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Abstract In connection with the discussion and the mea-
surements fulfilled in Ref. (Eur Phys J C 75:137, 2015), the
full identity is demonstrated between the Feynman formula
for the field of a moving charge and the Liénard-Wiechert
potentials.

In Ref. [1] measurements were performed to decide between
two approaches to the field of a moving charge: one based on
the Liénard-Wiechert potentials and the other on the Feyn-
man interpretation. The aim of the present note is to demon-
strate that although apparently different physical ideas are
layed into the Feynman formula [5], it is as a matter of fact
mathematically identical to that found in standard text books,
e.g. [2–4], for the Liénard-Wiechert potentials both for accel-
erated motion of the charge and its motion with a constant
speed. We believe that this observation should be taken into
account and prove to be useful in the general discussion on
the matter [6–8].

The Feynmann formula for the electric field E of a moving
accelerated charge q is [5]
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We set c = 1 for the sake of simplicity and keep to the
notations in [5]. In (1) the function

r ′ =
√
x ′2

1 + x ′2
2 + x ′2

3 (2)

is the modulus of vector x′, directed from the position x̃ of
the moving charge to the observation point x:

x′ = x − x̃, (3)

and er ′ is the unit vector in the direction of x′. The charge tra-
jectory is given as x̃ = x̃(t ′), where t ′ is the time coordinate
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of the charge. Therefore, with the location of the observa-
tion point fixed, x = const., we see that x′, as well as r ′,
is a function solely of t ′. Once the influence of the charge
propagates exactly with the speed of light c = 1, the relation

r ′(t ′) = t − t ′ (4)

holds, where t is the time of observation. With Eqs. (3) and
(4) the length (2) is just the distance between the position
of the charge and the observation point at the moment of
emission.

Relation (4) defines t as a function of t ′.Then, according
to the rule of differentiation of an inverse function, one has
for any function a(t ′)
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where dt
dt ′ follows from (4) and (3) to be
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We have used here that
d x̃(t ′)
dt ′ = v(t ′) is the instantaneous

speed of the charge.
Referring to the designation (er ′ · v) = κ used for brevity

we can now rewrite Eq. (1) as
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Taking into account that
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we calculate the second term in (5):
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The third term in (5) is

1

(1 − κ)

d

dt ′

(
1

(1 − κ)

der ′

dt ′

)
= 1

(1 − κ)

d

dt ′

(
κer ′ − v
(1 − κ) r ′

)
.

(8)

Let us calculate the derivative of (1 − κ)−1:
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where
·
v is the acceleration of the charge, and v is the modulus

of the vector v. Then the third term in (5) becomes

1

(1 − κ)

d

dt ′
(

1

(1 − κ)

der ′
dt ′

)

=
(
κ2 − v2

) (
κer ′ − v

) + (1 − κ)
[
2κ

(
κer ′ − v

) + er ′
(
κ2 − v2

)]
(1 − κ)3 r ′2

+
(
κer ′ − v

) (
er ′ · v

) +
[
er ′

(
er ′ · ·

v
)

− ·
v
]
(1 − κ)

(1 − κ)3 r ′ . (10)

Finally, substituting (7) and (10) in (5) and separating the
factor (1 − κ)3 r ′2, we get
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It is easy to show that this is reduced to
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Taking into account that the numerator in the second term
in the latter expression can be rewritten as the double vector
product
(
x′ − vr ′) (
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v
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[
x′ ×

[(
x′ − r ′v

) × ·
v
]]

, (13)

expression (12) can be recognized (with the identification
q/4πε0 = e, x′ = R, r ′ = R) as the expression (63.8) for
electric field in Ref. [2]. Thus, expressions in Refs. [2,5] are
the same.
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