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Abstract We analyze the role of vertex operator algebra
and 2d amplitudes from the point of view of the representa-
tion theory of infinite-dimensional Lie algebras, MacMahon
and Ruelle functions. By definition p-dimensional MacMa-
hon function, with p ≤ 3, is the generating function of
p-dimensional partitions of integers. These functions can
be represented as amplitudes of a two-dimensional c = 1
CFT, and, as such, they can be generalized to p > 3.
With some abuse of language we call the latter amplitudes
generalized MacMahon functions. In this paper we show
that generalized p-dimensional MacMahon functions can be
rewritten in terms of Ruelle spectral functions, whose spec-
trum is encoded in the Patterson–Selberg function of three-
dimensional hyperbolic geometry.

1 Introduction

This paper, whose main focus is the relation among CFT
correlators, MacMahon and Ruelle functions, is motivated
by the steady, if not growing, interest in the application of
symmetric functions, in particular of the two-dimensional
MacMahon function and its higher-dimensional generaliza-
tions to physical systems. This occurs in many areas of statis-
tical physics [1–3] and topological string theory [4–6], BPS
black holes, models of branes wrapping collapsed cycles in
Calabi–Yau orbifolds, and quiver gauge theories [7–9]. Gen-
eralized MacMahon functions are used, in particular, in the
computation of amplitudes of the A-model topological string
[10–13], more specifically as regards the so-called topologi-
cal vertex.

a e-mail: bonora@sissa.it
b e-mail: aabyts@gmail.com
c e-mail: emilia@if.uff.br

A p-dimensional MacMahon function for p ≤ 3 is the
generating function of a p-dimensional partition of integers,
which is the number of different ways in which we can split
an integer using distinct p-dimensional arrays of other non-
negative integers. As we shall see these functions can be
represented as amplitudes of a two-dimensional CFT. We
extend this representation as a correlator to generic p and
with some abuse of language we call the resulting objects
generalized MacMahon functions. For p ≥ 4 these func-
tions do not coincide precisely with the generating functions
of p-dimensional partition of integers, but they have all the
same remarkable properties. In particular we will show in this
paper that generalized p-dimensional MacMahon functions
can be rewritten in terms of Ruelle spectral functions, whose
spectrum is encoded in the Patterson–Selberg function of
three-dimensional hyperbolic geometry. This may lead to an
interpretation of the above results in terms of the ADS/CFT
correspondence, an attractive possibility which we leave for
future investigation.

There is also another side of our work we would like to
recall. We have remarked elsewhere the important connec-
tion between quantum generating functions in physics and
formal power series associated with dimensions of chains
and homologies of suitable infinite-dimensional Lie alge-
bras. MacMahon and symmetric functions play an important
role in the homological aspects of this connection; its appli-
cation to partition functions of minimal three-dimensional
gravities in the space-time asymptotic to AdS3, which also
describe the three-dimensional Euclidean black holes, pure
supergravity, elliptic genera, and associated q-series were
studied in [14,15]. On the other hand special applications of
symmetric functions appear in the representation theory of
infinite-dimensional Lie algebras [14–17]. The usefulness of
symmetric function techniques can be demonstrated in pro-
viding concrete realizations of the (quantum) affine algebra,
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for instance in calculating the trace of products of currents of
this algebra. These functions are, respectively, the appropri-
ate character chR of the basic representations of the sl(∞)

and the affine algebra ̂sl(∞) at large central charge c [18].
Note that all simple (twisted and untwisted) Kac–Moody
algebras can be embedded in the sl(∞) algebra of infinite
matrices with a finite number of non-zero entries, which has
a realization in terms of the generators of a Clifford algebra.
It has been observed that in the limit c → ∞ the basic rep-
resentation of ̂sl(∞) is related to the partition function of a
three-dimensional field theory [7,19].

Needless to say, although these links are suggestive, the
general panorama looks still inarticulate, and more models
and examples are needed to accommodate them into a pre-
cise scheme. One of the purposes of the present paper is to
better understand the role of vertex algebra and 2d ampli-
tudes from the point of view of the representation theory
of infinite-dimensional Lie algebras, generalized MacMahon
and Ruelle functions. In this regard particularly important is
the correspondence between Ruelle spectral functions and
the Poincaré q-series associated with conformal structure in
two dimensions.

The organization of the paper is as follows. In Sect. 2
we introduce the algebra of q-deformed vertex operators (of
the c = 1 2d conformal model) and consider their gener-
alizations and the properties essential for the next sections.
In Sect. 3 we reformulate the generalized MacMahon func-
tions in terms of the Ruelle spectral functions of hyperbolic
geometry. We also broach and briefly discuss the topic of
higher-dimensional partitions, as such, originally introduced
by MacMahon. We analyze correlation functions of vertex
operators, the MacMahon’s conjecture (see (3.15)) and their
possible interpretation as p-dimensional partition functions.

In Sect. 4 we consider multipartite (vector valued) gen-
erating functions and utilize well-known formulas for Bell
polynomials. We derive the infinite hierarchy of q-deformed
vertex operators and factorized partition functions and rep-
resent them by means of spectral functions.

Finally in Sect. 5 we conclude with a summary of the main
results accompanied by discussions and suggestions.

In the appendix we give a few formulas involving Ruelle
and Patterson–Selberg spectral functions of hyperbolic three-
geometry.

2 Algebra of vertex operators

In this section we introduce the notation and quote some
earlier results we need. To this end we follow mostly [12]
and, in particular, the subsequent elaboration by [20]. Let
us consider the hierarchy of generalized local q-deformed
vertex operators �

(p)
± (z, q) (p > 1)

�
(p)
± (z, q) = exp

( ∞∑
n=1

∓i

n

z∓n

(1 − qn)p−1 J±n

)
. (2.1)

Jn are the modes of a standard holomorphic U (1) Kac–
Moody J (z) with Laurent expansion is J (z) =∑

n∈Z
z−n−1 Jn, Jn = ∮

(zn/2π i)J (z)dz. The Heisenberg
algebra is [Jn, Jm] = nδn+m,0, J †

n = J−n and Jn|0〉 = 0 for
n ≥ 1. The commuting mode J0 is disregarded.

One can use the identities z±n/(1 − qn)p−1 =∑p−1
j=1 znq±n/(1 − qn) j + z±n to obtain the recursive rela-

tions

�
(p)
− (z, q) = �

(1)
− (z)

p−1∏
j=2

�
( j)
− (qz, q),

�
(p)
+ (z, q) = �

(1)
+ (z)

p−1∏
j=2

�
( j)
+ (z/q, q). (2.2)

The local operators �
(1)
± (z) := �±(z) act on the Hilbert

space states of the c = 1 2d conformal field theory and exhibit
properties inherited from the algebra of the J±n . They obey
the following algebra:

�±(x)�±(y) = �±(y)�±(x), x, y ∈ C,

�+(x)�−(y) = (1 − y/x)−1�−(y)�+(x). (2.3)

It is interesting to note that introducing L0 = ∑∞
n>0 J−n Jn ,

we get

[L0, �
(p)
± (z, q)] = z

ddz

�

(p)

±
(z, q). (2.4)

Thus �
(p)
± (z, q) are ‘weight 0 primaries’. It follows, in par-

ticular, that the operator q L0 acts on �±(z, q) as follows:
q L0�±(z, q)q−L0 = �±(qz, q).

Due to the properties Jn |0〉 = 0, 〈0|J−n = 0 for n > 0, the
operators �±(z) act on the vacuum as the identity operator:
�+(z)|0〉 = |0〉, 〈0|�−(z) = 〈0| it follows that

〈0|�+(z)�−(w)|0〉 = 1

1 − w
z

. (2.5)

As noted in [20], �−(z) contains all the monomials in
J−n j , Jλ−n ≡ ∏

j≥1

(
J−n j

)λ j , where λ = (λ1, λ2, . . .) is a
2d partitions; the state �−(z)|0〉 is reducible and is given by
a sum over all possible 2d partitions λ. In the case z = 1,
�−(1)|0〉 = ∑

(2d partitionsλ) |λ〉. A similar relation is valid
for 〈0|�+(1).

With the mathematical tools just introduced we can pro-
ceed to higher-dimensional generalizations. For example,
one can rewrite �

(2)
± (z, q) as follows:
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�
(2)
− (z, q) =

−1∏
t=−∞

�−(1) (z) q L0 =
∞∏

k=0

�−(1)
(

qk z
)

= exp

⎛
⎝∑

n≥1

i

n

zn

(1 − qn)
J−n

⎞
⎠ , (2.6)

�
(2)
+ (z, q) =

∞∏
t=0

q L0�+(1) (z) =
∞∏

k=0

�+(1)
(

q−k z
)

= exp

⎛
⎝−

∑
n≥1

i

n

z−n

(1 − qn)
Jn

⎞
⎠ . (2.7)

The products
∏−1

t=−∞(−−) in these equations are taken
over diagonal slices of the 3d partitions. They are reminiscent
of the transfer matrix method, where a 3d partition is thought
of as an amplitude between the slice at t = −∞ (in-state)
and the slice at t = ∞ (out-state). The algebra of these vertex
operators takes the following form:

q L0�
(2)
± (z, q)q−L0 = �

(2)
± (qz, q),

�
(2)
± (z, q)�

(2)
± (w, q) = �

(2)
± (w, q)�

(2)
± (z, q). (2.8)

We can replicate recursively this construction. This leads
to the following hierarchy of composite vertex operators:

�
(n+1)
− (z, q) =

∞∏
tn=1

· · ·
∞∏

t2=1

∞∏
t1=1

(
�− (z) q L0

)
· q L0 · · · q L0 .

(2.9)

A similar expression can be written down for�(n+1)
+ (z, q).

For n = 0, we have just �− (z). It is not difficult to check
that the explicit expression of the vertex operators �

(p)
− (z, q)

(p ≥ 1) acting on the vacuum is given by

�
(p)
− (z, q) |0〉 = exp

( ∞∑
n=1

i zn J−n

n (1 − qn)p−1

)
|0〉

= �− (z)
p−1∏
k=2

�
(k)
− (qz, q) |0〉.

3 MacMahon, partitions, and Ruelle spectral functions

In this section, using the formulas in the appendix, we
transcribe the generalized MacMahon partition functions in
terms of spectral functions of hyperbolic geometry.

The 1d and 2d MacMahon function can be interpreted as
the two-point correlation of the vertex operators �+ (1) and
�− (q)

Z1d = 〈0|�+ (1) �− (q) |0〉 =
〈
0| �+ (1) q L0�− (1) |0

〉
= (1 − q)−1,

(3.1)

Z2d = 〈0|�+ (1) q L0
∏
k≥1

�−(1)q L0 |0〉 = 〈0|�+(1)
∏
k≥1

�−(qk)|0〉

=
∏
k≥1

(
1 − qk

)−1 by Eq.(6.4)====== [R(s = 1 − i�(τ))]−1. (3.2)

In the previous section we have introduced a hierarchy of
level p vertex operators �

(p)
± . In perfect analogy with Z1d

and Z2d we can introduce and compute Z3d :

Z3d =
〈

0|
( ∞∏

t=0

q L0�+(1)

)
q L0

( −1∏
t=−∞

�−(1)q L0

)
|0
〉

=
〈

0|
∞∏

t=0

�
(1)
+

(
q−t− 1

2

) ∞∏
�=1

�
(1)
−

(
q�− 1

2

)
|0
〉

=
∞∏

�=0

∞∏
j=1

[
1 − q j+�

]−1 k:= j+�====
∞∏

k=1

k∏
j=1

[
1 − qk

]−1

=
∞∏

k=1

[
1 − qk

]−k
. (3.3)

When obtaining the second line in (3.3) we split q L0 as
q L0/2q L0/2 and commute each of the operators q L0/2 to the
left and the other to the right. The last product in (3.3) is pre-
cisely the usual form of the 3d MacMahon function, which,
again, can be rewritten in terms of the spectral Ruelle func-
tions:

∞∏
k=1

[
1 − qk

]−k by Eq.(6.8)======
∞∏

n=1

[R(s = n(1 − i�(τ)))]−1 .

(3.4)

p-dimensional partition functions. The structure of the p-
dimensional partition function Z pd can be analyzed in terms

of the vertex operators �
(p)
± (z, q) introduced before. As we

have seen above, (2.9), the latter can be interpreted as the
level p generalization of �−(z), and they obey the rela-
tions �

(p)
− (z, q) = q L0�

(p)
− (1, q) q−L0 , p ≥ 0. The p-

dimensional partition functions Z pd can be defined as [20]

Z pd =
〈
0|�+ (1) �

(p)
− (z, q)|0

〉
≡

〈
0|�+ (1) q L0�

(p)
− (1, q) |0

〉
, p ≥ 0. (3.5)

We can rewrite these partition functions in terms of Ruelle
spectral function. Indeed, commuting �

(p)
− (z, q) to the left

of �+ (1, q) for p ≥ 2, one gets by induction (see for details
[20])
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Z pd =
∞∏

k=1

[
1 − qk

]−C(k,p)

by Eq.(6.6)======
∞∏

n=1

[ R(s = n(1 − i�(τ)))

R(s =(n+1)(1−i�(τ)))

]−C(n,p)

, (3.6)

C(n, p) = (n + p − 3)!
(n − 1)!(p − 2)! . (3.7)

Plane partitions. So far we have called Z pd a p-dimensional
partition function without any comment. Here we would like
to motivate this term at least for the cases p ≤ 3. It comes
from the fact that correlation functions of the correspond-
ing vertex operators admit a presentation that can be associ-
ated with higher-dimensional partitions. Recall that a higher-
dimensional partition of n is an array of numbers whose sum
is n:

n =
∑

j1,..., jr ≥0

n j1 j2... jr , where n j1 j2... jr ≥ nk1k2...kr (3.8)

whenever j1 ≥ k1, j2 ≥ k2, . . . , jr ≥ kr , and all n j1 j2... jr
nonnegative integers. Let us introduce also plane partitions:
these are two-dimensional arrays of nonnegative integers
subject to a nonincreasing condition along rows and columns.
It is worth recalling that Young tableaux with strict decrease
along columns are essentially equivalent to plane partitions.
They were originally used by Alfred Young in his work on
invariant theory. Young tableaux have played an important
role in the representation theory of the symmetric group; they
also occur in algebraic geometry and in many combinatorial
problems.

Let us denote πr (n1, n2, . . . , nk; q) the generating func-
tion for plane partitions with at most r columns, at most k
rows, and with ni the first entry in the i th row. The functions
πr (n1, n2, . . . , nk; q) are completely determined by the fol-
lowing recurrence and initial condition:

πr+1(n1, n2, . . . , nk; q) = q
∑k

j=1(n j )

×
nk∑

mk=0

nk−1∑
mk−1=mk

· · · ×
n1∑

m1=m2

πr (m1, . . . , mk; q), (3.9)

π1(n1, n2, . . . , nk; q) = q
∑k

j=1(n j ). (3.10)

πr+1(n1, n2, . . . , nk; q) can be represented as a determinant
(see for details [21]):

πr (n1, n2, . . . , nk; q) = q
∑k

j=1(n j )

× det

[
q(i− j)(i− j−1)/2

(
n j + r − 1

r − i + j − 1

)]
1≤i, j≤k

. (3.11)

Define the number of plane partitions of m, pk,r (m, n),
with at most r columns, at most k rows, and with each entry

≤ n, and let πk,r (n; q) := ∑∞
m=0 pk,r (m, n)qm . Then one

can observe that

πk,r (n; q)
by Eq.(3.9)=======

∑
nk≤···≤n1≤n

πr (n1, n2, . . . , nk; q)

= q−knπr+1(n1, n2, . . . , nk; q)

by Eq.(3.11)======= det

[
q(i− j)(i− j−1)/2

(
n + r

r − i + j

)]
1≤i, j≤k

.

(3.12)

As a result MacMahon’s formulas for the generating function
of k-rowed plane partitions πk,∞(∞; q) follow [21]:

∞∑
m=0

pk,∞(m,∞)qm =
∞∏

n=1

(1 − qn)−min(k,n), (3.13)

∞∑
m=0

p∞,∞(m,∞)qm =
∞∏

n=1

(1 − qn)−n = Z3d . (3.14)

Let μk( j) be the number of k-dimensional partitions of j ,
then due to the MacMahon’s conjecture

∞∑
j=0

μk( j)q j =
∞∏

n=1

(1 − qn)−C(n,k),

C(n, k) = (n + k − 2)!
(n − 1)! . (3.15)

MacMahon eventually came to doubt the truth of (3.15)
in general; in fact, its falsehood in general was established
in the late 1960s [21]. However, this conjecture is certainly
true for k = 1 and 2. It is remarkable that

∞∑
j=0

μ1( j)q j =
∞∏

n=1

(1 − qn)−1 = Z2d , (3.16)

∞∑
j=0

μ2( j)q j =
∞∏

n=1

(1 − qn)−n = Z3d . (3.17)

Comparing (3.15) and (3.6), (3.7) we get the relations
C(n, k = 1) = C(n, p = 2), C(n, k = 2) = C(n, p =
3). The MacMahon‘s conjecture for the case k > 2 can be
corrected by using the comparison between C(n, k) and the
power C(n, p) in the q-expansion of p-dimensional partition
function Z pd .

Concluding this section, the term MacMahon partition
function for Z pd is fully justified for p ≤ 3. Following [20]
we call Z pd for p ≥ 4 generalized MacMahon functions due
to the straightforward way they are obtained by generaliz-
ing the definition for p ≤ 3. The relation with the original
MacMahon’s definition is still an intriguing open problem:
its solution may shed light also into the corresponding 2d
CFT mentioned above.
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4 Multipartite generating functions and infinite
hierarchy of q-deformed vertex operators

Multipartite generating functions. Let consider, for any
ordered �-tuple of nonnegative integers not all zeros,
(k1, k2, . . . , k�) = k (referred to as “�-partite” or multipar-
tite numbers), the (multi)partitions, i.e. distinct representa-
tions of (k1, k2, . . . , k�) as sums of multipartite numbers.
Let us call C(u,�)

− (k) = C(�)
− (u; k1, k2, . . . , k�) the number of

such multipartitions, and introduce in addition the symbol
C(u,�)

+ (k) = C(�)
+ (u; k1, k2, . . . , k�). Their generating func-

tions are defined by

F(u) :=
∏
k≥0

(
1 − uxk1

1 xk2
2 · · · xk�

�

)−1

=
∑
k≥0

C(u,�)
− (k)xk1

1 xk2
2 · · · xk�

� , (4.1)

G(u) :=
∏
k≥0

(
1 + uxk1

1 xk2
2 · · · xk�

�

)

=
∑
k≥0

C(u,�)
+ (k)xk1

1 xk2
2 · · · xn�

� . (4.2)

Therefore,

log F(u) = −
∑
k≥0

log
(

1 − uxk1
1 xk2

2 · · · xk�

�

)

=
∑
k≥0

∞∑
m=1

um

m
xmk1

1 xmk2
2 · · · xmk�

�

=
∞∑

m=1

um

m
(1−xm

1 )−1(1−xm
2 )−1 · · · (1 − xm

� )−1

=
∞∑

m=1

um

m

r∏
j=1

(1 − xm
j )−1, (4.3)

log G(−u) = log F(u) . (4.4)

Finally,

F(u) =
∑
k≥0

C(u,�)
− (k)xk1

1 xk2
2 · · · xk�

�

= exp

⎛
⎝ ∞∑

m=1

um

m

r∏
j=1

(1 − xm
j )−1

⎞
⎠ , (4.5)

G(u) =
∑
k≥0

C(u,�)
+ (k)xk1

1 xk2
2 · · · xn�

�

= exp

⎛
⎝ ∞∑

m=1

(−u)m

m

r∏
j=1

(1 − xm
j )−1

⎞
⎠ . (4.6)

It is known that the Bell polynomials are very useful in
many problems in combinatorics. We would like to note their
application in multipartite partition problem [21]. The Bell
polynomials technique can be used for the calculation C(�)

− (k)

and C(�)
+ (k). Let

F(u) := 1 +
∞∑
j=1

P j (x1, x2, . . . , x�)u
j ,

P j = 1 +
∑
k>0

P(k; j)xn1
1 · · · xn�

� , (4.7)

G(u) := 1 +
∞∑
j=1

Q j (x1, x2, . . . , x�)u
j ,

Q j = 1 +
∑
k>0

Q(k; j)xn1
1 · · · xn�

� . (4.8)

Useful expressions for the recurrence relation of the Bell
polynomial Yn(g1, g2, . . . , gn) and generating function B(u)

have the forms [21]:

Yn+1(g1, g2, . . . , gn+1) =
n∑

k=0

(
n
k

)

× Yn−k(g1, g2, . . . , gn−k)gk+1, (4.9)

B(u) =
∞∑

n=0

Ynun

n! �⇒ log B(u) =
∞∑

n=1

gnun

n! . (4.10)

To verify the second formula in (4.10) we need to differ-
entiate with respect to u and observe that a comparison of
the coefficients of un in the resulting equation produces an
identity equivalent to (4.9). From (4.9) one can obtain the
following explicit formula for the Bell polynomials (known
as Faa di Bruno’s formula):

Yn(g1, g2, . . . , gn) =
∑
k  n

n!
k1! · · · kn !

n∏
j=1

(
g j

j !
)k j

. (4.11)

Let βr (m) := ∏r
j=1(1−xm

j )−1; the following result holds
(see for details [21]):

P j = 1

j !Y j (0!βr (1), 1!βr (2) , . . . , ( j − 1)!βr ( j)) , (4.12)

Q j = 1

(−1) j j !Y j (−0!βr (1),

−1!βr (2) , . . . , −( j − 1)!βr ( j)) . (4.13)

As an example, let us calculate P2 coefficient. Using the
recurrence relation (4.9) we obtain P2 = (1/2)Y2(βr (1),

βr (2)) = (1/2)Y2(βr (1)2, βr (2)) = (1/2)
(∏r

j=1(1−
x2

j )
−1 + ∏r

j=1(1 − x2
j )
)

.

The infinite hierarchy. Let us consider again the hierar-
chy �

(p)
− (z, q) of q-deformed vertex operators. We have

�+ (1) �
(p)
− (z, q)= Mp (q) �

(p)
− (z, q) �+ (1),where Mp(q)

is precisely the generalized p-dimensional MacMahon func-
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tion. The general relation is the following:

〈0| �+ (z1) �
(�+1)
− (z�, q) |0〉

=
∞∏

k�=0

· · ·
∞∏

k1=0

∞∏
k0=0

[
1 − qk1+...+k�

z�

z1

]−1

, (4.14)

with z�/z1 = qk0 . In the case x1 = x2 = · · · = x� = q we
get

F(u) =
∏
k≥0

(
1 − uqk1+k2+···+k�

)−1

= exp

(
−

∞∑
m=1

um

m
(1 − qm)−�

)
, (4.15)

G(u) =
∏
k≥0

(
1 + uqk1+k2+···+k�

)

= exp

(
−

∞∑
m=1

(−u)m

m
(1 − qm)−�

)
. (4.16)

These formulas could be interpreted as the � copies of free
CFT2 representations. Indeed, setting uqk1+···+k� = Qkqk0

with Qk = qk1+···+kl (k = (k1, . . . , k�)) we get

Z2 (Qk, q) =
∞∏

k0=0

[
1 − Qkqk0

]−1

= [(1 − Qk)R(s = (k1 + · · · + k�)(1 − i�(τ)))]−1.

(4.17)

Therefore the right hand side of (4.14) can be factorized as∏
k≥0 Z2 (Qk, q) . We can treat this factorization as a product

of infinite copies, each of them is Z2 (Qk, q) and corresponds
to a free CFT2.

5 Conclusions

We have shown above that all p-dimensional partition func-
tions that have been considered in this paper can be written
in terms of Ruelle functions, a spectral function related to
hyperbolic geometry in three dimensions (see the appendix).
Thus they cannot only be interpreted as correlators in a 2d
CFT, but they suggest a possible interpretation in terms of
three-dimensional physics. This relation is, however, still to
be unveiled. In this last section we would like nevertheless to
recall that in some specific cases the interpretation in terms
three-dimensional physics has been possible.

For the benefit of the reader, let us start explaining the con-
nection between highest weight representations of infinite-
dimensional Lie algebras and holomorphic factorized quan-
tum corrections for supergravity in three dimensions. Let
M(c, h) (c, h ∈ C) be the Verma module over Virasoro
(Vir) algebras. We have [L0, L−n] = nL−n and L0 is
diagonalizable on M(c, h) with spectrum h + Z+ and with

eigenspace decomposition M(c, h) = ⊕
j∈Z+ M(c, h)h+ j ,

where M(c, h)h+ j is spanned by elements of the basis of
M(c, h). The conformal central charge c acts on M(c, h) as
c Id. It follows that W j = dim M(c, h)h+ j , where W j is the
partition function [16]. The latter can be rewritten in the form

TrM(c,h) q L0 :=
∑
λ

qλdim M(c, h)λ = qh
∞∏
j=1

(1 − q j )−1 .

(5.1)

The series TrM q L0 is called the formal character of the Vir
module M .

For three-dimensional gravity in a real hyperbolic space
the partition function admits a factorization: it is a product
of holomorphic and antiholomorphic functions W0,1(τ, τ ) =
W (τ )hol · W (τ )antihol, where

W (τ )hol = q−k
∞∏

n=1

(1 − qn+1)−1 ,

W (τ )antihol = q−k
∞∏

n=1

(1 − qn+1)−1 . (5.2)

The holomorphic contribution in (5.2) corresponds to the
formal character of the Vir module. On the other hand the
modulus of a Riemann surface 
 of genus one (the conformal
boundary of AdS3) is defined up to γ ·τ = (aτ +b)/(cτ +d)

with γ ∈ SL(2, Z). Therefore the generating function as
the sum of known contributions of states of left- and right-
moving modes in the conformal field theory takes the form∑

c,d Wc,d(τ, τ ) = ∑
c,d W0,1((aτ + b)/(cτ + d), τ ) . The

generating function, represented as the sum over geometries,
becomes [14]

∑
c,d

Wc,d(γ · τ, τ ) =
∑
c,d

∣∣∣∣∣q−k
∞∏

n=2

(1 − qn)−1

∣∣∣∣∣
2

γ

=
∑
c,d

{
|qq|−k · [R(s = 2 − 2i�(τ))]−1

hol

× [R(s = 2 + 2i�(τ))]−1
antihol

}
γ
.

(5.3)

Here |...|γ denotes the transform of an expression |...| by γ .
The summand in (5.3) is independent of the choice of a and
b in γ . The sum over c and d in (5.3) should be thought of as
a sum over the coset PSL(2, Z)/Z ≡ (SL(2, Z)/{±1})/Z.
This result can be extended to N = 1 supergravity [22]. The
infinite series of quantum corrections for the Neveu–Schwarz
and Ramond sector of supergravity can be reproduced in
terms of Ruelle spectral functions in a holomorphically fac-
torized theory [14].

This is an example of the fact that the Ruelle function
represents a bridge between two-dimensional CFT and three-
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dimensional physics. This might be the meaning also of the
formulas we have derived in the previous sections.

In this light it is important to recall that a particular exam-
ple of MacMahon function, Z3d , is directly linked to the
topological vertex [10] in topological string theory. This is
an open topological amplitude in a Calabi–Yau background.
Analysis of this vertex, Cλμν , and open string partition func-
tion leads to a relation Z3d ∼ Cλμν [12,13,20,23]. This can
be achieved as 〈νt |O+(λ)O−(λt )|μ〉 where the operators O+
and O− play the role of composite local vertex operators of
two-dimensional c = 1 conformal theory, and λ,μ, ν repre-
sent boundary states described by 2d Young diagrams. Appli-
cations of the topological vertex [24] suggest a connection
with Chern–Simons theory. This may be the clue for our
future investigation.
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Appendix: Spectral functions of hyperbolic
three-geometry

In this section we recall some results on the Ruelle (Patterson–
Selberg type) spectral functions. For details we refer the
reader to [25–27] where spectral functions of hyperbolic
three-geometry were considered in connection with three-
dimensional Euclidean black holes, pure supergravity, and
string amplitudes.

Let Gγ ∈ G = SL(2, C) be the discrete group defined
by

Gγ = {diag(e2nπ(Im τ+iRe τ), e−2nπ(Im τ+iRe τ)) : n ∈ Z}
= {γ n : n ∈ Z} ,

γ = diag(e2π(Im τ+iRe τ), e−2π(Im τ+iRe τ)) . (6.1)

One can construct a zeta function of Selberg-type for the
group Gγ ≡ G

γ

(α,β) generated by a single hyperbolic element
of the form γ(α,β) = diag(ez, e−z), where z = α + iβ for
α, β > 0. Actually α = 2π Im τ and β = 2πRe τ . The
Patterson–Selberg spectral function ZGγ (s) and its logarithm
for Re s > 0 can be attached to H3/Gγ as follows:

ZGγ (s) :=
∏

k1,k2≥0

[1 − (eiβ)k1(e−iβ)k2 e−(k1+k2+s)α] ,

(6.2)

log ZGγ (s)= −1

4

∞∑
n=1

e−nα(s−1)

n[sinh2
(

αn
2

) + sin2
(

βn
2

)
]
. (6.3)

For more information as regards the analytic properties of this
spectral function we refer the reader to the papers [26,28].
Let us introduce the Ruelle functions R(s), as an alternating
product of factors, each of which is a Selberg zeta function
(R(s) and ZGγ (s) can be continued meromorphically to the
entire complex plane C),

∞∏
n=�

(1 − qan+ε)

=
∏

p=0,1

ZGγ ((a� + ε)(1 − i�(τ)) + 1 − a︸ ︷︷ ︸
s

+ a(1+i�(τ)p)(−1)p = R(s

= (a� + ε)(1 − i�(τ)) + 1 − a), (6.4)
∞∏

n=�

(1 + qan+ε)

=
∏

p=0,1

ZGγ ((a� + ε)(1 − i�(τ)) + 1 − a + iσ(τ)︸ ︷︷ ︸
s

+ a(1 + i�(τ)p)(−1)p

= R(s = (a� + ε)(1 − i�(τ)) + 1 − a + iσ(τ)), (6.5)

where q ≡ e2π iτ , �(τ) = Re τ/Im τ = β/α, σ(τ) =
1/(2 Im τ) = π/α, while a is a real number, � ∈ Z+ and
ε ∈ C. We can use the Ruelle functions R(s) to write the
results in the most general form,

∞∏
n=�

(1 − qan+ε)C(n)

=
∞∏

n=�

[ R(s = (an + ε)(1 − i�(τ)) + 1 − a)

R(s = (a(n + 1) + ε)(1 − i�(τ)) + 1 − a

]C(n)

, (6.6)

∞∏
n=�

(1 + qan+ε)C(n)

=
∞∏

n=�

[ R(s = (an + ε)(1 − i�(τ)) + 1 − a + iσ(τ))

R(s = (a(n + 1) + ε)(1 − i�(τ)) + 1 − a + iσ(τ)

]C(n)

,

(6.7)

where C(n) are certain coefficients. In the simplest cases
C(n) = bn, b ∈ R, and (6.6) and (6.7) becomes

∞∏
n=�

(1 − qan+ε)bn = R(s = (a� + ε)(1 − i�(τ)) + 1 − a)b�

×
∞∏

n=�+1

R(s = (an + ε)(1 − i�(τ)) + 1 − a)b , (6.8)

∞∏
n=�

(1 + qan+ε)bn = R(s = (a� + ε)(1 − i�(τ)) + 1 − a + iσ(τ))b�

×
∞∏

n=�+1

R(s = (an + ε)(1 − i�(τ)) + 1 − a + iσ(τ))b . (6.9)
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