic Dark Matter [10] because the
constraint (2) forces the longitudinal gravitational field to
become dynamical even in the absence of the usual matter.

We can choose the function f (χ) in such a way as to
bound the derivative of the metric determinant in the syn-
chronous coordinate system. Because these derivatives enter
in an essential way in the coordinate independent curvature
invariants (see below) this opens the possibility to have a
nonsingular modification of gravity. After many trials, the
simplest way we were able to find to construct such a theory
is to use a Born–Infeld type function, where

f (χ) = 1 −
√

1 − χ2 + g(χ), (6)

and χ is restricted by χ2 ≤ 1 for obvious reasons. The func-
tion g(χ) is less restrictive but it has at least to satisfy two
necessary conditions. First, it must be chosen in such a way
as to remove the χ2 terms in the Taylor expansion of f (χ)

because these would lead to an unwanted modification to Ein-
stein’s theory at low curvatures. Second, the function g (χ)

must remove the singularity in d f/dχ at χ = 1, otherwise
the curvature invariants would blow up at this point. In the
theory with f (χ) given in (6) the limiting curvature would
be of the order of the Planck curvature, where the quantum
effects are extremely important. To avoid this problem we
will assume that the limiting curvature is at least a few orders
of magnitude below the Planckian value and this would allow
for justifying why vacuum polarization effects and particle
production effects could be ignored. Taking for g (χ) a func-
tion which leads to particularly simple equations,

g (χ) = 1

2
χ2 − χ arcsin χ, (7)

and introducing a limiting curvature, characterized by χ2
m, as

an extra free scale in the theory we will take, after rescaling

χ →
√

2
3

χ
χm

and f → χ2
m f ,

f (χ) = χ2
m

(
1 + 1

3

χ2

χ2
m

−
√

2

3

χ

χm
arcsin

(√
2

3

χ

χm

)

−
√

1 − 2

3

χ2

χ2
m

)
. (8)
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As we have already seen in [9] this choice of f removes
singularities in the Friedmann and Kasner universes. In this
paper we will consider what happens with singularities for
black holes.

Variation of the action (1) with respect to the metric gμν

gives the modified Einstein’s equations

Gμν = Rμν − 1

2
gμνR = T̃μν, (9)

where

T̃μν = 2λ∂μφ∂νφ + gμν(χ f ′ − f + gρσ ∂ρ f ′∂σ φ)

− (∂μ f ′∂νφ + ∂ν f
′∂μφ) (10)

characterizes the modification to General Relativity and we
have denoted f ′ = d f/dχ . For metric (3) the time-time and
space-space components of the curvature are [12]

R0
0 = −1

2
�̇ − 1

4
�k
i �

i
k, Ri

k = − 1

2
√

γ

d(
√

γ � i
k)

dt
− Pi

k ,

(11)

where � i
k = γ im γ̇mk , � = � i

i = γ̇ /γ and Pi
k is the three

dimensional Ricci tensor for the metric γik . The correspond-
ing components of T̃μ

ν for solution (4) are

T̃ 0
0 = 2λ + χ f ′ − f − χ̇ f ′′,
T̃ i
k = (χ f ′ − f + χ̇ f ′′)δik . (12)

The 0–0 equation

R0
0 − 1

2
R = T̃ 0

0 (13)

then takes the form

1

8
(�2 − �k

i �
i
k + 4P) = 2λ + χ f ′ − f − χ̇ f ′′, (14)

and the space-space equation

Ri
k = T̃ i

k − 1

2
T̃ α

α δik (15)

becomes

1

2
√

γ

∂(
√

γ � i
k)

∂t
+ Pi

k = (λ + χ f ′ − f )δik (16)

Variation of the action with respect to φ gives

1√
γ

∂0(2
√

γ λ) = � f ′ = 1√
γ

∂0(
√

γ f ′′χ̇ ) − � f ′, (17)

where � f ′ is the covariant Laplacian of f ′ for the metric γik
and this equation can be used to determine the Lagrange mul-
tiplier λ. Up to this point we did not make any assumptions
as regards to the metric γik . However, for our purposes it will
be enough to consider only the case when the determinant
of the metric is factorizable, that is, γ (t, xi ) = γ1(t)γ2(xi ).

Then both χ and � depend only on time and � f ′ vanishes;
hence integrating (17) we obtain

λ = C

2
√

γ
+ 1

2
f ′′χ̇ . (18)

whereC is a constant of integration corresponding to mimetic
cold matter. Because this matter behaves exactly like dust we
can neglect it for the reasons explained above and set C = 0.

By subtracting from Eq. (16) one third of its trace we find

∂

∂t

(√
γ

(
� i
k − 1

3
�δik

))
= −2

(
Pi
k − 1

3
Pδik

) √
γ , (19)

from which it follows that

� i
k = 1

3
�δik + λik√

γ
, (20)

where

λik = −2
∫ (

Pi
k − 1

3
Pδik

) √
γ dt (21)

and it is traceless, λii = 0. Substituting expression (20)
together with (18) into (14) we obtain

1

12
�2 + f − χ f ′ = λikλ

k
i

8γ
− 1

2
P. (22)

Taking into account that χ = γ̇ /2γ = �/2 we infer that (22)
is a first order non-linear differential equation for γ , which
involves the separate components of the metric only via the
spatial scalar curvature P . Substituting the function f from
(8) into this equation leads to the particularly simple equation

χ2
m

(
1 −

√
1 − 2

3

χ2

χ2
m

)
= ε, (23)

where

ε = λikλ
k
i

8γ
− 1

2
P (24)

does not depend on the time derivative of the metric. By
squaring (23) and recalling that χ = γ̇ /2γ we finally arrive
at the master equation

1

12

(
γ̇

γ

)2

= ε

(
1 − ε

εm

)
, (25)

which will be used to analyze the black hole solution and
where we have denoted εm = 2χ2

m .

3 Schwarzschild solution in general relativity and the
boundary conditions for φ

In the empty spherically symmetrical space solution of Ein-
stein’s equations is unique and is given by the Schwarzschild
metric
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ds2 =
(

1 − rg
r

)
dt2

S − dr2(
1 − rg

r

) − r2d�2, (26)

where rg is the gravitational radius and d�2 = dθ2 +
sin2 θdϕ2 is the line element on the surface of unit sphere.
This metric is regular both outside the black hole r > rg and
inside the black hole for rg > r > 0 and only becomes sin-
gular on the horizon at r = rg. Since the singularity occurs
“inside the black hole” it is enough for us to consider only
the internal part of this black hole, where the metric (26)
is well applicable and happens to be most convenient for
analyzing the internal structure of a nonsingular black hole.
For r < rg the coordinates r and t exchange their roles and r
becomes a time-like coordinate while tS becomes a space-like
one. Inside the black hole the decrease of the “radial coor-
dinate” from r = rg to r = 0 corresponds to time increase.
Inversely, if we assume that time grows with r then the same
Schwarzschild solution describes the white hole, which is
just a time reversed black hole. Let us rename the coordi-
nate in (26) as r → rgτ 2 and tS → R. Then inside the
Schwarzschild black hole the metric (26) becomes

ds2 = 4r2
gτ

2N−2(τ )dτ 2 − N 2(τ )dR2 − τ 4r2
gd�2, (27)

where

N 2(τ ) = 1 − τ 2

τ 2 , (28)

and where for negative τ, changing to the interval −1 ≤
τ ≤ 0 describes the collapse “inside” the black hole until the
space-like singularity is reached at themoment of time τ = 0.

In fact the spacetime described by metric (27) is obviously
non-static and the Riemann squared tensor equals

Rαβγ δR
αβγ δ = 12

(rgτ 3)4 = 12r2
g

r6 (29)

and blows up at the moment of time τ = 0 or, as sometimes
incorrectly stated, in the center of the black hole at r = 0.
The Planck curvature is reached at the moment |τ | � r−1/3

g

or at r � r1/3
g . Introducing the proper time

t =
∫

2rgτN
−1(τ )dτ =

∫
2rgτ 2

√
1 − τ 2

dτ

= rg
(

arcsin τ − τ
√

1 − τ 2
)

, (30)

we can rewrite the metric (27) in the form

ds2 = dt2 − a2(t)dR2 − b2(t)d�2, (31)

where for the Schwarzschild black hole

a2(t) = 1 − τ 2(t)

τ 2(t)
, b2(t) = τ 4(t)r2

g . (32)

The coordinate system (31) is obviously synchronous and
happens to be the one most convenient to find a nonsingular
generalization of the Schwarzschild solution in the theory

with limiting curvature. Therefore we will use metric (31)
and determine the functions a2 (t) and b2 (t), which will be
modified in the vicinity of the singularity compared to (32).

First of all we notice that at χ2 � χ2
m = εm/2 our theory

coincides with General Relativity in the leading order and
therefore the functions given in (32) satisfy Eq. (25) until we
start to approach the limiting curvature. To determine where
the Schwarzschild solution must be valid let us assume that

φ = t + A (33)

and calculate

χ = �φ = γ̇

2γ
= 1

2

d ln(a2b4)

dt

=
√

1 − τ 2

4rgτ 2

d ln((1 − τ 2)τ 6r4
g )

dτ
= 3 − 4τ 2

2rgτ 3
√

1 − τ 2
. (34)

It then follows that for 1 > |τ | > (εmr2
g )

−1/6 we have
χ2 � εm and the Schwarzschild metric is a good approxima-
tion of the exact solution in (25). However, one may immedi-
ately notice that in the near horizon region (for τ 2 → 1) χ2

grows unbounded for the Schwarzschild solution although
the horizon is nothing more than a coordinate singularity. It
seems that the curvature must grow giving rise to a “firewall”
in our theory, thus completely modifying the Schwarzschild
solution, even for large black holes. However, this “firewall”
is completely fake and its appearance is related to taking the
wrong solution (33) for φ which corresponds to an unjusti-
fied “concentration” of this field in the near horizon region
that significantly changes the Schwarzschild solution even
outside the Schwarzschild radius. We have noted above that
the solution (33) is a generic solution, but only if the syn-
chronous coordinate system has no coordinate singularities.
Obviously the coordinate system (31) does not satisfy this
requirement because γ = (1− τ 2)τ 6r4

g vanishes as τ 2 → 1.

To find the synchronous coordinate system which is free
of fictitious coordinate singularities we make a coordinate
transformation introducing instead of t and R, the new coor-
dinates T and R̄ defined by

T = R +
∫ √

1 + a2

a
dt, R̄ = R +

∫
dt

a
√

1 + a2
. (35)

Then in the new synchronous coordinates the metric (31)
becomes

ds2 = dT 2 − (1 + a2)d R̄2 − b2d�2, (36)

where a2 and b2 are now functions which depend on the
argument T − R̄. For the Schwarzschild solution (32) this
metric takes the form

ds2 = dT 2 − τ−2d R̄2 − τ 4r2
gd�2, (37)
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where the relation between τ and T − R̄ can be found by
substituting (32) in (35) and taking into account (30):

T − R̄ = 2

3
rgτ

3. (38)

This metric describes the Schwarzschild solution in the
Lemaitre coordinate system which is synchronous, regular
on the horizon and covers both external and internal parts of
the black hole. Therefore, instead of (33), the solution for
φ with correct asymptotic behavior far away from the black
hole is given by

φ = T = R +
∫ √

1 + a2

a
dt. (39)

Although the Lemaitre coordinates cover the whole manifold
and have no coordinate singularities, they are not very con-
venient for investigating the internal structure of nonsingular
black holes because the metric components depend on both
space and time coordinates in non separable way. This leads
to equations which have a very complicated structure due to
the spatial curvature terms. Therefore we continue to work
in the coordinate system (31) but taking the correct solution
for φ. It is easy to see that (39) satisfies the constraint (2) for
an arbitrary a(t) as it should. Calculating χ for solution (39)
in the coordinate system (31) we find that it is not equal to
γ̇ /2γ anymore and is now given by

χ = �φ = γ̇

2γ

√
1 + 1

a2 + d

dt

√
1 + 1

a2 . (40)

In the case of Schwarzschild black hole we obtain

χ = 3

2rgτ 3 , (41)

and on the horizon we have χ2 � εm for rg � ε
−1/2
m . Thus

for large black holes corrections to Einstein’s equations are
negligible on the horizon and the fake firewall does not arise.
Only for very small black holes with a minimal mass deter-
mined by the limiting curvature, the Schwarzschild solu-
tion will be completely modified in our theory. The result
is not surprising because in this case the limiting curvature
is already reached on the horizon. Notice that in the case of
large black holes, away from the horizon, a2 ∝ τ−2 and as
we will see it continues to grow after the bounce in a nonsin-
gular black hole. Therefore the terms with 1/a2 in (40) can
be neglected once we are far enough from the original hori-
zon and later. This can be seen by comparing, for instance,
(41) with (34) which coincides to order O(τ 2) for τ 2 � 1.

Hence, with good accuracy we can set

χ = γ̇

2γ
, (42)

and use (25) to investigate the future of a nonsingular black
hole. If this approximation fails, we would need to work
directly with Eq. (22) with χ given in (40). Fortunately, as we

will show, the approximation holds very well and improves
with time and therefore, we can avoid extremely messy cal-
culations which would be needed otherwise.

Finally, to complete this section we would like to give
the approximate explicit leading order expression for the
Schwarzschild metric entirely in terms of time t, in the near
horizon and close to singularity regions. As we will see this
metric will be helpful to understand what happens within
the black hole after reaching the limiting curvature and the
bounce.

As seen above, the internal part of the singular black hole
is described by metric (31), (32) for −1 < τ < 0. According
to (30) the proper time t runs in the interval −π/2 < t < 0.

Consider the near horizon region corresponding to 1+τ � 1.

Then, as follows from (30),

1 + τ � 1

8

(
π

2
+ t

rg

)2

≡ 1

8

(
t̄

rg

)2

, (43)

and, in this approximation, the metric takes the form

ds2 = dt̄2 − 1

4

(
t̄

rg

)2

dR2 − r2
gd�2, (44)

in the near horizon region for t̄ � rg. Notice that the numer-
ical coefficient in front of dR2 has no physical meaning
because it can be rescaled by R → αR. On the other hand,
the coefficient in front of the angular part of the metric can-
not be rescaled and determines the spatial curvature in the
near horizon region which gives a contribution of order 1/r4

g
to the Riemann squared curvature. For large black holes the
curvature on the horizon is rather small. Now we turn to the
region close to the singularity |τ | � 1, where

t � 2

3
rgτ

3 (45)

and the metric (31), (32) becomes

ds2 = dt2 −
(
t

t0

)−2/3

dR2 −
(
t

t0

)4/3

r2
gd�2, (46)

where t0 = 2rg/3. As one can see from (41) the limiting

curvature is reached when at t ∼ rgτ 3 ∼ −ε
−1/2
m so that

χ2 becomes of order εm and R2
αβγ δ ∼ ε2

m (see (29)). Before
that, the Schwarzschild solution is a good approximation of
the exact solution in the theory with limiting curvature. Con-
sidering the asymptotic expressions (44) and (46) we can
view the evolution of the internal part of the black hole as
a change of one Kasner solution (44) with pi = (1, 0, 0)

in the near horizon region to the other Kasner solution (46)
with p′

i = 2/3 − pi , close to the singularity region [9]. This
change happens around t ∼ O(1)rg and is due to the spatial
curvature term which, as we will see shortly, is only important
in this region between the two asymptotics.
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4 Black hole with limiting curvature

When the limiting curvature is reached, General Relativity is
no longer valid, and the Schwarzschild solution is modified.
To find how, and to see what happens when we approach the
limiting curvature and beyond, we have to solve Eq. (25),
which we quote again for convenience of the reader

1

12

(
γ̇

γ

)2

= ε

(
1 − ε

εm

)
, (47)

where we now have

ε = λikλ
k
i

8γ
− 1

2
P (48)

and

λik√
γ

= − 2√
γ

∫ (
Pi
k − 1

3
Pδik

)√
γ dt. (49)

One can easily check that as εm → ∞ the Schwarzschild
solution is the exact solution of these equations. The spatial
curvature components for the metric (31) are

P1
1 = 0, P2

2 = P3
3 = 1

b2 , P = 2

b2 , (50)

and therefore

λik√
γ

= −2λ̃(i)δ
i
k

ab2 F(t), F(t) =
∫

adt, (51)

where

λ̃(i) =
(

−2

3
,

1

3
,

1

3

)
. (52)

To determine the constant of integration in F(t) consider the
times t satisfying

|t | � ε
−1/2
m ,

for which the Schwarzschild solution is valid in the leading
approximation. Then using (32) for a and (30) to express
dt/dτ, we find
∫

adt =
∫

a(τ )
dt

dτ
dτ = rgτ

2 + C (53)

and the constant of integration C can be found from Eq. (20)
for �1

1 ,

�1
1 = 1

3
� + λ1

1√
γ

= 1

3
� + 4(rgτ 2 + C)

3ab2 . (54)

In fact, taking into account that

�1
1 = γ 11γ̇11 = d ln a2

dt
, � = d ln(a2b4)

dt
(55)

and replacing d/dt by the derivative with respect to τ,

Eq. (55) simplifies to
√

1 − τ 2

2rgτ 2

d ln(a/b)

dτ
= (rgτ 2 + C)

ab2 . (56)

Substituting for a and b from (32) and comparing, we find
that

C = −3

2
rg, (57)

and hence

λik√
γ

= 2λ̃(i)δ
i
krg

ab2

(
3

2
− τ 2

)
. (58)

This expression, which we derived in the region where Ein-
stein theory is applicable, can also be used “deep inside the
black hole” for τ 2 � 1 if we neglect the τ 2 term inside the
brackets

λik√
γ

= 3λ̃(i)δ
i
krg

ab2 . (59)

Substituting this expression in (48) and using (50) for the
spatial curvature term we finally obtain

ε = 3r2
g

4a2b4 − 1

b2 . (60)

It is clear that for

a2b2 � r2
g , (61)

the spatial curvature term can be neglected. For instance, for
the Schwarzschild black hole this condition takes the form

(1 − τ 2)τ 2 � 1 (62)

and hence deep inside the black hole (τ 2 � 1) and close to
the horizon ((1− τ 2) � 1) the spatial curvature term in (60)
is negligible. Thus ignoring this term and taking into account
that γ = a2b4 sin2 θ = γt sin2 θ , hence, γ̇ /γ = γ̇t/γt and
after substitution of (60) in (47) we obtain the equation

(
γ̇t

γt

)2

= 9r2
g

γt

(
1 − 3r2

g

4εmγt

)
, (63)

which can easily be integrated to give the solution

γt = 3r2
g

4εm
(1 + 3εmt

2). (64)

The corresponding metric components a2(t) and b2(t) can
be obtained directly from (20). For instance the equation for
�1

1 takes the following explicit form:

d ln a2

dt
= 1

3

γ̇t

γt
+ 2rg√

γt
. (65)
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Integrating this equation, using γt from (64), we find

a2(t) =
(

3r2
g

4εm
(1 + 3εmt

2)

)1/3

exp

(
4

3

(
sinh−1

(√
3εmt

)

+ ln

(
4

3

√
3εm

)))
, (66)

where the constant of integration is fixed by requiring that
before the bounce for |t | � ε

−1/2
m the asymptotic form of the

solution must be given by (46). Similarly we obtain

b2(t) =
(

3r2
g

4εm
(1 + 3εmt

2)

)1/3

exp

(
−2

3

(
sinh−1

(√
3εmt

)

+ ln

(
4

3

√
3εm

)))
. (67)

Thus, the singularity is avoided and instead of it we have a
bounce of duration �t � ε

−1/2
m . During this time the cur-

vature is not very different from the limiting curvature but
drastically drops after that. In fact, as follows from (66) and
(67), after the bounce for t � ε

−1/2
m the metric is

ds2 = dt2 − Q2
0

(
t

t0

)2

dR2 − 1

Q0
r2
gd�2, (68)

where Q0 = ( 16
3 εmr2

g )
2/3. If the size of the black hole rg

is much larger than ε
−1/2
m then Q0 � 1. The asymptotic

form (68) is valid only when the spatial curvature could be
neglected and the condition (61) is satisfied. It holds until
the time t ∼ rg/Q

1/2
0 where it is violated. For t � ε

−1/2
m

we have χ2 � εm . Moreover, using the formulas from the
appendix it can be readily checked that for the solution (68)

R2
αβγ δ ∼ Q2

0

r4
g

∼
(

εm

rg

)4/3

(69)

and it follows that R2
αβγ δ � ε2

m for large black holes with

rg � ε
−1/2
m . Hence, at these times the corrections to Einstein

equations are negligible and (68) must be a solution of Ein-
stein equations in empty space for a spherically symmetric
metric. We know, however, that such a solution is unique and
is described by the Schwarzschild metric. In fact, rescaling
R → R̃ = 3Q1/2

0 R and introducing

Rg1 = rg

Q1/2
0

= r1/3
g

(16εm/3)1/3 , (70)

we can rewrite (68) as

ds2 = dt2 − 1

4

(
t

Rg1

)2

d R̃2 − R2
g1

d�2. (71)

Comparing this metric to (44) we can identify its space-
time with the inner side of the near horizon asymptotic
of the Schwarzschild solution with the gravitational radius
Rg1 ∝ r1/3

g . As pointed out above, at the moment of time

t ∼ Rg1 the spatial curvature term in (60) becomes dom-
inant and changes the asymptotic solution (71) to another
one which can be written by analogy with (46). We simply
take into account that in the corresponding Schwarzschild
black hole with radius Rg1 the singularity would be reached
at t = π

2 Rg1 and we can write

ds2 = dt2 −
(
t − π

2 Rg1

t1

)−2/3

d R̃2

−
(
t − π

2 Rg1

t1

)4/3

R2
g1

d�2, (72)

where t1 = 2
3 Rg1 . This solution is valid until the limiting

curvature is reached, that is, for π
2 Rg1 − t � ε

−1/2
m . After we

start to approach the limiting curvature the solution changes
and it is described by the formulas (66) and (67) with the
obvious replacements rg → Rg1 , t − π

2 Rg1 . To return to
the original scale factor a2(t) we rescale R̃ back to R. As
a result, after the second bounce, we again re-emerge inside
the near horizon region described by the metric

ds2 = dt2 − 9Q0Q
2
1

(
t − π

2 Rg1

t1

)2

dR2 − 1

Q1
R2
g1

d�2,

(73)

for t − π
2 Rg1 � ε

−1/2
m , where

Q1 =
(

16

3
εm R2

g1

)2/3

=
(

16

3
εm

r2
g

Q0

)2/3

= Q1/3
0 . (74)

Obviously, the metric (73) describes the near horizon
Schwarzschild geometry with the gravitational radius

Rg2 = Rg1

Q1/2
1

= rg

Q
1
2

(
1+ 1

3

)
0

= r1/9
g

(16εm/3)4/9 . (75)

Repeating the steps above we find that the spacetime struc-
ture inside the nonsingular black hole is similar to “a Russian
nesting doll”. Namely, its geometry is a time sequence of the
internal Schwarzschild geometries separated by “layers with
limiting curvature” of width �t � ε

−1/2
m . The Schwarzschild

radii characterizing these subsequent geometries decrease
and are proportional to rg, r

1/3
g , r1/9

g , r1/27
g , . . .. After the

n+ 1th bounce (the first bounce takes place at t = 0), which
happens at the moment

Tn = π

2
(Rg1 + Rg2 + · · · + Rgn ), (76)

the gravitational radius is equal to

Rg(n+1)
= Rg(n)

Q1/2
n

= rg

Q
1
2 (1+ 1

3 +···+ 1
3n )

0

= 1

(16εm/3)1/2 exp

(
1

4 · 3n
ln Q0

)
, (77)
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and when the gravitational radius becomes comparable with
the minimal possible one

Rgmin = 1

(16εm/3)1/2 , (78)

the approximations we used to obtain the picture described
above breaks down. In fact, after

nmax ∼ ln ln Q0 (79)

bounces the width of the layers with limiting curvature is of
the order of the size of the black hole and we cannot use
anymore the Schwarzschild solution in between the layers.
After that the limiting curvature is reached and never drops
to small values. The corresponding geometry is similar to
the one which describes the minimal black hole in our theory
[14].

5 Summary and speculations

We have shown that in the theory with limiting curva-
ture the internal structure of a black hole is significantly
modified compared to a singular Schwarzschild black hole.
Namely, the curious observer who decides to travel inside
the Schwarzschild eternal black hole after first crossing the
horizon will find himself in a non-static space of infinite vol-
ume (for eternal black hole), but exists for finite time t ∼ rg.
At the beginning the curvature of large black holes is very
low but grows and finally, after time t ∼ rg , becomes infinite
and one ends up in a singularity, which happens not “at the
point in the center of black hole” but at the moment of time
t = 0. In this sense the evolution and singularity within a
black hole is similar to a Kasner universe. The spacetime in
this case is not geodesically complete. In our theory with lim-
iting curvature, the Einstein equations are only significantly
modified when the curvature starts to approach its limiting
value. The singularity is removed and the curvature does not
grow indefinitely. In fact, the singularity is replaced by a
“time layer” of duration �t ∼ ε

−1/2
m , which would be of the

order of Planck time if the limiting curvature would be the
Planckian one. After that the curvature drops down to the
value which an observer would find immediately after cross-
ing the horizon of the smaller black hole of radius r1/3

g . The
subsequent evolution repeats the previous cycle but this time
inside a black hole of this smaller radius. Once again, instead
of ending at the singularity we pass through a layer of limit-
ing curvature and find ourselves inside a black hole of even
smaller radius ∼ r1/9

g and so on. Finally when the size of the
black hole becomes of the order of the width of a time layer
∼ ε

−1/2
m , we end inside the black hole of minimal possible

mass and stay there forever at limiting curvature. Notice that
the number of the “layers” which we have to pass to reach
inside this minimal black hole is not big even for large black

holes. For instance, for a galactic mass black hole of radius
rg ∼ 1049 (in Planck units) after the crossing of limiting cur-

vature we find ourselves in black holes of radii r1/3
g ∼ 1016,

r1/9
g ∼ 105, r1/27

g ∼ 102 correspondingly. Finally at the

fourth layer r1/81
g ∼ O(1), and we cannot trust anymore the

approximations used to arrive at the above picture and we
end up within a minimal black hole at limiting curvature,
which after that never drops significantly. The spacetime of
a nonsingular black hole is geodesically complete and the
singularity problem is resolved.

For an evaporating black hole the derivation of Hawk-
ing radiation remains unchanged for a large black hole [13].
However, when it reaches the minimal size of order ε

−1/2
m the

near horizon geometry changes and we expect that the min-
imal remnants of it must be stable. This question obviously
requires further investigation [14]. If we take the limiting
curvature, which is a free parameter in our theory, to be at
least a few orders of magnitude below the Planck scale, the
answer to it can be obtained using standard methods of quan-
tum field theory in external gravitational field. In fact, in this
case the unknown nonperturbative quantum gravity does not
play an essential role and its need in such a case becomes
unclear because the uncontrollable Planckian curvatures are
never reached. This opens up the possibility of resolving
the information paradox without involving the “mysteriously
imprinted” correlations in Hawking radiation which is sup-
posed to take care of returning all information back to the
Minkowski space after the disappearance of the black hole.
In our case the smallest black hole remnant has enough space
“inside it” to hide all the information as regards to the orig-
inal matter from which the black hole was formed together
with the information as regards to the negative energy quanta
(with respect to an outside observer) which never escapes
from the black hole and reduce its mass in the process of
Hawking evaporation. The evolution in this case remains
unitary on complete Cauchy hypersurfaces which inevitably
goes inside the black hole remnant. The picture here is very
similar to the one described as a possible option in [2]. The
content of the minimal mass black hole can be significantly
different depending on the way how the remnant was formed.
However, an infinite degeneracy of the black hole remnants
is completely irrelevant for an outside observer who calcu-
lates, for instance, the scattering processes with participa-
tion of these minimal black holes, because this degeneracy is
entirely related to events which happen in the absolute future
of this observer.

6 Appendix

For convenience of the reader we quote below the explicit
expressions for curvature invariants which can be used to
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verify statements about the behavior of the curvature in a
nonsingular black hole with the metric (31). The scalar cur-
vature is given by the expression

R = −�̇ − 1

3
�2 − 2

3

F2

γ
− 2

b2 ,

where F = ∫
adt . The square of the Ricci tensor is given by

Rαβ R
αβ = 1

3
�̇2 + 1

6
�2�̇ + 1

36
�4 + 2

3

(
�̇ + 1

6
�2

)
F2

γ

+ 4

9

F4

γ 2 + 1

b2

(
2

3
�̇ + 1

3
�2

)
+ 4a2

3γ

and the square of the Riemann tensor is

Rαβγ δR
αβγ δ =

(
�4

54
+ �̇2

3
+ �2�̇

9

)
+ 2

9

(
4�̇ + �2

) F2

γ

− 16�

27

F3

γ
3
2

+ 4F4

3γ 2 + 8a2

3γ
+ 16a

9

F2

γ
3
2

− 8�aF

9γ
+ 1

b2

(
4

b2 +2�2

9
+8F2

9γ
− 8�F

9
√

γ

)
.
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