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Abstract We first find the linear approximation of the sec-
ond plus fourth order derivative massive conformal gravity
action. Then we reduce the linearized action to separated sec-
ond order derivative terms, which allows us to quantize the
theory by using the standard first order canonical quantization
method. It is shown that quantum massive conformal gravity
is renormalizable but has ghost states. A possible decoupling
of these ghost states at high energies is discussed.

1 Introduction

Massive conformal gravity [1] is a recently developed con-
formal theory of gravity in which the gravitational action is
the sum of the fourth order derivative Weyl action [2] with the
second order derivative Einstein–Hilbert action conformally
coupled to a scalar field [3].

The gravitational potential of the theory, which is com-
posed by an attractive Newtonian potential and a repulsive
Yukawa potential, reproduces the rotation curves of the major
number of galaxies. In addition, the momentum space propa-
gators of massive conformal gravity have a good high-energy
behavior, which makes the theory power-counting renormal-
izable. However, one of these propagators has a negative
sign between its terms, which is a common feature of fourth
order derivative theories of gravity. In such theories this neg-
ative sign imply that either the energy eigenvalue spectrum
is unbounded from below or the Hilbert space norms are
negative [4]. Several attempts to solve the negative energy
(or negative norm) problem in higher derivative gravity have
been carried out in the literature (see, e.g., [5–10]).

In this paper, we analyze the consequences of the negative
sign term in massive conformal gravity. In Sect. 2 we derive a
second order derivative linearized massive conformal gravity
action by introducing auxiliary variables. In Sect. 3 we canon-
ically quantize the massive conformal gravity fields and show
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that the theory has ghosts, states with negative norm, which
do not necessarily spoil the unitarity of the S-matrix. Finally,
in Sect. 4 we present our conclusions.

2 Linearized action

Let us consider the gravitational action of massive conformal
gravity, which is given by1

S = 1

2kc

∫
d4x

√−g
[
α
(
ϕ2R + 6∂μϕ∂μϕ

)

−λ2CαβμνCαβμν

]
, (1)

where α is a dimensionless constants, λ = h̄/mc (h̄ is the
Planck constant and m is the graviton mass), k = 8πG/c4

(G is the gravitational constant and c is the speed of light in
vacuum),

Cα
μβν = Rα

μβν + 1

2

(
δα

νRμβ − δα
β Rμν + gμβR

α
ν

−gμνR
α
β

) + 1

6

(
δα

βgμν − δα
νgμβ

)
R (2)

is the Weyl tensor, ϕ is a scalar field, Rα
μβν is the Riemann

tensor, Rμν = Rα
μαν is the Ricci tensor, and R = gμνRμν

is the scalar curvature. It is worth noting that (1) is invariant
under the conformal transformations

g̃μν = e2θ(x) gμν, (3)

ϕ̃ = e−θ(x)ϕ, (4)

where θ(x) is an arbitrary function of the spacetime coordi-
nates.

1 This action is equivalent to the action of Ref. [1]. The two actions have
the same dimensions Kg m2/s. The only difference is that the action of
Ref. [1] must have the mass measured in Kg m2.
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With the help of the Lanczos identity, we can write (1) in
the form

S = 1

2kc

∫
d4x

√−g

[
α
(
ϕ2R + 6∂μϕ∂μϕ

)

−2λ2
(
RμνRμν − 1

3
R2

)]
. (5)

Then, using the weak-field approximations

gμν = g(0)
μν + hμν = ημν + hμν, (6)

ϕ = ϕ(0)(1 + σ) =
√

2

α
(1 + σ), (7)

and keeping only the terms of second order in hμν and σ , we
find that (5) reduces to

S = 1

kc

∫
d4x

[(
L̄EH + 2σ R̄ + 6∂μσ∂μσ

)

−λ2
(
R̄μν R̄μν − 1

3
R̄2

)]
, (8)

where

R̄μν = 1

2

(
∂μ∂ρhρν + ∂ν∂

ρhρμ − ∂ρ∂ρhμν − ∂μ∂νh
)

(9)

is the linearized Ricci tensor,

R̄ = ∂μ∂νhμν − ∂μ∂μh (10)

is the linearized scalar curvature, and

L̄EH = −1

4

(
∂ρhμν∂ρhμν − 2∂μhνρ∂ρhμν + 2∂μhμν∂

νh

−∂μh∂μh
)

(11)

is the linearized Einstein–Hilbert Lagrangian density, with
h = ημνhμν .

The linearized action (8) is invariant under the coordinate
gauge transformation

hμν → hμν + ∂μξν + ∂νξμ, (12)

where ξμ is an arbitrary spacetime dependent vector field,
and under the conformal gauge transformations

hμν → hμν + ημν�, (13)

σ → σ − 1

2
�, (14)

where � is an arbitrary spacetime dependent scalar field. We
can fix these gauge freedoms by imposing the coordinate
gauge condition

∂μhμν − 1

2
∂νh = 0 (15)

and the conformal gauge condition

R̄ − 6λ−2σ = 0 (16)

to (8). However, this procedure is not suitable for the quantum
analysis of the theory, since it introduces complication in the
definition of the canonical commutation relations.

Another procedure to eliminate the gauge freedoms of the
theory consists on adding gauge fixing terms to the action
such that the field equations obtained from the action plus
the gauge fixing terms are the same as the gauge fixed field
equations obtained from the action alone. Thus, by adding
the gauge fixing terms2

SGF1 = − 1

2kc

∫
d4x

(
∂μhμν − 1

2
∂νh

)2

, (17)

SGF2 = 1

6kc

∫
d4x

(
λR̄ − 6λ−1σ

)2
(18)

to (8), and integrating by parts, we obtain the diagonalized
action

Sd = − 1

2kc

∫
d4x

[1

2
�μν

(
λ2� − 1

)
��μν

+12σ
(
� − λ−2

)
σ
]
, (19)

where � = ∂ρ∂ρ and

�μν = hμν − 1

2
ημνh. (20)

In order to obtain a first order canonical form, we choose
the method of the decomposition into oscillator variables [11]
and write the action (19) as

Sd = 1

2kc

∫
d4x

[
1

2
�μν��μν + 1

8
λ−2�μν�

μν

−1

4
λ−2�μν�

μν + 1

8
λ−2�μν�

μν

−12σ
(
� − λ−2

)
σ

]
. (21)

Varying this action with respect to �μν gives

�μν = �μν − 2λ2��μν, (22)

and with this the field equations obtained from action (21) are
equivalent to the field equations obtained from action (19).
Finally, with the change of variables

�μν = Aμν + Bμν, (23)

�μν = Aμν − Bμν, (24)

2 In order to simplify the calculations we consider the Feynman gauge
in which the Lagrange multipliers entering in the gauge fixing terms are
equal one.
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we find the action

Sd = 1

2kc

∫
d4x

[
1

2
Aμν�Aμν − 1

2
Bμν

(
� − λ−2

)
Bμν

−12σ
(
� − λ−2

)
σ

]
, (25)

which is dynamically equivalent to action (8).
The action (25) contains a positive energy massless spin-2

field Aμν , a negative energy massive spin-2 field Bμν , and a
negative energy massive spin-0 field σ . Classicaly, since the
theory is not interacting, there is no problem with the nega-
tive energy fields. However, when interactions are introduced
instabilities can appear. Thus a careful analysis is necessary
on the interaction of massive conformal gravity with matter
fields, which is beyond the scope of this paper. We will deal
with the negative energy problem at the quantum level in the
next section.

3 Canonical quantization

Varying the action (25) with respect to Aμν , Bμν , and σ , we
obtain the field equations3

�Aμν = 0, (26)(
� − m2

)
Bμν = 0, (27)(

� − m2
)

σ = 0. (28)

The most general real solutions of these equations are given
by

Aμν(x) =
∫

d3 p

(2π)3

1√
2ωA

p

∑
r

[
arpε

r
μν(p)eip·x + c.c.

]
, (29)

Bμν(x) =
∫

d3 p

(2π)3

1√
2ωB

p

∑
s

[
bspε

s
μν(p)eip·x + c.c.

]
, (30)

σ(x) =
∫

d3 p

(2π)3

1√
2ωσ

p

[
cpe

ip·x + c.c.
]
, (31)

where ωA
p = |p|, ωB

p = √|p|2 + m2, ωσ
p = √|p|2 + m2, the

creation and annihilation operators obey the commutation
relations

[arp, ar
′†

p′ ] = (2π)3δ3(p − p′)δrr ′
, (32)

[bsp, bs
′†
p′ ] = −(2π)3δ3(p − p′)δss′ , (33)

[cp, c†
p′ ] = − (2π)3

24
δ3(p − p′), (34)

with all the other commutators equal to zero, and the polar-
ization tensors satisfy the orthonormality and completeness
relations

3 In this section we use “absolute units” in which c = h̄ = 16πG = 1.

εrμνε
μνr ′ = δrr

′
, (35)

εsμνε
μνs′ = δss

′
, (36)

∑
r

εrμνε
r
αβ = 1

2

(
ημαηνβ + ημβηνα − ημνηαβ

)
, (37)

∑
s

εsμνε
s
αβ = 1

2

(
ημαηνβ + ημβηνα − ημνηαβ

)
. (38)

We can write (25) as

Sd =
∫

d4xL, (39)

where

L = 1

2
Aμν�Aμν − 1

2
Bμν

(
� − m2

)
Bμν

−12σ
(
� − m2

)
σ (40)

is the massive conformal gravity Lagrangian density. Using
this Lagrangian density, we find the canonical momenta

�μν = ∂L
∂ Ȧμν

= − Ȧμν, (41)

�μν = ∂L
∂ Ḃμν

= Ḃμν, (42)

π = ∂L
∂σ̇

= 24σ̇ , (43)

where the dot denotes the time derivative.
It follows from (29)–(31) and (41)–(43) that

�μν(x) = −
∫

d3 p

(2π)3 i

√
ωA
p

2

∑
r

[
arpε

r
μν(p)eip·x + c.c.

]
,

(44)

�μν(x) =
∫

d3 p

(2π)3 i

√
ωB
p

2

∑
s

[
bspε

s
μν(p)eip·x + c.c.

]
,

(45)

π(x) = 24
∫

d3 p

(2π)3 i

√
ωσ
p

2

[
cpe

ip·x + c.c.
]
. (46)

Thus, by imposing the commutation rules (32)–(34), we find

[Aμν(x),�αβ(y)] = i

2

(
ημαηνβ + ημβηνα − ημνηαβ

)

×δ3(x − y), (47)

[Bμν(x),�αβ(y)] = i

2

(
ημαηνβ + ημβηνα − ημνηαβ

)

×δ3(x − y), (48)

[σ(x), π(y)] = iδ3(x − y), (49)

with all the other commutators equal to zero.
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In order to find the energy spectrum of massive conformal
gravity, we need the Hamiltonian of the theory, which is given
by

H =
∫

d3xH, (50)

where

H = �μν Ȧ
μν + �μν Ḃ

μν + πσ̇ − L (51)

is the massive conformal gravity Hamiltonian density. Sub-
stituting the Lagrangian density (40) and the canonical
momenta (41)–(43) into (51), we arrive at

H = 1

2

(
−�μν�

μν + ∂i Aμν∂
i Aμν

)
+ 1

2

(
�μν�

μν

−∂i Bμν∂
i Bμν − m2BμνB

μν
) + 1

2

( 1

24
π2

−24∂iσ∂ iσ − 24m2σ 2
)
, (52)

where ∂i denotes the spatial derivatives, with i = 1, 2, 3.
Finally, after some calculation, we obtain

H =
∫

d3 p

(2π)3

∑
r

(ωA
p a

r†
p arp) −

∫
d3 p

(2π)3

∑
s

(ωB
p b

s†
p bsp)

−
∫

d3 p

(2π)3 (ωσ
p c

†
pcp), (53)

where we have dropped the infinite constants terms that
comes from [arp, ar†

p ], [bsp, bs†
p ], and [cp, c†

p].
By imposing the commutation rules (32)–(34), and using

the Hamiltonian (53), we find

[arp, H ] = ωA
p a

r
p, [ar†

p , H ] = −ωA
p a

r
p, (54)

[bsp, H ] = ωB
p b

s
p, [bs†

p , H ] = −ωB
p b

s
p, (55)

[cp, H ] = ωσ
p cp, [c†

p, H ] = −ωσ
p cp. (56)

If we choose the vacuum state |0〉 such that

arp|0〉 = 0, bsp|0〉 = 0, cp|0〉 = 0, (57)

then, using (54)–(56), we can show that the massless spin-
2 state ar†

p |0〉 is an eigenstate of H with energy ωA
p , the

massive spin-2 state bs†
p |0〉 is an eigenstate of H with energy

ωB
p and the massive spin-0 state c†

p|0〉 is an eigenstate of H
with energy ωσ

p . In this case, the energy spectrum of massive
conformal gravity is bounded from below.

The Feynman propagators for the fields Aμν , Bμν and σ

are, respectively,

Dμν,αβ
A (x − y) = 〈0|T (Aμν(x)Aαβ(y))|0〉

= − i

2

(
ημαηνβ + ημβηνα − ημνηαβ

)

×
∫

d4 p

(2π)4

e−i p·(x−y)

p2 − iχ
, (58)

Dμν,αβ
B (x − y) = 〈0|T (Bμν(x)Bαβ(y))|0〉

= i

2

(
ημαηνβ + ημβηνα − ημνηαβ

)

×
∫

d4 p

(2π)4

e−i p·(x−y)

p2 + m2 − iχ
, (59)

Dσ (x − y) = 〈0|T (σ (x)σ (y))|0〉
= i

∫
d4 p

(2π)4

e−i p·(x−y)

p2 + m2 − iχ
, (60)

where T denotes the time-ordered product and χ is an
infinitesimal parameter. It follows from (23), (58), and (59)
that the propagator for the field �μν is

Dμν,αβ
� = − i

2

(
ημαηνβ + ημβηνα − ημνηαβ

)

×
∫

d4 p

(2π)4

m2e−i p·(x−x ′)

(p2 − iχ)(p2 + m2 − iχ)
, (61)

which have a good p−4 behavior at high momenta, making
massive conformal gravity power-counting renormalizable.

The choice (57) gives the required positive energy spec-
trum and renormalization but produces difficulties in the nor-
malization of the massive states. Using (32)–(34) and (57),
we find the norms

〈0|arpar
′†

p′ |0〉 = (2π)3δ3(p − p′)δrr ′
, (62)

〈0|bspbs
′†
p′ |0〉 = −(2π)3δ3(p − p′)δss′ , (63)

〈0|cpc†
p′ |0〉 = − (2π)3

24
δ3(p − p′), (64)

and thus bs†
p |0〉 and c†

p|0〉 are ghost states,4 which renders the
theory non-unitary. However, if the mass m of both massive
particles is greater than the available energy then it does not
give rise to stable ghost states. In this case, the S-matrix
connects only asymptotic states with positive norm and thus
it is a unitary matrix. Since massive conformal gravity is
renormalizable, we can apply the standard renormalization
group methods to study the high-energy behavior ofm, which
is not a trivial thing to do. So we will leave these calculations
for future work.

4 Alternatively, if we choosearp|0〉 = 0,bs†
p |0〉 = 0, and c†

p|0〉 = 0, then
the theory is free of ghost states, but the energy spectrum is unbounded
from below.
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4 Final remarks

We have shown in this paper that massive conformal grav-
ity is a renormalizable quantum theory of gravity which has
two massive ghost states. A careful analysis is needed to
check if these ghost states are decoupled from the theory at
high energies, which would ensure the unitarity of the theory.
While this analysis is not done we cannot rule out massive
conformal gravity as a viable quantum theory of gravity. We
are investigating this issue right now and we hope that this
investigation help to show that quantum massive conformal
gravity is not only renormalizable but also unitary.
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