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Abstract In this paper, we investigate how the LHC data
limit the Higgs-related couplings in the effective description
of a strongly interacting extension of the Standard model. The
Higgs boson is introduced as a scalar composite state and it is
followed in the mass hierarchy by an SU (2) triplet of vector
composites. The limits are calculated from the constraints
obtained in the recent ATLAS+CMS combined analysis of
the data from 2011 and 2012. We find that the data prefer
the scenario where the Higgs couplings to the electroweak
gauge bosons differ from its couplings to the vector triplet.
We also investigate the unitarity limits of the studied effective
model for the experimentally preferred values of the Higgs
couplings. We find from the ππ → ππ scattering ampli-
tudes that for the vector resonance masses between one and
two TeV significant portions of the experimentally allowed
regions are well below the unitarity limit. We also evalu-
ate how the existing ATLAS and CMS Run-2 data restrict
our model with the upper bounds on the resonance produc-
tion cross section times its branching ratio for various decay
channels. The masses in the range 1 TeV ≤ Mρ ≤ 2 TeV
are not excluded in parts or even full parameter space of our
theory.

1 Introduction

Even though the LHC experiments ATLAS and CMS
achieved a spectacular success by discovering the 125 GeV
Higgs boson [1,2] it was more the beginning rather than the
end of the struggle to uncover the character of physics beyond
the Standard model (SM). To this moment, it has not even
been settled down whether new physics takes the form of

a e-mail: gintner@fyzika.uniza.sk
b e-mail: josef.juran@utef.cvut.cz

weakly coupled supersymmetry or strongly coupled com-
posites.

In the strongly coupled scenario, the observed lightness
of the Higgs boson with respect to the expected size of the
compositeness scale (naively, � = 4πv � 3 TeV) could
be explained if the Higgs boson were a (pseudo)Nambu–
Goldstone boson after a breakdown of suitable extended
global symmetry [3–10]. Another widely studied possibil-
ity is to embed the composite Higgs in an effective SU (2)

doublet [11–27] where its lightness would be guaranteed by
the theory’s particularities.

If the Higgs is generated as a composite state by new
strong interactions the extension of the SM can be effectively
described by higher dimensional operators that do not decou-
ple in the low-energy limit. Presumably, they would modify
the SM couplings of the Higgs boson with the heavy SM
fields, such as the electroweak (EW) gauge bosons and/or the
third quark generation. However, while the light SM Higgs
boson can guarantee unitarity of the SM to virtually arbi-
trary high energies, this is not true anymore if the Higgs cou-
plings become anomalous [28–30]. Nevertheless, the least
one could require from the successful effective description
of the composite state phenomenology is that it will not break
down at energy below the compositeness scale. Meeting this
expectation might be assisted with by the presence of addi-
tional new composite states which naturally occur in strongly
interacting theories, anyway. Any further progress in deal-
ing with these questions largely depends on an experimental
input. Therefore, it is interesting to find what the most recent
measurements of the Higgs boson couplings imply for vari-
ous effective descriptions of strongly interacting extensions
of the SM.

In this paper, we calculate the LHC limits on the effective
theory describing possible early signs of strongly interacting
physics beyond the SM. The effective description we work
with is a rather simplistic view of what might be observed at
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the LHC beyond the 125 GeV Higgs boson. We work with
the vision where the Higgs boson is a scalar composite state
followed in the mass hierarchy by a vector composite SU (2)

triplet state.Our approach is closely related to the formalism
used in [31].

In particular, the Higgs sector of the effective Lagrangian
under consideration is based on the non-linear sigma model
with the 125-GeV SU (2)L+R scalar singlet complementing
the non-linear triplet of the Nambu–Goldstone bosons. The
new vector resonances are explicitly present in the form of an
SU (2)L+R triplet. The vector triplet is introduced as a gauge
field via the hidden local symmetry approach [32]. Conse-
quently, it mixes with the EW gauge bosons. It results in the
appearance of the mixing-generated (indirect) couplings of
the vector triplet with all SM fermions. This setup fits the
situation when the global SU (2)L × SU (2)R symmetry is
broken down to SU (2)L+R . The gauge sector of this effec-
tive description is equivalent to the gauge sector of highly
deconstructed Higgsless model with only three sites [33].

The above-mentioned effective scenario has also been a
basis for the effective Lagrangian we introduced and investi-
gated in [34,35].1 Therein, the vector triplet couples directly
to the third quark doublet only and to none of the other SM
fermions. In addition, even the interactions to the right quarks
are not necessarily universal. Similar interaction patterns can
be found in various recent extensions of the SM, including
the partial compositeness and extra-dimensional scenarios.
As was shown in [34,35] this arrangement helps relax the
tight restrictions placed by the electroweak precision data on
the vector triplet coupling to the light SM fermions, the bot-
tom quark included. While the study in this paper follows our
tBESS model (and, in the relevant parts, matches the model
considered in [31]), its conclusions will also be partly, or
fully, applicable to a wider class of effective models, e.g.,
with different fermionic sectors.

The question we address in this paper concerns a possible
structure of the interactions between the new vector triplet
and the Higgs boson. Under the considered symmetry, the
Higgs boson coupling to the new vector triplet can differ from
the Higgs couplings to the EW gauge bosons. This splitting
might appear as an unwelcome complication. Nevertheless,
as we will demonstrate in the paper, the ATLAS and CMS
data support it. In particular, the H → γ γ constraint is the
key component of the data that makes it difficult for the no-
splitting scenario to satisfy the LHC measurements.

Using the results of [31,34,35] we also analyze the tree-
level unitarity limits of our model resulting from the scat-
tering of the longitudinal EW gauge bosons for the allowed
values of the Higgs couplings obtained in this work. When

1 We call it the tBESS model to stress its connection to the BESS
model [36–38]. The name modifying “t” suggests a special standing of
the top-quark related doublet in the model.

authors of [31] addressed unitarity questions the discovery
of the Higgs boson was not confirmed yet. Thus, while they
used the correct mass of the Higgs boson in their analysis,
they were lacking any of the experimental input on the Higgs
interactions available to us today. This was compensated for
by the usage of the sum rules. However, one of the used sum
rules imposes the no-spitting condition. The results of our
analysis compel us to abandon this assumption and calculate
the unitarity limits under different conditions.

This paper is organized as follows. In Sect. 2, we intro-
duce the necessary components of the effective Lagrangian
and work out the consequences of the Higgs-to-gauge-boson
coupling splitting. Section 3 is devoted to the calculations
of the constraints for the Higgs-to-gauge-boson couplings.
Particularly, in Sect. 3.1, we set up the framework for the
constraint calculations. In Sect. 3.2, we demonstrate the ten-
sion between the H → γ γ and other LHC measurement
constraints for the model parameters when the universal-
ity of the Higgs-to-gauge-boson couplings is assumed. In
Sect. 3.3, we calculate the best fits and constraints for the
Higgs-to-gauge-boson parameters when the Higgs coupling
to the new vector triplet can differ from the Higgs coupling to
the EW gauge bosons. In Sect. 3.4 we investigate the unitar-
ity limits for our model. Finally, in Sect. 4, we investigate the
applicability of the existing LHC limits on the masses of new
vector resonances to our model. We compare the predictions
of our model for the production cross section of the vector
resonance times its branching ratio for various decay chan-
nels with the existing experimental upper bounds obtained
by the ATLAS and CMS Collaborations. Section 5 presents
the conclusions of the paper.

2 The effective Lagrangian

The effective Lagrangian is built to respect the global
SU (2)L × SU (2)R × U (1)B−L × SU (2)HLS symmetry of
which the SU (2)L × U (1)Y × SU (2)HLS subgroup is also
a local symmetry. The SU (2)HLS symmetry is an auxiliary
gauge symmetry invoked to accommodate the SU (2) triplet
of vector resonances. Beside the scalar singlet h(x) and the
vector triplet Vμ = (V 1

μ, V 2
μ, V 3

μ), the effective Lagrangian
is built out of the SM fields only.

The Lagrangian can be split in three terms2

L = LGB + LESB + Lferm, (1)

where LGB describes the gauge-boson sector including the
SU (2)HLS triplet,

2 While the full formulation of the model can be found in [35], the
definitions of basic quantities used in Eqs. (2) through (5) are, for the
reader’s convenience, summarized in Appendix.
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LGB = 1

2g2 Tr(WμνWμν) + 1

2g′2 Tr(BμνBμν)

+ 2

g′′2 Tr(VμνVμν), (2)

LESB is the scalar sector responsible for spontaneous break-
ing of the electroweak and hidden local symmetries, and
Lferm is the fermion Lagrangian of the model.

Let us express LESB as a sum of two terms, LESB = Lh +
LhV, where

Lh = 1

2
∂μh∂μh − 1

2
M2

h h
2 − ch

M2
h

2v
h3 − c′

h
M2

h

8v2 h
4 (3)

contains the kinetic term and the self-interactions of the
Higgs boson with the mass Mh = 125 GeV and free param-
eters ch and c′

h . Furhter,

LhV = −v2
[

Tr(ω̄⊥)2
(

1 + 2aV
h

v
+ a′

V
h2

v2 + . . .

)

−v2 +αTr(ω̄‖)2
(

1 + 2aρ

h

v
+ a′

ρ

h2

v2 + . . .

)]
(4)

is responsible for the masses of all gauge bosons including the
new vector triplet, and describes their interactions with the
Higgs boson. The interactions are parameterized by the free
parameters aV , aρ, a′

V , a′
ρ, . . .. Below, only the interaction

terms of (4) that are at most linear in h will be considered.3

Terms with higher powers of h, which are not important for
higgs phenomenology at the LHC, can be restored at any
time without affecting our conclusions.

The fermion sector Lferm in its minimal formulation con-
tains the fermionic kinetic terms and the fermion interactions
with the EW gauge bosons as well as terms responsible for the
couplings of the SM fermions to the Higgs boson. While the
EW part is kept identical to the SM one, the interactions of the
Higgs boson with the fermions can assume non-SM values.
Their parameterization is based on the following interaction
Lagrangian:

Lscalar
ferm = −

6∑
k=1

ψ̄k
LUMk

f

(
1+ckf

h

v
+c′k

f
h2

v2 +. . .

)
ψk

R+h.c.,

(5)

where Mk
f is a 2 × 2 diagonal matrix with the masses of

the upper and bottom kth fermion doublet components on its
diagonal, and U = ξ(π) · ξ(π) = exp(2iπτ/v). Note that
when ck = 1,∀k, and the rest of c’s are zeros the scalar res-
onance interactions with fermions imitate the corresponding

3 Although the quadratic terms would be needed if one wished to main-
tain the possibility to eliminate the linear growth in s from the scattering
amplitude ππ → hh and thus improve the unitarity limit for the model.

interactions of the SM Higgs boson. Again, only the inter-
action terms that are at most linear in h will be considered
below.

Possible direct interactions of the fermions with the vector
triplet do not play a role in the calculation of the limits investi-
gated in this paper. Thus, this part of the effective Lagrangian
is left unspecified. Nevertheless, we would like to mention
the example of the setup of this sector where only the third
quark generation couples directly to the vector triplet and
the interaction of the right top quark is disentangled from
the interaction of the right bottom quark. We suggested and
analyzed the effective model with this kind of the fermion
sector in [34,35]. For the sake of completeness, we would
like to point out that in this model the vector resonances do
interact with the SM fermions, including the light ones, even
if there are no direct interactions introduced. This is due to
the mixing between the EW gauge bosons and the vector res-
onance triplet. Of course, the mixing-induced couplings are
suppressed by the transformation matrix elements; they are
proportional to 1/g′′.

The mixing of the gauge fields occurs in the process of
diagonalization of the gauge-boson mass matrix. After gaug-
ing out all six Goldstone bosons the Lagrangian LhV reads

LhV = M(α) + 2aV
v

M(αr)h, (6)

where r = aρ/aV and where

M(α) ≡ 1

2
(X−

μ )† · M2
C(α) · X−

μ + 1

2
(X+

μ )† · M2
C(α) · X+

μ

+1

2
(X0

μ)† · M2
N(α) · X0

μ (7)

is the gauge-boson mass term. Further, X± = (W±
f , V±)T ,

X0 = (W 3, B, V 3)T , and M2
C(α) and M2

N(α) are the
squared-mass matrices of the charged and neutral gauge
bosons, respectively,

M2
C = v2

4

(
(1 + α)g2 −αgg′′
−αgg′′ αg′′2

)
, (8)

M2
N = v2

4

⎛
⎝ (1 + α)g2 −(1 − α)gg′ −αgg′′

−(1 − α)gg′ (1 + α)g′2 −αg′g′′
−αgg′′ −αg′g′′ αg′′2

⎞
⎠ . (9)

The diagonalization process results in the transformation of
the gauge-boson basis, from the mass one to the flavor one,
{Y } → {X}:

X±
μ = O(C) · Y±

μ , X0
μ = O(N ) · Y 0

μ, (10)

where Y± = (W±
m , ρ±)T , Y 0 = (A, Z , ρ0)T . Note that we

use V a
μ to denote the vector resonance components in the
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flavor basis and ρa
μ for the vector resonance components in

the mass basis.4

In the limit MW± , MZ 
 Mρ0 , equivalent to the condition
g,G 
 √

αg′′, the mixing matrices read

O(C) =
(

1 −g/g′′
g/g′′ 1

)
, (11)

O(N ) =
⎛
⎜⎝
g′/G g/G −g/g′′
g/G −g′/G −g′/g′′

2 gg′
Gg′′

g2−g′2
Gg′′ 1

⎞
⎟⎠ . (12)

In the same limit, the next-to-leading order approximations
of the gauge-boson masses read

MW± = vg

2

(
1 − g2

2g′′2

)
, (13)

Mρ± =
√

αvg′′

2

(
1 + g2

2g′′2

)
, (14)

and

MZ = vG

2

[
1 − (g2 − g′2)2

2g′′2G2

]
, (15)

Mρ0 =
√

αvg′′

2

(
1 + G2

2g′′2

)
. (16)

The leading order approximation for the partial width of the
ρ decay to the EW gauge bosons is

�(ρ0 → W+W−) = �(ρ± → W±Z) = M5
ρ

48πv4g′′2 . (17)

The interactions of the gauge bosons with the Higgs can
be read off from LhV in the mass basis

2aV
v

M(αr)h = 2h

v

[
1

2
cZ M

2
Z ZμZ

μ + cW M2
WW+

μ W−μ

+ 1

2
cρ0 M2

ρ0ρ
0
μρ0μ+cρ±M2

ρ±ρ+
μ ρ−μ

+ cWρ±MWMρ±(W+
μ ρ−μ + h.c.)

+ cZρ0 MZMρ0 Zμρ0μ

]
(18)

with the anomalousness factors5 cYY ′ . If the flavor basis split-
ting factor r equals 1 (aρ = aV ) then the mass basis couplings
cYY ′ follow a simple pattern

cZ = cW = cρ0 = cρ± = aV , cZρ0 = cWρ± = 0. (19)

4 We also used the subscripts m and f to distinguish the components
of W± fields in the two bases. We do not use the subscripts if the choice
of the basis is obvious from the context.
5 If Y = Y ′ then a single letter subscript will be used, e.g. cYY → cY .

Fig. 1 The mass basis splitting factors ζXY as functions of the splitting
r = aρ/aV . The graphs are plotted for Mρ0 = 1.5 TeV and g′′ = 15

For a more general situation, aρ �= aV , the relations of
cYY ′’s to aV and aρ become more intricate. Let us introduce
the mass basis splitting factors ζYY ′ such that

cYY ′ = aV ζYY ′ . (20)

Then

ζYY ′(α, r) = OY1Y (α) · [M2
C,N(αr)]Y1Y2 · OY2Y ′(α)

MY (α)MY ′(α)
(21)

The ζYY ′ factors for the individual gauge bosons are summa-
rized in Table 1. There, we have introduced auxiliary vari-
ables√
DN = 4

v2

(
M2

ρ0 − M2
Z

)
, (22)

√
DC = 4

v2

(
M2

ρ± − M2
W

)
, (23)

and

kN = [1 − 4α(g2 − g′2)2/DN ]1/2, (24)

kC = (1 − 4αg4/DC )1/2. (25)

Note that kN ,C = 1 − O(x4) where x = g/(
√

αg′′) ≈
MW /Mρ .

Figure 1 helps to understand how the flavor basis splitting,
r = aρ/aV , translates into the anomalous factors cYY ′ . The
essential role in this issue is played by the ζ factors. There-
fore, the graphs in the figure depict the dependences of ζ ’s
on r . There, the plots of ζW,Z are almost perfect horizontal
lines at 1 which complies with ζW,Z = 1 − (1 − r)O(x4).
On the other hand, ζρ±,ρ0 = r + (1 − r)O(x4) suggests the
straight line of the 45 degree slope for ζρ±,ρ0(r). Finally, the
ζ factors of the mixed interaction terms are negligible when
compared to the other ζ ’s, which is in agreement with the
finding that ζWρ±,Zρ0 = (1 − r)O(x2).

While all ζ ’s depend on g′′ and Mρ these dependences
are very weak. When changing (g′′, Mρ) from (10, 1 TeV)
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Table 1 The mass basis
splitting factors ζYY ′ (α, r) for
the individual gauge bosons Y ,
Y ′ ∈ {W±, ρ±, A, Z , ρ0}

ζYY ′ (α, r) ρ0 Z A ρ± W±

W± 0 0 0 g2
√

α
DC

(r − 1)
1+r+(1−r)kC

2

ρ± 0 0 0 1+r−(1−r)kC
2

A 0 0 0

Z (g2 − g′2)
√

α
DN

(r − 1)
1+r+(1−r)kN

2

ρ0 1+r−(1−r)kN
2

Fig. 2 The non-diagonal splitting factors ζWρ± (left panel) and ζZρ0

(right panel) as functions of the splitting r = aρ/aV . The solid lines cor-
respond to (g′′, Mρ) = (10, 1 TeV), the dashed lines to (15, 1.5 TeV),
and the dotted lines to (25, 2 TeV)

to (25, 2 TeV), ζW and ζZ vary no more than by about 10−4

for −3 ≤ r ≤ 3. The same conclusion applies to ζρ± and ζρ0 .
The actual size of ζWρ± and ζZρ0 as well as their dependence
on g′′ and Mρ can be seen in Fig. 2. Consequently, for many
phenomenological considerations the relations

cZ = cW = aV , cρ0 = cρ± = aρ = raV ,

cZρ0 = cWρ± = 0,
(26)

represent satisfactory approximations over quite a large
region of r values and for all relevant values of g′′ and Mρ .

Now, let us turn our attention to the Higgs-to-gauge-boson
couplings. Beside being proportional to the splitting factors

the couplings are amplified by the (squares of) gauge-boson
masses. Namely,

ghWW = aV ζWM2
W , ghZ Z = aV ζZ M

2
Z/2, (27)

ghρ+ρ− = aV ζρ±M2
ρ± , ghρ0ρ0 = aV ζρ0 M2

ρ0/2, (28)

ghWρ± = aV ζWρ±MWMρ± , ghZρ0 = aV ζZρ0 MZMρ0 .

(29)

Then

ghWW

ghZ Z
= 2

ζW

ζZ

M2
W

M2
Z

= 2[1 + (r − 1) O(x4)] M2
W

M2
Z

. (30)

Here, the whole dependence on new physics is contained
in the O(x4) term. Thus, the splitting can modify the SM
expectation for the ratio (30) only very slightly. On the other
hand, owing to the new vector triplet’s large mass new physics
becomes manifest the most in the Higgs interaction with the
new vector triplet as can be seen in

ghρ+ρ−

ghWW
= ζρ±

ζW

M2
ρ±

M2
W

≈ r
M2

ρ±

M2
W

, (31)

ghρ0ρ0

ghZ Z
= ζρ0

ζZ

M2
ρ0

M2
Z

≈ r
M2

ρ0

M2
Z

. (32)

Note that while the vector mass affects the ratios significantly
their dependences on g′′ are completely ignorable. In Fig. 3,
the ratios ghρ+ρ−/ghWW and ghρ0ρ0/ghZ Z as functions of r
and for various vector resonance masses are depicted.

If the splitting takes place new physics also manifests via
the emergence of two new vertices, hW±ρ± and hZρ0, not
present either in the SM or in the LagrangianLhV when aρ =
aV . Even though the new coupling strengths lag far behind the
strengths of the hρ+ρ− and hρ0ρ0 couplings their presence
would introduce new phenomena. The relative strengths of
the hW±ρ± and hZρ0 couplings with respect to the hWW
and hZ Z couplings, respectively, are given by
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Fig. 3 The relative strengths of the hρ+ρ− and hρ0ρ0 couplings with
respect to the hW+W− and hZ Z couplings, respectively, as functions
of the splitting r = aρ/aV . The solid lines correspond to Mρ = 1 TeV,
the dashed lines to 1.5 TeV, and the dotted lines to 2 TeV

ghWρ

ghWW
= ζWρ

ζW

Mρ±

MW
= (r − 1) O(x), (33)

ghZρ

ghZ Z
= 2

ζZρ

ζZ

Mρ0

MZ
= (r − 1) O(x). (34)

Note that while these ratios are affected significantly by g′′
their dependences on the vector mass are completely ignor-
able. In Fig. 4, the ratios ghWρ±/ghWW and ghZρ0/ghZ Z as
functions of r and for various g′′ values are depicted.

The splitting ofaρ fromaV will also cause cW �= cZ . Thus,
in principle, r affects the model prediction for the custodial
symmetry protected rho parameter. Fortunately, the effect is
negligible for a wide range of r values. To demonstrate it we
inspect the prediction for the ratio λWZ ≡ cW /cZ

λWZ = ζW

ζZ
= 1 + (r − 1) O(x4). (35)

Numerically, our model predicts |λWZ − 1| < 6 × 10−5

at tree level when −3 ≤ r ≤ 3, 10 ≤ g′′ ≤ 25, and
Mρ ∈ (1, 2) TeV. The current experimental limit is λWZ =
0.88+0.10

−0.09 [39].

Fig. 4 The relative strengths of the hWρ± and hZρ0 couplings with
respect to the hW+W− and hZ Z couplings, respectively, as functions
of the splitting r = aρ/aV . The solid lines correspond to g′′ = 10, the
dashed lines to g′′ = 15, and the dotted lines to g′′ = 25

3 Limits on the Higgs-related parameters

3.1 Relevant measurements

In this paper, we would like to identify the restrictions that the
current LHC measurements provide for the free parameters
of the effective Lagrangian under consideration. While the
LHC cannot compete yet with the low-energy data from the
LEP, SLC, and Tevatron in setting a limit on the value of g′′,
it certainly plays the key role in restricting the Higgs-related
couplings of the EW gauge bosons, fermions, and the vector
resonance.

In [35], we calculated the indirect limits on g′′ and other
free parameters of the tBESS phenomenological Lagrangian,
a special case of the Lagrangian considered here, fitting the
observables ε1, ε2, ε3, �b(Z → bb̄+X), and BR(B → Xsγ )

under the assumption aV = aρ = 1 and Mρ = 1 TeV
and 2 TeV. In addition to the setup investigated here, the
tBESS model contains three independent direct interactions
of the vector triplet with fermions: one with the left top-
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bottom quark doublet, another with the right top quark, and
yet another with the right bottom quark. The analysis of the
limits lead to the conclusion about the preference of higher
g′′ values, namely g′′ > 12 at 95% CL when combined with
preferred values of other free parameters. Further, the anal-
ysis seemed to support the assumption of some models of
partial fermion compositeness that the new strong physics
resonances couple stronger to the right top quark than to the
right bottom quark.

The requirement that our Lagrangian be treatable pertur-
batively bounds the values of g′′ from above by the naive

perturbativity limit, g′′/2
<∼ 4π , implying g′′ <∼ 25. If we

took this value as the final say in this issue it would not be
reasonable to use g′′ higher than about 20 in our calculations.
However, one can imagine that a more rigorous analysis of
the perturbativity limit could somehow modify its value one
way or the other.

The limits on the Higgs-related couplings of the studied
Lagrangian can be obtained from the existing measurements
of the LHC experiments. In this paper, we use constraints
from the ATLAS+CMS Collaborations analysis [39] based
on the combination of six decay channels, namely H → γ γ ,
Z Z∗,WW ∗,bb̄, τ τ̄ andμμ̄, and of five production processes,
namely gluon and vector boson fusions, and associated pro-
ductions with W , Z , or a pair of top quarks. In our analysis,
we assume that there is only one SM-like Higgs boson state
at about 125 GeV of a negligible decay width.

3.1.1 The interim framework

In [39], the combined ATLAS and CMS measurements were
utilized to calculate fits and limits on the free kappa param-
eters of the interim framework introduced in [40]. In this
framework, kappas parameterize possible deviations of the
Higgs interactions from their SM expectations. The kappas
are introduced so that the squared free parameters κi scale the
SM Higgs production cross sections σ SM

i and/or the partial
Higgs decay widths �SM

i associated with the i th SM parti-
cle. When κi = 1 then the best available SM predictions for
σi · BRi are recovered so that for the true SM Higgs boson
no artificial deviations caused by ignored higher-order cor-
rections are present.

The particular interim framework scenario that suits our
effective Lagrangian is that of Section 6.1 of [39]. In this
scenario, it is assumed that there are no non-SM decays of
the Higgs and that the branching ratio of invisible and/or
undetected decay products is zero. New particles in loops
are allowed. Assuming that κc = κt , κs = κb, and κμ = κτ

there are generally seven free parameters in this scenario:
five tree-level kappas (κW , κZ , κt , κb, κτ ) and two loop-level
kappas (κg and κγ ). The loop-level kappas are associated
with the higher-order effective vertices Hgg and Hγ γ .

Table 2 The experimental limits for κ’s that will be fitted to find the
restrictions and the best values of aV , aρ , and ct . Note that the kappa
limits were obtained under the assumption that κt > 0

Parameter ATLAS + CMS Limits

κW 0.87 ± 0.13

κZ −0.98 ± 0.10

κt 1.40 ± 0.24

|κγ | 0.87 ± 0.14

|κg | 0.78 ± 0.13

We will derive the limits on aV , aρ , and ct fitting the
experimental values of kappas from Table 17 of [39] (the
BBSM = 0 part). The kappa values were obtained assuming
κt > 0 and using the following input parameters for the cal-
culation of the SM quantities6 [41]: MW = 80.398 GeV,
MZ = 91.1876 GeV, GF = 1.16637 × 10−5 GeV−2,
Mt = 172.5 GeV, Mh = 125.5 GeV. There are five kappas
relevant for calculations of our limits: κγ , κW , κZ , κg , and
κt . The remaining kappas, κb and κτ do not depend on aV ,
aρ , or ct , at leading order.

The experimental uncertainties on kappas quoted in [39]
are asymmetric. In our analysis, we will simplify the situation
by equalizing both sides of the uncertainty to the one that is
bigger. In addition, the 1-sigma interval of κZ consists of
two disconnected regions. In this case, we take into account
only the region where the best-fit value of κZ is placed. Thus
modified experimental limits on κ’s that will be used in our
calculations are shown in Table 2.

3.1.2 Fitting kappas with the effective Lagrangian
parameters

To restrict the free Higgs parameters via the fit to kappas the
relations between the related kappas and ci ’s have to be estab-
lished. For that purpose we use some of the kappa defining
quantities utilized in fitting the experiment and equate them to
the predictions of our effective theory. With the input param-
eters listed above we obtain

κ2
W ≡ �WW ∗

�SM
WW ∗

= c2
W , κ2

Z ≡ �Z Z∗

�SM
Z Z∗

= c2
Z ,

κ2
t ≡ σt t̄ H

σ SM
t t̄ H

= c2
t , κ2

g ≡ σggF

σ SM
ggF

= c2
t , (36)

where σt t̄ H is the cross section of associated production of
the Higgs boson with a pair of top quarks, σggF is the gluon-
fusion Higgs production cross section, and � j j ’s are the par-
tial Higgs decay widths to the dibosons, j j = WW ∗, Z Z∗.
The index “SM” denotes the SM values.

6 Here we quote only the values of those input quantities that will also
be needed as inputs in the calculations in this paper.

123



651 Page 8 of 17 Eur. Phys. J. C (2016) 76 :651

As is well known, the H → γ γ decay in the SM occurs
at the loop level only. In the SM, two dominant contributions
originate from the Feynman diagrams with the W boson and
top quark loops. Beyond the SM the anomalous couplings of
the Higgs boson to W and top quark are parameterized by
the factors cW and ct , respectively. In addition, the H → γ γ

decay can be modified by the extra diagram with the ρ±
resonance in the loop. Thus, our effective theory predicts

κ2
γ ≡ �γγ

�SM
γ γ

=
[

αEM(g′′, Mρ)

αSM
EM

]2 [
cγ (cW , ct , cρ±)

cSM
γ

]2

,

(37)

where cSM
γ is the SM coupling of the Hγ γ effective vertex

and cγ (cW , ct , cρ±) is its anomalous analog. Further, αEM is
the electromagnetic coupling constant which, in the case of
the effective Lagrangian and for the given set of the input
parameters [41], depends on new physics. The leading order
approximation that dominates the ratio of the squared αEM’s
when Mρ � MZ reads

α2
EM(g′′)
(αSM

EM)
2 = 1[

1 + 16
√

2GFM2
W (1 − M2

W /M2
Z )/g′′2

]2 .

(38)

Numerically, when g′′ varies between 10 and 25 then
(αEM/αSM

EM)2 changes from 0.992 to 0.999. Thus, this effect
will be ignored in our further analysis. Also, note that in the
leading order the ratio is not affected by the mass of the vector
resonance.

The contribution of the ρ± resonance to h → γ γ mim-
ics the contribution of W±; the only difference comes from
different masses and couplings of the vector particles. Thus,
considering the principal contributions only—from the top,
W , and ρ loops—cγ reads

cγ = 1

8

[
ct NCq

2
t Fferm(xt ) + cW Fvec(xW )

+ cρ±Fvec(xρ)
]
, (39)

where NCq2
t = 4/3, xi = 4M2

i /M2
h , and

Fferm(x) = −2x[1 + (1 − x) f (x)], (40)

Fvec(x) = 2 + 3x + 3x(2 − x) f (x), (41)

where

f (x) =
{

arcsin2(1/
√
x), x ≥ 1,

− 1
4

[
ln

(
1+√

1−x
1−√

1−x

)
− iπ

]2
, x < 1.

(42)

For the given input values we get Fferm(xt ) = −1.38,
Fvec(xW ) = 8.34, Fvec(x1TeV) = 7.01, and Fvec(x2TeV) =
7.00. Then

cγ (Mρ = 1–2 TeV) = −0.23 ct + 1.04 cW + 0.88 cρ±

= −0.23 ct + aV [1.04 ζW (r)

+0.88 ζρ±(r)]. (43)

Note that, for the displayed decimal places, the numerical
coefficients in this formula are not sensitive to varying the ρ

mass between 1 and 2 TeV.
The SM value of cγ is obtained when ct = cW = 1 and

cρ± = 0: cSM
γ = 0.81.

The effective Lagrangian predictions for observables do
not change under the simultaneous sign change of all ci
parameters. Therefore, a sign of one of ci ’s can be fixed
without losing physically distinguishable configurations of
theory. Owing to that we choose ct > 0 throughout the paper.

3.2 Failure of the aV = aρ scenario

Before performing the full fit on κγ , κW , κZ , κg , and κt
with three free parameters aV , aρ, ct let us provide a sim-
ple demonstration that the no-splitting scenario, aV = aρ ,
has a hard time to satisfy the experimental restrictions on the
kappas under consideration. Applying (37) to this situation
we obtain

|κγ | = |2.37 aV − 0.28 ct |. (44)

Using the experimental restriction on κγ (see Table 2) the
Eq. (44) results in the allowed region comprised of two par-
allel stripes crossing the aV −ct plane as shown in Fig. 5. Let
us recall that we work under the assumption ct > 0 which
reduces the aV − ct plane to a half-plane.

In addition, the graphs in Fig. 5 display rectangular inter-
sections of the experimentally allowed regions for aV and ct .
The limit on aV is derived by fitting κ2

W and κ2
Z while tak-

ing into account the no-splitting relations cW = cZ = aV .
The relevant χ2-function consists of the last two terms
of (46). The obtained fit reads |aV | = 0.93 ± 0.08 where
the absolute value originate in the fitting of squares of vari-
ables. Analogically, the ct constraint is obtained by fitting κ2

t
and κ2

g . The corresponding χ2-function contains the second
and third terms of (46). The obtained best value of |ct | is
ct = 0.85+0.11

−0.12.
The graphs in Fig. 5 indicate a tension between the h →

γ γ limits and the combined κW −κZ and κt −κg restrictions
in the no-splitting version of our effective Lagrangian. In
Sect. 3.3, we will assess if and to what extent this tension can
be removed by allowing aV and aρ to become independent.

3.3 Full fit analysis

Assuming that aV and aρ are free independent parameters of
the effective Lagrangian under consideration, we calculate
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Fig. 5 The 1-sigma (dashed) and 2-sigma (solid) allowed regions (blue
stripes) in the aV − ct plane derived from the experimental restriction
on κγ under the no-splitting assumption. The orange rectangular areas
correspond to the 1-sigma and 2-sigma allowed regions for aV and ct
obtained by separate fitting of κ2

W , κ2
Z and κ2

t , κ2
g , respectively. The star

indicates the SM values

limits on aV , aρ , and ct and search for their best values min-
imizing the χ2-function built out of the relevant measured
observables and their predictions. We use the experimental
values of κW , κZ , κt , κγ , and κg shown in Table 2. Theoreti-
cal predictions of the kappas in terms of cZ , cW , cρ± , and ct
of the Lagrangian interaction term (18) and (5), respectively,
are given in (36) and (37). The dependence of cγ on cW , cρ± ,
and ct in (37) is given by (39). The cZ , cW , and cρ± are, in
turn, related to aV and aρ via (20).

In the interim framework the squares of kappas rather than
the kappas themselves are defined and related to measured
observables. Therefore, our theoretical predictions are also
related to squared kappas and the best fit should be sought
for minimizing the following χ2-function:

χ2(aV , aρ, ct ) =
{

κ2
γ − [cγ (aV , aρ, ct )/cSM

γ ]2

σ̃γ

}2

+
∑
i=t,g

(
κ2
i − c2

t

σ̃i

)2

+
∑

i=W,Z

[
κ2
i − c2

i (aV , aρ)

σ̃i

]2

, (45)

where σ̃i ’s are the experimental errors for κ2
i ’s. The fitting

of squares introduces degeneracy of solutions caused by the
insensitivity of χ2 to the relative signs between the kappas
and theory parameters. Recall that ct > 0 by assumption.

If we approximate cW = cZ = aV and c±
ρ = aρ the

Eq. (45) can be simplified without any significant impact on
the best-fit values as can be inferred from our conclusions
obtained in Sect. 2 (viz., the Eq. (26)). Then, substituting
(43) into (45) we obtain

χ̃2(aV , aρ, ct ) =
[

κ2
γ − (1.28 aV +1.09 aρ − 0.28 ct )2

2κγ σγ

]2

+
(

κ2
t − c2

t

2κtσt

)2

+
(

κ2
g − c2

t

2κgσg

)2

+
(

κ2
W − a2

V

2κWσW

)2

+
(

κ2
Z − a2

V

2κZσZ

)2

. (46)

It is obvious that χ̃2 has degenerate minima. If the χ̃2-
function assumes its minimum value χ̃2

min for some triplet
aV , aρ, ct then also χ̃2(−aV ,−aρ,−ct ) = χ̃2

min. Neverthe-
less, by fixing ct > 0 we eliminate half of the degenerate
minima.

A simple inspection of the Eq. (46) implies that χ̃2 can be
minimized when, at the same time, ct assumes the value of
“weighted average” of κt and κg , |aV | assumes a “weighted
average” of κW and κZ , and aρ sets to zero the first term
with the before-obtained values of ct and aV substituted in.
Zeroing the first term of (46) amounts to solving a quadratic
equation in aρ . Thus, there are generally two solutions for
(aV , ct ) and two solutions for (−aV , ct ), i.e. four solutions
in total. Since the first term of Eq. (46) has zero contribution
to χ̃2

min and because the following two terms depend only on
ct and two last terms only on |aV |, all four solutions result
in the same value of χ̃2

min.
In particular, by fitting the kappa values of Table 2 we

get four minimizing triplets of {aV , aρ, ct } with the same
minimal values of χ̃2, χ̃2

min = 4.17. Having d.o.f. = 5−3 =
2, the value corresponds to the hypothesis backing of 12%.
The values of the degenerate best-fit triplets along with the
corresponding parameter constraints at 20, 68, and 95% CL
are shown in Table 3.

The graphic representation of the best-fit values is depicted
in Fig. 6. There, the two-dimensional cut of the ct −aρ −aV
allowed regions by the ct = 0.85 plane is shown. Note that
0.85 is the best-fit value of ct . The contours depicted in the
graph correspond to the 68 and 95% CL regions in the ct −
aρ − aV space. The splitting factors r for the best-fit points
A, B, C, and D have the values −0.09, −1.81, −0.56, and
−2.27, respectively. The straight line indicates the points of
the no-splitting scenario, aρ = aV . The full 95% CL region
in the ct −aρ −aV space around the best-fit point A is shown
in Fig. 7. The allowed regions around the best-fit points B,
C, and D are very similar in shape and size to the region A.

There is a good reason why aV aρ < 0 for all four best-fit
points. It is because the combined contributions of aV and
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Table 3 The best-fit values of
ct , aV , and aρ corresponding to
the four minima of the
χ̃2-function (46) with the
constraints at 20% CL
(1-sigma), 68% CL, and
95% CL. All minima (labeled as
A, B, C, and D) have the same
backing of 12%

Parameter A B C D

ct

20% CL +0.11
−0.12

+0.11
−0.12

+0.11
−0.12

+0.11
−0.12

68% CL 0.85 +0.19
−0.25 0.85 +0.19

−0.25 0.85 +0.19
−0.25 0.85 +0.19

−0.25

95% CL +0.27
−0.43

+0.27
−0.43

+0.27
−0.43

+0.27
−0.43

aV

20% CL +0.08
−0.08

+0.08
−0.08

+0.08
−0.08

+0.08
−0.08

68% CL 0.93 +0.14
−0.16 0.93 +0.14

−0.16 −0.93 +0.16
−0.14 −0.93 +0.16

−0.14

95% CL +0.20
−0.25

+0.20
−0.25

+0.25
−0.20

+0.25
−0.20

aρ

20% CL +0.16
−0.17

+0.17
−0.15

+0.17
−0.16

+0.16
−0.17

68% CL −0.08 +0.29
−0.34 −1.68 +0.34

−0.28 0.52 +0.33
−0.29 2.11 +0.28

−0.34

95% CL +0.43
−0.58

+0.58
−0.40

+0.58
−0.44

+0.41
−0.58

Fig. 6 The two-dimensional cut of the three-dimensional region of the
allowed values of parameters aV , aρ , and ct when ct is fixed at its best
value of 0.85. The dots indicate the best-fit values of the fit. They are
labeled as A, B, C, and D in correspondence with Table 3. The dashed
and solid contours show 68% CL and 95% CL limits. The straight line
indicates the points of the no-splitting scenario, aρ = aV

ct to |cγ |—the values of aV and ct being determined by the
other terms of the χ2-function (46)—overshoot the optimal
value of |cγ |. Since the aV contribution dominates the ct
contribution, the aρ has to have a sign opposite to the sign of
aV in order to counterbalance the excess. In addition, since
we optimize |cγ |, rather than cγ itself, aρ resulting in the
optimal cγ plays as well as aρ resulting in −cγ . Thus, we
end up with two aρ’s for each of the two best-fit values of
aV .

Fig. 7 The 95% CL allowed region of the parameters aV , aρ , and ct of
the χ̃2 minima A and the region projections to two-parameter planes.
Dots indicate the best-fit value and its projections to the planes

It is not a difficult exercise to impose the no-splitting
condition, aρ = aV , on χ̃2 of (46) in order to obtain a
more rigorous quantification and justification of the conclu-
sion we have reached in Sect. 3.2. The fitting of χ̃2 results
in two minima of unequal depths. This asymmetry results
from the sensitivity of χ̃2 on the relative sign of aV and
ct in the κγ term. The global minimum assumes the value
χ̃2

min = 21.3 which for d.o.f. = 5 − 2 = 3 corresponds
to the hypothesis backing of 0.9%. The minimum resides at
aV = 0.55 ± 0.05 and ct = 0.89+0.10

−0.11. The local minimum
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Fig. 8 The fit under the no-splitting condition and the related CL
contours. The multiply encircled red area corresponds to the allowed
regions of 68, 95, and 99% CL. The dot inside the area indicates the
best-fit value. The triangle indicates the position of the second (local)
minimum of the χ2-function. The star indicates the SM values of the
fitting parameters. For comparison, the graph is interlaced with the rem-
iniscence of Fig. 5 (gray regions) where the partial limits obtained by a
cruder approach were shown

at (aV , ct ) = (−0.33, 0.81) amounts to the value higher by
�χ̃2 = 10.7 above the global minimum.

The fit under the no-splitting condition and the related
CL contours are depicted in Fig. 8. Besides, the graph con-
tains reminiscence of Fig. 5 where the limits obtained by the
cruder approach of Sect. 3.2 were shown. From a naive visual
inspection we would say that the results of the cruder anal-
ysis do not contradict the more sophisticated fit performed
here. Not only the position of the minimum coincides with
the guessed expectation based on Fig. 5, but the obtained
hypothesis backing also confirms our qualitative conclusion
of Sect. 3.2 about a low support of the data for the no-splitting
scenario.

Having the rho-to-Higgs coupling disconnected from the
Higgs interactions with the EW gauge bosons and acknowl-
edging that aV = ct = 1 is compatible with the experiment,
one might wonder how successful the parameter aρ alone
would be in accommodating the existing data if aV and ct
were kept on their SM values. This simple exercise amounts
to minimizing the χ̃2-function (46) when aV = ct = 1.
There are two minima, at aρ = −0.12 and aρ = −1.72,
both with χ2

min = 7. Since d.o.f. = 5 − 1 = 4 our effec-
tive Lagrangian with the SM couplings of the Higgs boson
to the EW gauge bosons and top quark has 13.8% backing
by the data. Raising χ2 above its minimum by 1 the 1-sigma

(68% CL) constraints read +0.12
−0.14 and +0.14

−0.12 for the former and
latter aρ best values, respectively. Hence, if we had a theoret-
ical reason to demand aV = ct = 1 the experimental support
for the vector triplet of particular aρ values would be as good
as in the model with loose aV and ct .

There are two kappas in the combined ATLAS+CMS
measurements [39] not utilized in our analysis: κτ ≡
�τ+τ−/�SM

τ+τ− and κb ≡ �bb̄/�SM
bb̄

. In the approximation

used in this paper, κτ is solely related to cτ , κ2
τ = c2

τ . Thus, it
has no impact on the fits of other parameters. Regarding κb,
while it shares the dependence on cb with κg , its effect on the
Higgs production via gluon–gluon fusion is negligible. Con-
sequently, we had dropped the κb term from the χ2-function.

On the other hand, the effective couplingκZγ ≡ �Zγ /�SM
Zγ

has a similar structure as κγ : it depends on aV , aρ , and ct
parameters at leading order. Thus, it has a potential to affect
our fits significantly. Unfortunately, the existing measure-
ments restrict κZγ very poorly [42]. Because of that, neither
κZγ was included in the χ2-function (45).

3.4 Unitarity limits for the preferred values of the Higgs
couplings

In this Section, we would like to determine how the usabil-
ity of our phenomenological Lagrangian is restricted by the
unitarity limits when the data preferred Higgs couplings
obtained in Sect. 3.3 are considered.

Opposite to the SM, our effective Lagrangian is not renor-
malizable and its applicability is limited to a finite range of
energies, not exceeding the point where scattering amplitudes
violate unitarity. Considering the low-energy phenomenol-
ogy of underlying new strong physics it is natural to demand
that its successful effective description does not break down
below the scale significant to these new interactions. Thus,
the results of the investigation of the unitarity limits could be
suggestive either of the new physics scale or, in a less for-
tunate case, of the defects in our Lagrangian. The least we
can, and need, to deduce from such an analysis is the range
of usability of the effective Lagrangian we play with.

The unitarity of our Lagrangian was investigated in detail
in our previous publications [34,35]. Our analysis was based
on the scattering amplitudes of the longitudinal EW gauge
bosons to the EW gauge bosons. We studied the unitarity of
the amplitudes using the Equivalence theorem approximation
where the concerned amplitudes were replaced by the pionic
scattering amplitudes of the non-linear sigma model. While
the approximation corresponds to the limit g, g′ → 0 (no
pion to EW gauge-boson vertices), the exchange of the Higgs
and vector resonances was included.

Even more thorough investigation of the unitarity limits
of the same (in relevant sectors) effective Lagrangian was
performed in [31]. Beside the elastic ππ → ππ ampli-
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tudes, authors of [31] analyzed the unitarity limits implied by
the non-elastic ππ → hh, ρLρL , hρL processes. Note that
wherever applicable the conclusions of [31] coincide with our
conclusions [34,35]. In the following, we utilize the findings
of these papers for calculation of the tree-level unitarity lim-
its for our Lagrangian. Skipping details of the very standard
calculations, below we summarize and discuss the obtained
results.

In Fig. 9, we show the ππ → ππ tree-level unitarity
limits.7 In our case, the ππ → ππ scattering amplitudes
depend only on one of the three Higgs couplings investi-
gated in this paper, namely |aV |. Besides, the amplitudes also
depend on Mρ and g′′. There are three graphs in Fig. 9 cor-
responding to three different masses of the vector resonance:
Mρ = 1, 1.5, and 2 TeV. In each graph, there are regions
shown where unitarity holds up to � = 3 TeV, 4 TeV,
and 5 TeV. The regions are superimposed by the experimen-
tally allowed 2-sigma interval for aV obtained in Sect. 3.3:
0.77 ≤ aV ≤ 1.09, the best fit being aV = 0.93.

We can see that for the 1 TeV vector resonance unitarity
holds up to at least � = 3 TeV when aV and g′′ assumes
allowed values,8 excluding a small region where g′′ → 12
and aV → 1.1. When raising Mρ , the region where unitarity
holds shrinks toward higher g′′. At the same time, it slightly
shifts toward smaller aV .

If we dropped the vector resonance from our effective
Lagrangian the Higgs resonance alone could unitarize the
elastic ππ amplitudes up to some �h that depends on aV ;
for example, if aV assumes its best value of 0.93 the tree-
level unitarity holds up to �h = 4.6 TeV. Perhaps, it might
also be worth mentioning that �h → ∞ when aV = 1.
One wonders how adding the vector triplet to the Higgs-only
setup changes the �h limit. To assess it we plot the graph
in Fig. 10. There, for given aV and Mρ , the values of g′′ are
divided into two intervals: the one where � < �h(aV ), and
the other, where � > �h(aV ). We can see in the graph that
if aV ≥ 1 adding the vector resonance will always lower the
unitarity limit. On the other hand, if aV < 1 there is always
g′′

0 such that for all g′′ ≥ g′′
0 the unitarity limit gets bigger.

In general, the ππ scattering amplitudes are plagued with
the linear growths in s. Any added ingredient or assumption
that removes the linear growths has a good chance to improve
unitarity limits. It can be shown [31] that assuming special
relations among the parameters of our Lagrangian (the sum
rules) or adding new pseudo-scalar and/or axial-vector fields
to our Lagrangian can eliminate the linear terms from the

7 All our calculations use the �ρ = 0 approximation. This is justifiable
as long as Mρ is far below the unitarity limit in terms of the ρ width.
8 Recall that 12 ≤ g′′ ≤ 8π .

Fig. 9 The tree-level unitarity constraints from ππ → ππ in the aV −
g′′ plane for different masses of the vector triplet, Mρ = 1, 1.5, and
2 TeV in the clockwise direction. The shaded areas indicate regions
where the unitarity holds, up to 3, 4, and 5 TeV. Two horizontal (solid
red) lines show allowed interval of values of aV at 2-sigma, the dot-
dashed line is the best-fit value aV = 0.93. The blue solid curve plots
the sum rule (47). The upper axis labels show the vector resonance
decay widths corresponding to g′′’s of the bottom axis
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Fig. 10 The regions where the unitarity limit of our model
(aV , g′′, Mρ ) gets bigger (darker area) and smaller (lighter area) than
the unitarity limit �h(aV ) of the Higgs-only model of a given value aV .
The regions are depicted for three different masses Mρ = 1, 1.5, and
2 TeV. Two vertical (solid red) lines show allowed interval of values
of aV at 2-sigma, the dot-dashed line is the best-fit value aV = 0.93

scattering amplitudes. For example, the relation

a2
V + 3

4
α = 1 (47)

removes the linear dependence on s from the ππ → ππ

amplitude. The sum rule (47) links aV with g′′ and Mρ via
α = [2Mρ/(vg′′)]2. The resulting sets of (aV , g′′) points for
given Mρ’s are also shown in Fig. 9. Obviously, the vector
resonance satisfying the existing experimental limits is able
to follow the sum rule if its mass stays close or below 1.5 TeV.

It is not possible to satisfy all sum rules resulting from the
elastic and inelastic ππ scatterings at the same time [31]. In
addition, the sum rule motivated by the ππ → hρL ampli-
tude reads

aV = aρ. (48)

Unfortunately, this is the no-splitting condition not pre-
ferred by the data. However, the unitarity-based conclusions
reached in [31] rely on the assumption (48). Thus, the results
obtained in our analysis call for the investigation of the inelas-
tic unitarity limits when aV �= aρ . However, this is beyond
the scope of this paper and currently work in progress.

4 The vector resonance mass limits and the upper
bounds on σ( pp → ρ + X) × BR

Undeniably, the search for new vector (and other) reso-
nances has its rightful and important place in the ATLAS
and CMS Collaboration’s activities. While no discovery has

been made, the direct exclusion limits constantly improve.
Unfortunately, the obtained limits are strongly model and
parameter dependent. No wonder that the mass exclusion
limits found in the literature cover only some of the interest-
ing cases. To the best of our knowledge, there are no exclusion
mass limits applicable to the vector resonance of the model
studied in this paper.

One of the crucial factors on which the exclusion mass
limit depends is the value of the vector resonance gauge cou-
pling g′′. As we saw in Fig. 9, in our model, the superposi-
tion of the unitarity limits over the experimentally preferred
region 0.77 ≤ aV ≤ 1.09 suggests that considering g′′ below
about 10 is not well justified. We cannot rely on the predic-
tions of our Lagrangian with experimentally allowed values
of aV when g′′ = O(1). This is not of great concern to us if
the motivation for our model stems from strongly interacting
physics. Independently of this restriction, if we narrowed our
considerations to the tBESS interaction pattern of the vec-
tor resonance to fermions the low-energy limit from the EW
precision measurements reads g′′ ≥ 12 at 95% CL [35]. This
is an additional motivation for considering g′′ values above
10.

We can evaluate how the existing ATLAS and CMS data
restrict our model when we compare the predictions of our
model with the upper bounds on the resonance production
cross section times its branching ratio for various decay chan-
nels. The bounds are rather model independent once spin of
the resonance under consideration is specified. Of course, one
should keep in mind that the calculations involved proceed
under the assumption of a narrow-width resonance.

In Table 4, we present the cross section times branching
ratios for various decay channels of the considered model
at the LHC collision energy of 13 TeV. The predictions
are given for three different values of the resonance masses,
namely 1, 1.5, and 2 TeV, and three values of g′′, namely 10,
15, and 20. The g′′ values were chosen to span the region
allowed by the combination of the limits considered and
obtained in the previous sections. Note that for g′′ > 20 our
theory not only runs into its perturbativity limit, but heavier
vector resonances depart from the narrow-width requirement
as can be read off of the upper x-axes of Fig 9.

All model predictions quoted in Table 4 correspond to the
scenario when the decay of the vector resonance to fermions
is negligible. In the tBESS-like fermion sector, this would
correspond to turning off the direct coupling of the vector
resonance to the third quark generation,9 i.e. bL = bR = 0.

9 In the tBESS model [35], there is no direct interaction of the vector
resonance with the light fermions. The direct coupling of the vector
resonance to the third quark generation is parameterized by bL and
bR and by the parameter p which enables the splitting of the direct
interactions of the right top and the right bottom quarks. Additional
fermion sector parameters λL ,R that have been introduced in the tBESS
model are, for simplicity, kept at zero values throughout this paper.
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Table 4 The production cross
section times the branching ratio
for different decay channels of
the 1, 1.5, and 2 TeV vector
resonances of our model
considering three different
values of g′′. The predictions for
the ZH and WH channels are
given for aV = 1 and aρ = 0.
No direct interactions of the
vector resonance with fermions
are assumed. The cross sections
in the table are calculated for the
13 TeV pp collisions

Channel g′′ σ(ρ0) (pb) Channel σ(ρ+) + σ(ρ−) (pb)

WW 10 0.087 0.016 0.005 ZW 0.156 0.030 0.009

15 0.038 0.007 0.002 0.068 0.013 0.004

20 0.021 0.004 0.001 0.038 0.007 0.002

ZH 10 (71 2.8 0.2) × 10−7 WH (233 9.7 0.9) × 10−7

15 (31 1.2 0.1) × 10−7 (103 4.3 0.4) × 10−7

20 (18 0.7 0.1) × 10−7 (57 2.4 0.2) × 10−7

j j (u, d, c, s, b) 10 (427 16.3 1.5) × 10−6 j j (u, d, c, s) (576 23.1 2.2) × 10−6

15 (188 7.2 0.7) × 10−6 (253 10.2 1.0) × 10−6

20 (105 4.0 0.4) × 10−6 (142 5.7 0.5) × 10−6

e+e− + μ+μ− 10 (107 4.1 0.4) × 10−6 eνe + μνμ (191 7.8 0.7) × 10−6

15 (47 1.8 0.2) × 10−6 (84 3.4 0.3) × 10−6

20 (26 1.0 0.1) × 10−6 (47 1.9 0.2) × 10−6

t t 10 (105 4.1 0.4) × 10−6 tb (280 11.3 1.1) × 10−6

15 (46 1.8 0.2) × 10−6 (123 4.9 0.5) × 10−6

20 (26 1.0 0.1) × 10−6 (69 2.8 0.3) × 10−6

Consequently, in this scenario, all fermions can couple to
the vector resonance through the mixing-induced interac-
tions only and the decay widths of the neutral/charged vector
resonances are dominated by their decays to the EW gauge
bosons; BR(WW/WZ) > 99%.

The experimental upper bounds on the cross section times
branching ratio in WW channel read 0.033, 0.012, and
0.005 pb for Mρ = 1, 1.5, and 2 TeV, respectively [43]. This
excludes the 1 TeV resonance for g′′ � 16 and 1.5 TeV res-
onance for g′′ � 12. The 2 TeV resonance is unrestricted for
g′′ ≥ 10. Nevertheless, setting bL ,R to their maximally low-
energy precision data allowed values—bL ,R ≈ 0.1, as found
in [35]10—can lower BR(WW ) of the 1 TeV resonance down
to about 70% for g′′ = 10, to 30% for g′′ = 15, and to 12%
for g′′ = 20. In the 2 TeV resonance case, BR(WW ) would
be lowered to about 97, 87, and 67%, respectively. Thus, we
can see that the fermionic interactions of the vector resonance
can noticeably decrease the predictions (and, thus, release the
experimental restrictions) of the model in this channel. The
same effect can be expected to occur in the ZW channel.

Next, let us compare the predictions of our model to the
experimental bounds in the ZW channel. The most restric-
tive bounds in this channel read 0.051 pb [44], 0.022 pb [44],
and 0.009 pb [45] for Mρ = 1, 1.5, and 2 TeV, respectively.
This excludes the 1 TeV resonance for g′′ � 17 and 1.5 TeV
resonance for g′′ � 12. Again, the 2 TeV resonance is unre-

10 While the preferred value of p found in [35] is about 0.25, its statisti-
cal preference over any other value of p ∈ (0, 1) is marginal. Therefore,
we consider p = 1 in our calculations of the tBESS-like fermion sec-
tor contributions, i.e. the same strength of the vector resonance direct
couplings to the right top and bottom quarks.

stricted for g′′ ≥ 10. In the case of the tBESS-like fermion
sector with bL ,R = 0.1 and p = 1, BR(WZ) gets lowered to
about 71, 31, and 12% for g′′ = 10, 15, and 20, respectively,
when Mρ = 1 TeV. When Mρ = 2 TeV, the corresponding
BR’s read 97, 87, and 67%.

The exclusion limits from the WW /WZ channels men-
tioned in the previous two paragraphs were obtained from
13.2 fb−1 [43,44] and 15.5 fb−1 [45] of 13 TeV data. For the
sake of completeness, we should mention that the combined
WW +WZ analysis of 3.2 fb−1 of 13 TeV data [46] implies
stronger limits g′′ > 13.6 and g′′ > 10.6 for Mρ = 1.5 and
2 TeV, respectively.

At tree level, the ZH and WH decays of the vector res-
onances occur only when aV �= aρ . In Table 4, we present
the predictions of our model for aV = 1 and aρ = 0. They
can be used to derive the predictions for preferred values of
aV and aρ that have been found in Sect. 3.3 and quoted in
Table 3. Following the formalism introduced in Sect. 2 we
find that

�ZH/WH (aV , aρ) = (aρ − aV )2�ZH/WH (1, 0) (49)

Then, taking into account the negligibility of the contri-
butions of �ZH and �WH to the total decay widths of
the neutral and charged resonances, the (aρ − aV )2 scal-
ing applies to the values of the production cross section
times the branching ratio for these channels. Thus, when
(aV , aρ) = (0.93,−0.08), the numbers in the ZH/WH sec-
tor of Table 4 are to be multiplied by 1.02. When (aV , aρ) =
(0.93,−1.68), (−0.93, 0.52), or (−0.93, 2.11) the scaling
factors are 6.81, 2.10, and 9.24, respectively. The experi-
mental upper limits on the cross section times the branch-
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ing ratio are (0.070 [47], 0.032 [47], 0.013 [48]) pb for
Mρ = (1.0, 1.5, 2.0) TeV, respectively, in the ZH channel
and (0.12 [47], 0.035 [48], 0.013 [48]) pb in the WH chan-
nel. The values predicted in these two channels by our model
lie some four orders of magnitude below the experimental
upper limits. Thus, the upper limits provide no restriction
within the considered range of g′′ ∈ (10, 20).

The same conclusions of no restrictions to our model can
also be drawn for the remaining decay channels from which
the experimental upper bounds for the production cross sec-
tion times the branching ratio are available. Namely, the
upper bounds for the charged j j channel read 0.210 pb
and 0.088 pb for Mρ = 1.5 and 2 TeV, respectively, when
15.7 fb−1 of 13 TeV data [49] is processed.11 The combined
neutral+charged j j channel bounds based on 12.9 fb−1 of
data [50] are 1.20, 0.37, and 0.13 pb for Mρ = 1, 1.5, and
2 TeV, respectively. The bounds in the e+e− +μ+μ− chan-
nel based on 13.3 fb−1 of data [51] read 1.30, 0.63, and
0.42 fb for Mρ = 1, 1.5, and 2 TeV, respectively. The bounds
in the eνe + μνμ channel based on 13.3 fb−1 of data [52]
read 4.8, 1.8, and 1.1 fb for Mρ = 1, 1.5, and 2 TeV, respec-
tively. The bounds in the tb channel based on 12.9 fb−1 of
data [53] read 1.8, 0.55, and 0.23 pb for Mρ = 1, 1.5, and
2 TeV, respectively. Recall that the values in Table 4 cor-
respond to the scenario with no direct fermion interactions
with the vector resonance. In the tBESS-like fermion sector
the tb channel production would generally be higher.

Finally, there are also the upper bounds for the t t channel
based on 3.2 fb−1 of data [54]: 1.20, 0.33, and 0.17 pb for
Mρ = 1, 1.5, and 2 TeV, respectively. When we compare
these bounds with the predictions in Table 4 we can see that
for g′′ ∈ (10, 20) they do not restrict our model. It applies
even in the case of the tBESS-like fermion sector withbL ,R =
0.1 and p = 1. Then the predictions in the t t channel will
rise to about 10−2, 10−3, and 10−4 pb for Mρ = 1, 1.5, and
2 TeV, respectively.

5 Conclusions

We have studied the experimental and unitarity limits on the
parameters of the strong Higgs sector of the phenomeno-
logical Lagrangian where beside the composite 125 GeV
Higgs boson the SU (2)L+R triplet of composite vector reso-
nances is explicitly present. The ESB sector of our effective
Lagrangian has been based on the SU (2)L × SU (2)R →
SU (2)L+R non-linear sigma model while the scalar reso-
nance has been introduced as the SU (2)L+R singlet. The
vector resonance has been built in employing the hidden local
symmetry approach.

11 The quoted upper bounds for all j j channels include an acceptance
factor.

For the interactions of the Higgs boson with the EW gauge
fields, the vector triplet, and the top quark the assumed sym-
metries allow one to introduce three free independent modi-
fication factors, aV , aρ , and ct . After the transformation from
the flavor to mass gauge-boson eigenstate basis, the first two
factors combine into modifiers cZ , cW , cρ0 , cρ± , cZρ0 , and
cWρ± of the vertices hZ Z , hW+W−, hρ0ρ0, hρ±ρ±, hZρ0,
and hW±ρ∓, respectively. If r = aρ/aV �= 1, then cZ differs
from cW . Nevertheless, for quite a large interval of r ’s around
one, e.g., |r | ≤ 3, the effect is very small. The corrections
to the custodial symmetry protected rho parameter induced
by the differing aV and aρ are negligible and well within the
experimental limits. For many phenomenological considera-
tions, the approximations cZ = cW = aV , cρ0 = cρ± = aρ ,
and cZρ0 = cWρ± = 0 are satisfactory over quite a large
region of r values and for all relevant values of g′′ and Mρ .

The limits on the free Higgs coupling factorsaV ,aρ , and ct
have been calculated using constraints on the kappa parame-
ters of the interim framework. The constraints were obtained
in the recent ATLAS+CMS Collaborations analysis of var-
ious Higgs-related processes based on data from 2011 and
2012. We have used the fitting scenario where no non-SM
decays of the Higgs is assumed and where the branching
ratio of invisible and/or undetected decay products is zero.
In addition, new particles in loops are allowed. Out of seven
free parameters in this scenario—loop-level κg , κγ , and tree-
level κW , κZ , κt , κb, κτ —we have used all but the last two to
find the restrictions on aV , aρ , and ct ; κb and κτ have been
ignored because their impact on the fitting parameters was
negligible.

By fitting the kappas we have established that the sim-
ple case of aρ = aV is strongly disfavored by the data.
There are four triplets of the best-fit values of aV , aρ , and
ct that can satisfy the fitted data. Namely, (aV , aρ, ct ) =
(0.93,−0.08, 0.85), (0.93,−1.68, 0.85), (−0.93, 0.52,

0.85), and (−0.93, 2.11, 0.85). The 1-sigma deviation (i.e.,
χ2

min + 1) for aV at all four best values is the same: ±0.08.
It also applies to ct . Its 1-sigma errors read +0.11

−0.12 for each
best value of ct . As far as aρ is concerned its 1-sigma devi-
ations differ slightly at each of the best-fit values. However,
overall they do not exceed ±0.17. The hypothesis backing
for all four fits is the same and amounts to 12%. The tied
score might be tilted in favor of one of the fits once κZγ gets
measured more precisely.

Using scattering amplitudes of the longitudinal EW gauge
bosons in the Equivalence theorem approximation we have
studied the restrictions of the usability of our phenomeno-
logical Lagrangian imposed by the unitarity limits when the
data preferred Higgs couplings obtained in this paper are con-
sidered. We have found from the ππ → ππ scattering that
for Mρ = 1 TeV unitarity holds up to at least � = 3 TeV
when 0.77 ≤ aV ≤ 1.09 and 12 ≤ g′′ ≤ 25. As Mρ grows
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the region where unitarity holds shrinks toward higher g′′ and
lower aV . Even if Mρ = 2 TeV, the considered model is well
below the unitarity limit at significant portions of the exper-
imentally allowed region of aV . Nevertheless, these conclu-
sions should be complemented by a similar analysis of the
ππ scattering with h and ρL in the final state where aV and
aρ would be independent parameters, thus allowing also for
aV �= aρ preferred by the data.

Our calculations show that the masses in the range
1 TeV ≤ Mρ ≤ 2 TeV are not excluded in parts or even full
parameter space of our theory. When the model’s predictions
face the upper bounds on the production cross section times
branching ratio in different decay channels the 1 TeV reso-
nance gets excluded in the WW channel when g′′ � 16 and
in the WZ channel when g′′ � 17. Both, the WW and WZ
channel measurements exclude the 1.5 TeV resonance when
g′′ � 14. These restriction can get weakened once the direct
interactions of the vector resonance with the fermion sector
are introduced. None of the other reviewed decay channels
excludes our model, at least when 10 ≤ g′′ ≤ 20.

In the view of the results obtained in this paper we would
conclude that even such a simplistic effective description of
possible early phenomenology of strong BSM physics as the
one studied here is capable to accommodate the existing data.
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Appendix: Some definitions

In this appendix, we show definitions of some of the quanti-
ties used in Sect. 2 to express the parts of our phenomenolog-
ical Lagrangian relevant to this paper. All details regarding
the Lagrangian structure and how it was built can be found
in [34,35].

The field strength tensors of the SU (2)L × U (1)Y ×
SU (2)HLS gauge fields are defined as

Wμν = ∂μWν − ∂νWμ + [WμWν], (A.1)

Bμν = ∂μBν − ∂νBμ, (A.2)

Vμν = ∂μV ν − ∂νVμ + [VμV ν], (A.3)

where Wμ = igWa
μτ a , Bμ = ig′Bμτ 3, and Vμ = i g

′′
2 V a

μτ a

with the gauge couplings g, g′, and g′′, respectively.
The ESB sector contains six unphysical real scalar

fields, would-be Goldstone bosons of the model’s spon-
taneous symmetry breaking. The six real scalar fields
ϕa
L(x), ϕa

R(x), a = 1, 2, 3, are introduced as parame-
ters of the SU (2)L × SU (2)R group elements in the exp-
form ξ(ϕL ,R) = exp(iϕL ,Rτ/v) ∈ SU (2)L ,R where ϕ =
(ϕ1, ϕ2, ϕ3). The quantities ω̄

‖
μ and ω̄⊥

μ are, respectively,
the SU (2)L−R and SU (2)L+R projections of the gauged
Maurer–Cartan 1-form,

ω̄‖
μ = ω‖

μ + 1

2

(
ξ

†
LWμξL + ξ

†
RBμξR

)
− Vμ, (A.4)

ω̄⊥
μ = ω⊥

μ + 1

2

(
ξ

†
LWμξL − ξ

†
RBμξR

)
, (A.5)

where ω
‖,⊥
μ = (ξ

†
L∂μξL ± ξ

†
R∂μξR)/2.
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