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Abstract The idea of the Gauss map is unified with
the concept of branes as hypersurfaces embedded into D-
dimensional Minkowski space. The map introduces new gen-
eralized coordinates of branes alternative to their world vec-
tors x and identified with the gauge and other massless fields.
In these coordinates the Dirac p-branes realize extremals
of the Euler—Lagrange equations of motion of a (p + 1)-
dimensional SO(D — p — 1) gauge-invariant action in a grav-
itational background.

1 Introduction

The paper is motivated by the problem of brane quantization
which requires new tools for overcoming brane dynamics
nonlinearities [1-22]. We assume that such a tool may be
provided by the choice of special generalized coordinates
for branes, similar to the angle and action variables. This
can be realized by the use of the Gauss map, well known
from the differential geometry of surfaces, to hypersurfaces
in combination with the Cartan group theoretical approach.

The dynamics of the classic relativistic string is exactly
linearizable and may be described in terms of harmonic
oscillators. These properties were crucial for construction
of quantum string theories [23]. The problem of quantiza-
tion of p-branes [24] remains unsolved due to the nonlinear-
ity of their dynamics. The latter is caused by the entangled
anharmonic character [25,26] of brane elastic forces which
resembles the anharmonicity in liquid crystals (smectics),
but it is much more complicated. Linearization of the brane
dynamics in D-dimensional Minkowski space requires the
construction of new generalized coordinates alternative to
the generally used components of the brane world vector
x(£#). To preserve the number of classical physical degrees
of freedom, new brane coordinates must be in one-to-one
correspondence with x(£#). Such coordinates are the coef-
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ficients of the first and second quadratic differential forms
of embedded (hyper)surfaces used in differential geome-
try [27]. Regge and Lund [28] proposed to use these coef-
ficients for the description of a string worldsheet embed-
ded in 4-dimensional Minkowski space (see also [29-31]).
This choice encodes the string dynamics in the generalized
sine-Gordon equation of which the solution reduces to the
associated linear equations of the inverse scattering method
[32].

A generalization of the Regge—Lund geometrical approach
to branes provides a new technique for studying the brane
dynamics. The final goal of the generalization is to verify
whether this new geometrical approach helps to solve the
problems of the brane integrability and quantization.

This paper is aimed at the development of the geomet-
ric technique for the branes embedded into D-dimensional
Minkowski space. For this purpose we generalize the gauge
reformulation of the Regge—Lund approach for strings devel-
oped in [33-36]. This reformulation has revealed an isomor-
phism between the string and a closed sector of states of the
exactly integrable 2-dimensional SO(1, 1) x SO(D — 2)-
invariant model of interacting gauge and massless scalar
fields. The isomorphism is analogous to that between the
chiral and Yang-Mills field theories invariant under a Lie
group G observed by Semenov-Tyan-Shansky and Faddeev
[37]. A characteristic feature of their approach is the use of
the Cartan G-invariant w-forms [38] introduced by Volkov
in the physics of nonlinear sigma models [39—42]. The phys-
ical results presented in [39,40] and in the papers by Callan
et al. [42] and Coleman et al. [41] coincide. The difference
is that Volkov used the Cartan method of the exterior differ-
ential forms in the geometry of symmetric spaces associated
with spontaneously broken symmetry groups and their gauge
fields.

The gauge approach considered here which presents the
brane dynamics in terms of gauge field theories is exact in
all orders in the tension T'. The said exactness is one of the
distinctions between this approach and the ones where some
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branes are considered as the solitons of supergravity theories
describing the low-energy approximations of string theories
(see e.g. [43-45]).

To explain the idea of the gauge approach [33-36] let us
consider the simplest example of the Nambu string embedded
into 3-dimensional Euclidean space-time. The string world-
sheet X, described by its world vector x(z, o), may be sup-
plied with the local vectors n(z, o) normal to ¥ at each point
parametrized by the internal coordinates £* := (7, o). The
vector field n(§#) defines a family of 2-dimensional planes
tangent to X, and fixed by the equation ndx = 0. A solution
of this equation allows one fo restore the worldsheet > up
to its translations and rotations as a whole. Therefore, the
vector n may be chosen as a new dynamical variable cou-
pled with x. Moreover, without loss of generality one can put
n’> = 1, which creates the map of ¥ in the points of a 2-
dimensional sphere S? invariant under the group SO(3). The
map was discovered by Gauss in the differential geometry of
surfaces. We assume that the Gauss map makes it possible
to consider an alternative description of the Nambu string
for D = 3 in terms of the SO(3) gauge field attached to its
worldsheet. This group theoretical consideration can be nat-
urally extended to the case of Minkowski spaces with higher
dimensions.

For the Minkowski spaces with D > 3 and the metric
Nmn = (1, —1,...,—1) the number of local unit vectors
n, (%) normal to X, increases up to (D — 2), where the
index 1= (2,3,..., D — 1). One can choose these vectors
to be mutually orthogonal: n;n s = —4§, |/. They form an
orthonormal basis in the local (hyper)planes orthogonal to
¥, and span the vector space invariant under the gauge group
SO(D —2). Then the string dynamics is presented by a chain
of (D — 2) exactly integrable equations [33-36] generalizing
the Liouville equation which encodes the dynamics for D =
3. These PDEs select a closed sector of the solutions of 2-
dimensional SO(1, 1) x SO(D — 2)-invariant gauge model
of the Y-M fields interacting with a massless scalar multiplet.

In this paper the above-described gauge approach to
strings is generalized to p-branes embedded into D-
dimensional Minkowski space. We construct a (p + 1)-
dimensional SO(D — p — 1)-invariant gauge model in a
gravitational background formulated in terms of the dynam-
ical variables associated with the generalized Gauss map
for (p + 1)-dimensional hypersurfaces. The equations of
motion of the model are shown to have the exact solution
which describes the minimal world volumes of the funda-
mental p-branes presented by the Dirac action in terms of
derivatives of x(£#). These world vectors x are treated as
collective coordinates of the gauge model. So, the general-
ized Gauss map provides a clear mechanism for the creation
of “macroscopic” fundamental branes by gluing together the
“microscopic” field degrees of freedom of the initial gauge
model in gravitational background. The exact solution of
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the EOM of the constructed gauge model has the form of
the first-order Gauss—Codazzi (G-C) differential equations.
Therefore, their role is mathematically analogous to the self-
duality conditions for instantons in pure gauge 4-dimensional
theory [46]. This qualitative analogy helps to clear up the
mathematics of the gauge approach for branes. Unification
of the approach with the quantization methods for gauge the-
ories in curved backgrounds [47-49] may give a new clue to
a better understanding of the brane quantization problem.
Below we generalize the gauge formalism and construct new
gauge-invariant models of hypersurfaces and branes embed-
ded into the Minkowski spaces. This formalism yields a new
brane <> gauge field theory (GFT) map non-perturbative in
T, independent of both the brane and target space dimen-
sions.

2 Hypersurfaces in the Minkowski space

The above-discussed correspondence between the world vec-
tor x(§#) of the hypersurface X, and its normal vectors
n (%) is realized in the Cartan formalism of the orthonor-
mal moving frames n4 (%),

ny (EMnp(EM) = nas,

where §# = (7,0") (r = 1,2,..., p) parametrize X,
embedded into the D-dimensional Minkowski space R1-?~1
The vectors nyg form the fundamental linear representation
of the Lorentz group of R»P~1,

A,B=(0,1,....,D—1), (1)

W4 =LaPng, La8LCp=35S, (2)

where %D(D — 1) pseudoorthogonal matrices L5 (£%) in
the fundamental representation describe the local Lorentz
transformations in the planes spanned by the % D(D—1) pairs
(my4 (&), np(€)). To distinguish the frame vectors n; (i, k =
0,1, ..., p) tangent to the hypersurface X, from the vec-
torsn, (a,b = p+1,p+2,...,D — p — 1) normal
to this hypersurface, we split the capital index A in a pair
A = (i, a). This divides the set of the vectors ny into two
subsets ng = (n;, ny). The Latin indices a, b are used here
instead of the condensed index L running in the orthogonal
directions. One can expand any small displacement dx(£")
and dny (%) in the local orths n4 (§#) attached to the point
P(&")

dx = w'n;, * =0, 3)

dng = —owfnp. “)

Here we partially fix the gauge for the Lorentz group
SO(1, D — 1) by the conditions w* = 0 for the local dis-
placements of x orthogonal to X, 1, taking into account
that the vector dx is tangent to the hypersurface. This signi-
fies a special choice of orientation of the moving frame which
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breaks the local SO(1, D — 1) symmetry up to its subgroup
SO(1, p) x SO(D — p — 1). Then the matrices L 48 of the
Lorentz group split into the block submatrices /;%, 1,” and
[;*. As a result, the antisymmetric matrices wap = —wpa
generating the infinitesimal Lorentz transformations take the
form

k b
wa® = wua gt = (A’“ ) W‘“b) dg", 5)
Wi Bua

with the submatrices A,;* and B,,” considered as gauge
fields in the fundamental representations of SO(1, p) and
SO(D — p — 1) subgroups, respectively. The off-diagonal
matrices me form a charged vector multiplet in the funda-
mental representation of the local subgroups SO(1, p) and
SO(D — p — 1). The strengths for A,L, fi‘# denoted as F,wik
and H,“ab are

Fui* = [ DL, D] ¥ = @4 + Apdni®, (©)

Hys = [Dip. DY P = @B+ BuB. ()

The covariant derivatives DL' and D/f defined as

Do’ = 9,0 + A, ok, ®)
DW= 9,0 + B, " 9)

are associated either with the local Lorentz subgroup SO
(1, p), operating in the local planes tangent to X1, or with
the rotation subgroup SO(D — p — 1) operating in the planes
orthogonal to X, 1. The covariant derivative for W,U-b ,

(Duwv)ia = 8,uwvia + A;u'kkaa + B;},abwvib» (10)

includes both the A  and the éu gauge fields.

The Cartan differential forms w4 := w,ad§* and wy B._
wy, ABdg® are linear in the independent differentials d£*.
This shows that the PDEs (3—4) define x(§#) and n4 (§#) as
functions of the parameters £* when the functions w, 4 and
Wy A2 are known. If Egs. (3—4) are integrable one can find
X, ny and restore the hypersurface X, up to translations
and rotations of it as a whole. Therefore, we will use the
Cartan w-forms as new generalized coordinates alternative
to the world vectors x(£") of the embedded hypersurfaces.
The integrability conditions for the PDEs (3—4)

dAws+wps Awp =0, (11)

dAwsB +0sS Noc? =0 (12)
are the well-known Maurer—Cartan (M-C) equations of the
Minkowski space [38]. We use here the symbols A and dA
for the exterior product and exterior differential of the differ-
ential one-forms ® and W,

1
dAVY: Ecb[u\yv]d%_ﬂ /\dfv,

AdND = %(al,%—a,@u)dg“ A df“zéa[v @, dgV A dEH,
where @V, = ®,¥, — ®,¥, and d&* A d&¥ =
dEMSEY — SEHAEY.

Equations (11-12) are the key input which allows one
to construct the promised gauge model of the p-branes. We
carry out in two steps the construction of the model.

In the first step in Sect. 3 we shall construct the gauge
model compatible only with Eq. (12) because they form a
closed system of PDEs for the spin connection one-forms
w4 . In the second step, realized in Sect. 4, we shall take into
account the remaining M-C equations (11), which establish
relations between the hypersurface metric and its spin con-
nection.

The field content of (12) becomes clear after the splitting
of the matrix indices into the components tangent and normal
to X 41, as prescribed by (5). Then Eq. (12) take the form
of the field constraints

Funi® = =W Wi, (13)
Hp,uab = _(W[MWV])aba (14)
(D Wyp)i“ =0 (15)

which yield the desired reformulation of the Gauss—Codazzi
equations in terms of the gauge and massless vector fields
W, associated with the embedded hypersurfaces. They
generalize the gauge constraints [33-36] associated with the
string worldsheets (p = 1) to the constraints for the fields
describing (p+1)-dimensional hypersurfaces embedded into
the Minkowski space.

For the case of a string these constraints together with
(11) and the string EOM select the exactly solvable sector of
states of the two-dimensional SO(1, 1) x SO(D — 2) gauge-
invariant model [33-36]. The model includes a massless
scalar multiplet interacting with the Yang—Mills fields. This
hints at the existence of a (p + 1)-dimensional SO(1, p) x
SO(D — p — 1)-invariant gauge model with the extremals of
its EOM compatible with the constraints (13-15).

In accordance with our two-step procedure, the (p + 1)-
dimensional SO(1, p) x SO(D — p — 1) gauge model of
the first step [compatible with (13—15)] will not still fix the
world hypersurfaces of the p-branes, because Eq. (5) have
not been taken into account. Thus, this gauge model has to
be qualified as a gauge model in a fiber bundle space with a
(p + 1)-dimensional curved space-time as a base manifold,
and the SO(1, p) x SO(D — p — 1) group forming the fibers
and treated as an internal gauge symmetry. This treatment
has strong intersections with the approach proposed in [50,
51] to describe gravitation as a gauge theory, which will be
discussed in the next section.
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An attempt to treat (p + 1)-dimensional gravity as
a dynamical system in D-dimensional Minkowski space
described by a p-brane interacting with the Kalb—-Ramond
field [52-54] was made in [55]. The authors applied the gauge
technique of the embedding approach used in our papers
[33-36] for the string theory changing its group SO(1, 1) x
SO(D —2) into the p-brane group SO(1, p) x SO(D—p—1)
in a way similar to the one considered in this section. In the
capacity of the gravity action they intended to use the new p-
brane action generalizing the string/brane actions earlier con-
structed by Volkov and Zheltukhin [56,57] and Bandos and
Zheltukhin [58,59]. A characteristic feature of these actions
is the fact that they use new constituents presented by the split
components of the moving frame ngy = (n;, n,) (1), iden-
tical to the Lorentz harmonics (u,, uin), in addition to the
p-brane vielbein, as well as the pull-back of the Minkowski
space vielbein. Variation of the p-brane action [55] in these
harmonic variables reproduced Eqgs. (3—4) and their integra-
bility conditions (11-12), respectively. Itis just the point from
which we start our approach in this section following Car-
tan’s description of embedded hypersurfaces. The remain-
ing variation [55] in the Minkowski world vector added an
expression for the extrinsic curvature in terms of the Kalb—
Ramond field and the u-harmonics. These data combined
with the well-known theorem [27] on the embedding of an
arbitrary (p + 1)-dimensional manifold into D-dimensional
Minkowski space with D > w connect p-branes
with (p + 1)-dimensional gravity, and they may be consid-
ered complementary to the observations presented below.

3 SO, p) x SO(D — p — 1)-invariant gauge model
The first-step SO(1, p) x SO(D — p — 1) gauge-invariant

model in curved (p + 1)-dimensional space-time with the
coordinates £# is defined by the action

s=y [artieyigl £
1 1
= y/dpﬂg\/@ |:ZSp (Fun F™) — ZSp (HuwH™)

oV Wi G, Wi, w4 V] . (16)

where g, is a given pseudo-Riemannian metric, V' is an
unknown potential term describing generally the gauge-
invariant self-interaction of W, .

The general and gauge-covariant derivative @M in (16),

@u Wyia = au Wyia — FZV Wpia + A;u'kkaa +B;Labwuib,
17)
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differs from the conventionally used general covariant deriva-
tive

\m Wyia = 8;LWuia - Fﬁv Wpiaa Vu8vp = 07 (18)

which includes only the Levi-Civita connection Fﬁv =
Iy = 1877 (3uguy + duguy — dyguv). While construct-
ing the kinetic part of the vector matrix field WM in (16)
we kept in mind the analogy with the Ginzburg—Landau
Lagrangian [60]. This analogy presupposed the replace-
ment of the massive G-L scalar field by the massless
vector field WM and the transition from the Minkowski
space to a curved space-time. Such a generalization has
an arbitrariness connected with the possibility to build
three different invariants from the first-order derivatives
of vifu: Sp(Vu W, VEWY), Sp(V,W,V*WH), and Sp(V,,
WHV,W"). We included these invariants into a general-
ized G-L Lagrangian with three arbitrary phenomenolog-
ical constants, and we compared the corresponding EOM
with the constraints (13—15) requiring their compatibility.
This procedure uniquely fixed the phenomenological con-
stants and resulted in the kinetic terms for Wu in (16), where
VikwYl = VAWY + VYWH, and the gauge fields, respec-
tively. The corresponding Euler—Lagrange equations for the
gauge and vector fields following from (16) with the kinetic
part we found are

~ ~ 1 ~
VuF) ==V, (Wi[fwv]ak) - EWu[uaV[UW“]a\k], (19)

A~ A

. 1 N .
ViHly ==V (WHW) = Wi VW, 20)

av

v, Viwrlia — oGy, wrie 4 .
a g IWoia

2

The potential V can also be found from the compatibility
of these equations with the constraints (13—15). To simplify
these calculations we introduce the shifted field strengths
L and 147,

Fik = (Fuw + W Wi, 22)
HYY = (Hyy + Wi Wi)® (23)

and rewrite Egs. (19-21) in the equivalent form
~ 1 ~
Vi = =5 Woia V" W, (24)

N 1 N ,
ViHy, = —EWu[auV[” W, (25)

aVv

@ @[MWV]IIQ — _2[@M’ @U]Wia + )
. " IWyia

(26)

This representation permits to use the first generalized
Bianchi identities,

[%M’ %u] = Ié;}.v + ﬁ/}_u + ﬁ,uv, (27)
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where the Riemann—Christoffel tensor for the background
metric g, is

ley)»v)L =: (8 (Vi V7.

(28)

A
Tl l |v1x)V =

As aresult, Eq. (26) for W;f‘ acquire the form

J A

5Vu Vikrlia — vt ke qqpva wib
1 9V n v ia wyysia
= Sy AW WL WD - RWEL(29)
via

where Ry, := R, is the Ricci tensor. Further we use the

relation

l ! . v ia

23w WallW! WL Wyl = (W, WY, W)
(30)

including the commutators of Wﬂ and introduce the shifted
potential V

1
Vi=V+ ESp(WM[[W“, WP, W,D, (31

where the trace Sp(W, [[WH, W], W, ]) = (W, [[WH, WF],
Wp])l i

Then Eqs. (24), (25), and (29) of the model are represented
in the form

1

v FL = —EWMHW[”W“ ¥, (32)
ViHyy, = —% tali VO Wy, (33)
%@ Vikwvlia g guvi ke 4 pgiva, wib

suitable for a comparison with the Gauss—Codazzi con-
straints (13-15).

Indeed, in terms of the shifted field strengths F (22) and
H (23), the G-C constraints (13—15) acquire a simple form:

ik b 5 ]
Fit =0 HE =0 VHEW=0, (35)
compatible with Egs. (32-34) provided that V satisfies the

condition
1 oV

2 0Wyia
Due to the independence of the background Ricci tensor R*”
of W,;, we find the general solution of (36),

— RMWW/ =0. (36)

V=R"YWI Wi —c, (37)

where the integration constant c¢ is proportional to the cos-
mological constant connected with the background metric

&uv(£”). The substitution of V (37) into (36) transforms it
into the identity for any R*" independent of Ww In view of
this, various restrictions on R*”, including the Bianchi iden-
tity, will not lead to a new relation on WM. Thus, Eq. (36)
comes to us as the necessary condition for the potential VV
needed to consider (35) as some initial data for Eqgs. (32-34).

Therefore, we obtain the sought for Lagrangian of the
SO(1, p) x SO(D — p — 1)-invariant gauge model (16) com-
patible with the G-C constraints (35)

£= 15p (FunF™) — 15p (HuH™)

1
4
+

VWi Tw 5, Wi, W

1

2
. 1

+ RMUW;/,(Iina - ESP(WM[[WM’ Wp]’ WP]) +c

(38)

which produces the following Euler-Lagrange equations:

. 1 .
Vil = =5 Wutila VW g, (39)
. 1 . ,

ViHey, = =5 Watai VW), (40)
%@ @[MWV ia _+_]:;wz Wka+H/wu Wzb 0 (41)

for the gauge A,;*, B,,” and the vector W,;, fields in a
curved background.

The Lagrangian (38) resembles the MacDowel and Man-
souri one [61], which describes the Hilbert—Einstein
Lagrangian L in terms of gauge fields of the group Sp(4)
including its subgroup SO(1, 3) as an exact symmetry of L.
In their approach the components of the vierbein appear as
the gauge fields hL associated with the spontaneously broken
local translations of Sp(4).

In our approach the components of W[L“ realizing the
Nambu-Goldstone modes of the SO(1, D — 1) symmetry
spontaneously broken to its subgroup SO(1, p) x SO(1, D —
p — 1) have an analogous physical sense. In view of this ana-
log of the H-E Lagrangian [61] in (38) it is represented by the
sum of R*Y W;if W,iq and the quartic monomials forming the
potential V. However, in Eq. (38) there are additional kinetic
terms, one of which, Sp(Fj,, F*"), has an opposite sign. This
points to the presence of ghosts produced by the spin con-
nection gauge field A;f To exclude the ghosts we recall
that the Lagrangian (38) is only the first-step Lagrangian,
constructed without taking into account the M-C equations
(11). As mentioned above, Eq. (11) just link the spin connec-
tion with the vielbein components wil. Thus, to transform
the Lagrangian (38) to the second-step Lagrangian really
describing the hypersurfaces of the p-branes it is necessary
to connect the ad hoc introduced metric g, (£€°) in (38) with
Aif. As aresult, the ghost term transforms into an additional

@ Springer
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term in the potential V, as shown in the next section, solv-
ing the ghost problem. Therefore, we will not discuss the
Lagrangian (38) anymore, but we only note that it looks like
a natural generalization of the 4-dimensional Dirac scale-
invariant gravity theory [62] (see also [63]).

To develop this observation one can weaken the require-
ment for the gravitational field g,,, (§”) to be treated as an
external one. Then Eqgs. (39—41) have to be completed by the
variational equations with respect to g,,. These equations
connect g,,, with the gauge field strengths, W ;,, and their
covariant derivatives, and they may provide an alternative
solution of the ghost problem. This requires an additional
investigation.

Below we build the second-step action following from the
modification of S (16) caused by the M-C equations (11).
This modification yields a gauge-invariant action associated
with the minimal p-branes in the Minkowski space.

4 Branes as solutions of the gauge model

Since the Gauss—Codazzi equations (35) define some
extremals of S (16) with the Lagrangian density (38) in a
(p + 1)-dimensional curved space-time, it may be treated as
the p-brane hypersurface X, 1. For this purpose, we have
to identify the metric g, of the (p + 1)-dimensional space
introduced in (16) with the metric of the (p 4 1)-dimensional
world hypersurface swept by the p-brane in a D-dimensional
Minkowski space. The identification requires one to take into
account the remaining Maurer—Cartan equations (11), which
connect the (p + 1)-bein a)iL of the hypersurface X, with
the gauge and vector fields of the model (16).

In terms of these fields Eqs. (11) transform into the con-
straints

D@}y = 30y + Apykeong =0, (42)
wfu Wv]ia = 0, (43)
additionally to the G-C constraints (13—15). The vielbein wL
connects the orthonormal moving frame n; with the natu-
ral frame e,. Therefore, the metric tensor G, (§”) of the
hypersurface is represented as

in;, Gy = whnikwﬁ, w;La),’: = (44)

e, =w),

and is identified with the background metric g,,(§°) =
G v (&) of the model (16).
The general solution of the algebraic constraints (43),

2
. 0°X

Wit = =l =0

=n“d,,x, (45)

includes the second fundamental form ,,,“ (§”) of the hyper-
surface X4 1.
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Equation (42) have the solution fixed by the conditions

Vi, = du0l, — T8 o) + A, kol =0, (46)
which express the tetrad postulate, well known from general
relativity and linking the affine and metric connections on
Xp+l-

Thus, the metric connection I'j;, and A . turn out to be
identified by means of the gauge transformation

r? =of A/ ok + 8,05 0f = ! Dol 47)

where the transformation function a)’u (44) coincides with the
(p + 1)-bein (44) of the hypersurface. Equation (47) permit
us to express the gauge field Amk and its strength F ,mk by
means of ka and the Riemann tensor R;,," (28)

Af)m = wi)rfkw“" + wgava))‘m, (48)

F;wik = w;, R;wykw]);s (49)

respectively. Equation (49) shows the transformation of the
ghost kinetic term in the Lagrangian (38) to the quadratic
term into the Riemann tensor of curvature: %S p(FuFHY) =
— 2 Ryuupr RMP*, with the change of sign.

Then we have to substitute the metric connection Ff , for
the gauge field A, into the G-C constraints (13—15). This
substitution must be done together with the substitution of
the massless tensor field [,,,* = —a)f} W,;¢ instead of the
vector field W,;¢ using the relation (45).

As a result, the G-C constraints (13—15) are transformed
nto

R;wyk = l[/tyalu])\av (50)
Huvah = l[uyal\)]yb’ (S
V[tlu]pa =0, (52)

containing the general and SO(D — p — 1)-covariant deriva-
tive Vf[
Vil i= 0ulyy® = T, lp® =T 1% + By, (53)

So, we observe the reduction of the M-C equations (11—
12) to the modified field constraints (50-52). It should be
emphasized that the constraint (50) expresses the generaliza-
tion of the Gauss Theorema Egregium for surfacesin D = 3
to (p + 1)-dimensional hypersurfaces embedded into a D-
dimensional Minkowski space.

After the exclusion of AU and the substitution of /,,“ for
W% in (38) we obtain a (p+1)-dimensional SO(D — p—1)-
invariant gauge action describing hypersurfaces equipped by
the metric g,,. The reduced action must have extremals com-
patible with the constraints (50-52). These constraints show
that the ghost’s kinetic and R*” Wli“ W,iq terms in (38) can
be transformed into the terms quartic in/j},, and consequently
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shifted to the potential V. Thus, the SO(D — p — 1)-invariant
second-step action should have the form

1
S = V[dp+IEM{ - ZSP(H;WHMV)

1
+ 5 Vilupa VI

— VIl VTP V}. (54)

Variation of (54) in the dynamical fields /,,,“, Blﬂb gives
their EOM

1
ViiH = zzvp[av“#zv]ﬂb], (55)

lVJ_VJ_[,ulv]pa — _[VJ_M7 VLV]IMPQ + l v ,
oK 2 dlypa

(56)

where H4Y := H — I;,7l,),". Equations (55-56) have
the G-C constraints (51)—(52)

HZI") =0, V[J[le]pa =0, (57)
as their particular solution, provided that
1 oV

— = [V, vA),Pe . 58
200 [ 1, (58)

Using the Bianchi identities for V- w (53) we represent the
r.h.s. of (58) as

[V V2% = RyuoP% 4 Ry oM 4 Hy 107,
(59)

Further, the use of the G-C representation of the Riemann
tensor R,,,* (50) and the field strength H,,,“}, (51) permits
one to express the r.h.s. of (59) in the form of a cubic poly-
nomial in /*V¢. The substitution of the polynomial into Egs.
(58) transforms them into the analytically solvable system of
conditions

1oV
200

— (1Y Sp(ly) + (21b1“1b — 11k — zbzbza)p”

— 1P Sp (I,1%) (60)

where Sp(I*) = ghV14, and Sp(1“1°) = giV1% 1%,
Equation (60) have the following solution:

1
V = =3 SpUalp)Sp(*1) + Sp(Lalyl1")

—Sp(al°1,1°) + c, 61)
Sp(I*) =0, (62)

fixing the potential term V and the trace of the second form
Ly

Equation Sp(I*) = 0 are the well-known minimality con-
ditions for the world volume of the (p + 1)-dimensional
hypersurface. They are equivalent to the EOM [25,26] of

the fundamental p-branes in the D-dimensional Minkowski
space,

Ow+hyx — 0, (63)

where (J*1 is the invariant Laplace—Beltrami operator on
X p+1s

O+ .—

"

VIgl

The equivalence of Eq. (62) for the [-traces (45)-(63) fol-
lows from Eq. (3), showing orthogonality between n® and the
vectors dgX tangent to X,4q: naa% = 0. Thus the metric

glg* dp.

connection contribution to Sp (/) vanishes.
Equation (63) follows from the Dirac action for the p-
branes,

S— T/dpﬂswg?, (64)

where g is the determinant of the induced metric gop =
Baxaﬂx.
This proves that the SO(D — p — 1) gauge-invariant model

S = y/dp+ls\/|g| L,
1

1 L €L L L
+5ViclopaV R ot /A s A

1
—ESp(lazh)Sp(lalb) + SpLalpl1®)
—SpLal°1pI") + ¢ (65)

for the gauge Bl‘jb and the tensor /j;, fields in the back-
ground g, possesses the solutions (50-52) and (62). The
latter describe electrically and magnetically neutral Dirac
p-branes with minimal world volumes. The cosmological
constant y ¢ in (65) is not essential in the considered case of
the background gravitational field g,,,. However, it becomes
a significant parameter in the process of quantization of the
model.

The zero-mode structure of the gauge model (65) is
defined by rigid symmetries of the primary equations (3—4)
for the collective coordinates x(£§#) of the model. It does not
require explicit solution of the Maurer—Cartan equations (50—
52). The latter are the integrability conditions of Egs. (3—4)
invariant under rigid translations and rotations of x(§/). As
aresult, the world vector x(§#) is restored up to global trans-
lations and rotations. Thus, we obtain an infinitely degener-
ate family of branes with the same energy. The Dirac action
(64) invariant under the mentioned symmetries just realizes
the classical world volume theory for such world volume-
minimizing configurations and does not include other terms.

@ Springer
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One might ask whether the extremals defined by the first-
order PDEs (50-52) with Spl, = 0O can be interpreted as
solitons; it is necessary to know their explicit time depen-
dence. But, in view of the brane <> GFT map, this question
reduces to the problem of the existence of solitonic solutions
for the nonlinear wave equations (63). The exact solutions
of Eq. (63) found in [25,26] include, in particular, the static
ones, which may be understood as solitons. However, this
gives rise to certain objections, since these static solutions
have either an infinite total energy for infinitely extended
branes, or a singular world volume metric for the closed ones.
The absence of regular static solutions with a finite energy
is explained by the observation that the branes undergo the
action of anharmonic elastic forces tending to contract them.
This instability does not occur if the branes rotate, and the
centrifugal force is sufficient to compensate for the elastic
force. Another way for compensating the brane instability is
the introduction of additional forces (fluxes) that, however,
will modify the original Dirac action (64). These arguments
also explain why the constraints (50-52) and (62) cannot be
treated as BPS-like conditions. In its turn, the existence of
such conditions strongly depends on the boundary conditions
for the gauge-invariant action (65).

5 Summary

We unified the Gauss map with the brane dynamics and intro-
duced new dynamical variables alternative to the world vec-
tors x. These variables have a clear interpretation as the Yang—
Mills fields interacting with massless multiplets in curved
backgrounds. The (p+1)-dimensional gauge-invariant mod-
els including these fields were constructed, and it was proven
that the (p + 1)-dimensional hypersurfaces embedded into
D-dimensional Minkowski space are exact extremals of their
Euler-Lagrange equations.

At the first step we built the SO(1, p) x SO(D — p — 1)
gauge-invariant model, where the spin and metric connec-
tions were treated as independent ones in a bundle space.
This model describes interactions of the Yang—Mills fields
with the massless vector multiplet in a (p + 1)-dimensional
curved background. The model has the ghost degrees of free-
dom carried by the SO(1, p) gauge fields associated with the
spin connection. To cancel the ghosts we used the tetrad pos-
tulate identifying the metric and the SO(1, p) connections.
As aresult, the SO(1, p) x SO(D — p — 1) gauge model of
the first step was reduced to the SO(D — p — 1)-invariant
gauge model of interacting gauge and massless tensor fields
in the gravitational background. Then we found the exact
solution of this gauge model, which described the hypersur-
faces characterized by minimal (p + 1)-dimensional world
volumes. We identified these hypersurfaces as the funda-

@ Springer

mental Dirac p-branes embedded into the D-dimensional
Minkowski space.

The gauge approach presented reformulates the prob-
lem of the fundamental p-brane quantization to that of the
SO(D — p — 1) gauge-invariant model (65) along its Euler—
Lagrange extremals constrained by the Gauss—Codazzi equa-
tions represented as the field constraints. This permits us
to apply the well-known BFV-BRST and other methods of
quantization of gauge theories to the quantization of the fun-
damental branes. This investigation is in progress.
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