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Abstract The quantum mechanics of one-electron atoms in
the presence of external electromagnetic fields is considered
within Weber’s framework. The results by the earlier studies
are extended in the sense that for given source and field con-
figurations the changes of the electromagnetic potentials due
to the curved background are included. The formulation is
specialized to the case with Schwarzschild background. The
first corrections to the energy levels for bare atom and Zee-
man/Stark effects are calculated, exhibiting possible changes
in meaningful orders.

1 Introduction

The behavior of quantum mechanical systems in the pres-
ence of gravitational fields has been the subject of a great
number of research publications. Among others, two leading
approaches are those by DeWitt [1] and Weber [2]. In the
studies based on DeWitt’s approach, the general formulation
of quantum mechanics for a relativistic or nonrelativistic sys-
tem on a curved background is the main concern [3–6]. In
the latter, based on Weber’s, an interaction scheme between
the quantum system and the gravitational field is the guiding
rule. In particular, in this approach the linearized classical
equations of motion of the test system/particle interacting
with the gravitational fields provide the basic ingredients to
formulate the quantum theory [2,7,8]. Interestingly, these
two approaches are not equivalent, and they are based on dif-
ferent sequences and orders of approximations being used in
each approach; one may get different results [7,8].

Based on the DeWitt approach, the formulation of Dirac
particles on a curved background is used to extract the first
corrections in curvature to the energy levels of one-electron
atoms [3–6]. In [7,8], the interaction between gravitational
waves and a charged test particle is studied. While [7,8] falls
within Weber’s scheme, it is shown that the sequence of lin-
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earizations used in the original version [2] is not sufficient in
the case that one is dealing with the charged particles in the
presence of external fields.

The purpose of the present work is to extend the results
for nonrelativistic charged particles on a curved background.
In particular, within Weber’s framework, we consider the
case with one-electron atoms in the presence of additional
external electromagnetic fields in the small curvature limit
to obtain the first corrections to the energy levels. Extend-
ing the results by [3–5], for given source or field configura-
tions, the corrections due to curvature to the electromagnetic
potentials as well as and their effects on the energy levels
are studied. It will be seen that the obtained corrections to
the nuclei potential and the external fields due to curvature
can result in changes in the meaningful orders of magni-
tude. As a specific example, the corrections to the energy
levels of the one-electron atom in the Schwarzschild metric is
considered.

The scheme of the rest of this paper is the following. In
Sect. 2, the basic notions of the formulation on curved back-
ground, including the Riemann normal coordinate system
is reviewed. In Sect. 3, the basic elements of the quantiza-
tion procedure as well as the construction of the Hamilto-
nian in the presence of the electromagnetic potentials based
on Weber’s approach are presented. In Sect. 4 the formula-
tion is specialized to the case of a one-electron atom in a
Schwarzschild background. In particular, for the case of a
bare atom and the Zeeman/Stark effects the first corrections
to the energy levels are obtained. Section 5 is devoted to our
concluding remarks.

2 Basic notions

According to general relativity principles, it is not possible to
find a system of coordinates in curved space-time in which
�
γ
αβ = 0 everywhere (α, β, γ = 0, 1, 2, 3). However, one

always can construct local inertial frames at a given event
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P0, in which free particles would move along straight lines
locally. As a consequence, it is possible to set �γαβ = 0 at
least up to the first order of the Riemannian curvature. As the
constructed tangent space is similar to the Minkowski space-
time, a local inertial frame is defined for each given point P0

of space-time by the following equation for the metric:

gαβ,μ(P0) = 0. (1)

The coordinates of such a frame are called the Riemann
normal coordinate system [2,9–12]. The metric components
have the following forms in the Riemann coordinates up to
the first order of Riemann’s tensor (i, j, · · · = 1, 2, 3):

g00 = −1 − R0l0k xl xk, g0i = g0i = −2

3
R0lik xl xk,

gi j = δi j − 1

3
Ril jk xl xk, g00 = −1 + R0l0k xl xk,

gi j = δi j + 1

3
Ri j

lk xl xk, g = −1 + 1

3
(Rlk − 2R0l0k)x

l xk .

(2)

Consequently, the affine connections (Christoffel multipli-
ers) are found to be

�0
00 = 0, �0

i j = 1

3
(R0i jk + R0 j ik)x

k,

�0
0i = R0i0k xk, �i

jk = 1

3
(R jikl + Rki jl)x

l , (3)

�i
0 j = R0k ji xk, �i

00 = R0i0k xk .

The equation of the motion of a test particle in an arbitrary
coordinate system reads

m
d2xμ

dτ 2 + m �
μ
αβuαuβ = Fμ + q

c
Fμαem uβgαβ, (4)

with uα = dxα/dτ the velocity four-vector and τ the proper
time. Fμαem and Fμ stand for the space-time components
of the electromagnetic and other external forces acting on
the particle, respectively. The above equation of motion can
be obtained in terms of the metric gαβ(x) and the electro-
magnetic potential four-vector Aα , usually adopted by the
Lorentz gauge, from the following Lagrangian [9,11,12]:

L = 1

2
mẋαgαβ(x)ẋ

ν + q

c
ẋαgαβ(x)A

β − Ṽ (x), (5)

in which

−
x∫

Fμdxμ = Ṽ (x). (6)

3 Toward quantum system

Here, using a set of assumptions and approximations, we
develop the quantum mechanics governing the dynamics of
the test particle. As announced earlier, our approach is basi-
cally the one by Weber’s.

As we are considering nonrelativistic dynamics, it is
assumed that the proper time can simply be replaced by the
coordinate time x0, by τ → c x0, by which the equations of
motion of the test particle for spatial directions become

mẍi + m R0i0 j x j + 1

3
m(R jikl + Rki jl)x

l ẋ j ẋ k

= Fi +	 j
q

c
Fem

i j ẋ j + q

c
Fem

i0 . (7)

Now and hereafter, we consider the cases for which we have

g0i = 0. (8)

Many interesting cases, including the Schwarzschild metric,
are of this type. Thus we introduce the following Lagrangian:

L = 1

2
mẋiδi j ẋ j − 1

6
m Ris jk ẋ i xs xk ẋ j + q

c
ẋiδi j A j

− q

3c
Ris jk ẋ i xs xk A j − Ṽeff(x), (9)

where

Ṽeff(x) = Ṽ (x)− 1

2
mc2g00 − q

c
A0. (10)

The following is to show that the above Lagrangian pro-
duces the desired equations of motion of the test particle
according the Weber’s picture. Firstly, it is pointed out that
the raising of the Lorentz indices is done with the metric
(2), namely, Ai = gi j A j ∼ (δi j − 1

3 Ril jk xl xk)A j . Fur-
ther, in the weak-field limit, the gravitational force is given
by Fαgrav = − 1

2 mc2 ∂
∂xα

g00 [11,12], so we need to keep the
velocity-independent term appearing in Eq. (5). Therefore,
the gravitational parts will not be included in Ṽeff(x). We
mention that the metric is not explicitly a function of time.
For the sake of simplicity, we set m = 1, q

c Aμ → Aμ:

d

dt

∂L
∂ ẋk

− ∂L
∂xk

= gki ẍi + ġki ẋi + ġki Ai + gki Ȧi

−1

2
ẋi ẋ j g

i j,k − gi j,k ẋi A j − ẋi g
i j A,kj

+Ṽ ,k − 1

2
g00,k − A,k0 = 0. (11)

Using ġki ẋi − 1
2 ẋi ẋ j gi j,k = �k

i j ẋ j ẋ i and �k
00 = − 1

2 g,k00, and

referring to (8), �k
0 j = 0, A,k0 = F0k g00, and
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ġki Ai + gki Ȧi − gi j,k ẋi A j − ẋi g
i j A,kj

= gkj,i ẋi A j + gkj ẋi A,ij − gi j,k ẋi A j

−ẋi g
i j A,kj = ∂ i (gkj A j )ẋi − ∂k(gi j A j )ẋi

= Ak,i ẋi − Ai,k ẋi = Fki ẋ j g ji . (12)

It is seen that the Lagrangian (9) can produce the equation
of the motion (7). The Hamiltonian of the system can be
constructed easily using the Legendre transformation. The
conjugate momentum is as follows:

pk = mẋiδik − 1

3
m Rkjil x

j xl ẋ i + q

c
A jδ jk − q

3c
Rkjil x

j xl Ai ,

(13)

by which

mẋi
(
δik − 1

3
Rkjil x

j xl
)

= pk − q

c
δki Ai + q

3c
Rkjil x

j xl Ai .

(14)

By the set of coordinates and their conjugate momenta, the
Hamiltonian gets the form

H = ẋ i pi − L
= 1

2
mẋi δi j ẋ j − 1

6
m Rik jl ẋ

i xk xl ẋ j + Ṽeff

= 1

2
ẋ i
(

mẋ j
(
δi j − 1

3
Rik jl x

k xl
))

+ Ṽeff

= 1

2

(
ẋs

(
δsi + 1

3
Rsi

qr xq xr
))(

mẋ j
(
δi j − 1

3
Rik jl x

k xl
))

+Ṽeff

= 1

2m

(
pk − q

c
δik Ai − q

3c
Rki

jn x j xn Ai

)

×
(

pk − q

c
δks As + q

3c
Rklsr xl xr As

)
+ Ṽeff

= 1

2m
pk pk − q

2mc
pkδki Ai − q

2mc
Ai δ

ik pk

+ q

6mc
Rk jil pk x j xl Ai − q

6mc
Rki

jl x j xl Ai pk

+ q2

2mc2 Ai δ
ikδki Ai − q2

6mc2 Rk jilδ
ik Ai x j xl Ai

+ q2

6mc2 Rki
jl x j xl Ai δki Ai + Ṽeff , (15)

or, equivalently, it can be reduced to the following:

H = 1

2m
p2− q

2mc

(
pkδki Ai + Aiδ

ik pk

)

+ q

6mc

(
Rkjil pk x j xl Ai −Rki

jl x j xl Ai pk

)

+Ṽeff + O(A)2, (16)

where the Coulomb potential appearing in Ṽeff(x) is given
by the Maxwell equations in the curved background.

Here we assume that the solutions to the Maxwell equa-
tions for the potentials Ai are subjected to the Coulomb
gauge, by which

p̂kδki Âi = Âiδ
ik p̂k, (17)

where the symbol ˆ indicates that the operator forms of the
variables are being used. It is easy to check that due to
the diagonal form of Riemann’s curvature tensors of the
Schwarzschild universe, the above form is possible.

In passing to quantum theory, the classical values are
replaced by their operator counterparts. Due to terms involv-
ing coordinates and momenta, one encounters the known
problem of the ordering ambiguity. Here we exploit the ris-
ing of the Latin indices to construct the symmetrical Weyl
ordering, by which the Hamiltonian (15) gets the form

Ĥ = 1

2m
p̂2 − q

mc
p̂ · Â + q2

2mc2 Â · Â

+ q

3mc
Ri ji j p̂i x̂ j x̂ j Âi

+ q

9mc
Ri j ji (3 p̂i x̂ j x̂ i Â j + 2ı h̄ A jδi i + ı h̄xi∂ i A j )

+ ˆ̃Veff(x̂)+ O(A)2. (18)

In order to consider all of the corrections in first order of
curvature, the electromagnetic potentials should also be re-
calculated. The Maxwell equations in the curved background
take the following form:

gαβ∇α∇β Aμ − RνμAν = −4π Jμ, (19)

for which, by applying the local coordinates introduced ear-
lier, we have [3,4]

δi j∂i∂ j A0 + 1

3
Ril jk xk xl∂ i∂ j A0 + 5

3
Ri00 j x j∂ i A0

+ 2Rk
i0 j x j∂ i Ak − 2

3
Ri

j x j∂i A0 = −4π J0, (20)

δi j∂i∂ j Am + 1

3
Ril jk xk xl∂ i∂ j Am − 2

3
Rμm Aμ − 1

3
Rl

00m Al

+ 2

3
δi j (Rαmik + Rαimk)x

k∂ j Aα − 1

3
Ri

00 j x j∂i Am

− 2

3
Ri

j x j∂i Am = −4π Jm . (21)

Using the perturbative expansion Aα = A0
α + A1

α + O(R)2,
for the source of the nucleus J0 = −Qδ(r) and Ji = 0, one
finds the following for the electromagnetic potentials:

Anucl.
0 = −Qr−1 + 1

12
Q(R + 4R00)r

+ 1

12
Q(3R0

j0k − R jk)x
j xkr−1, (22)

Anucl.
m = 1

2
Q R0mr + 1

6
Q R0

jmk x j xkr−1. (23)

Assuming that the electromagnetic potentials have two parts,
corresponding to the one by the nucleus of the one-electron
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atom and to the one by the external sources (as in Zeeman
and Stark effects), we use the following replacement:

Aα → Anucl.
α + Aα, (24)

in which the second term is responsible for the potential by
the external sources. The latter Hamiltonian takes the form

Ĥ � 1

2m
p̂2 − Qer̂−1 + 1

12
Qe((R + 4R00)r̂

+ (3R0
j0k − R jk)x̂

j x̂ k)r̂−1

+ 1

2
m R0s0k x̂ s x̂k + e2

2mc2 Â · Â − e

mc
p̂ · Â

+ e

3mc
Ri ji j p̂i x̂ j x̂ j Âi

+ e

9mc
Ri j ji (3 p̂i x̂ j x̂ i Â j + 2ı h̄ A jδi i + ı h̄xi∂ i A j ).

(25)

The above Hamiltonian is written in terms of local coordi-
nates and is valid for the non-covariant observer as well.
As a consequence, the results from the theory only can be
interpreted in a local framework based on Riemann nor-
mal coordinates. As is evident, these two are identical in a
Schwarzschild background without external electromagnetic
fields.

4 Quantum theory in Schwarzschild background

As an application of the quantum theory developed in the
previous section, here we consider the background by the
static Schwarzschild solution

ds2 = −c2
(

1 − 2G M

c2r

)
dt2 +

(
1 − 2G M

c2r

)−1

dr2

+r2(dθ2 + sin2 θ dφ2), (26)

in which r , θ , and φ represent the spherical coordinates. The
nonvanishing Rμναβ are the relevant spatial components of
the curvature tensor in the spherical coordinates given by

R1
010 = −2R2

020 = −2R3
030 = 2G M(2G M − rc2)

c4r4 ,

R3
232 = 2G M

c2r
, R3

131 = R2
121 = G M

r2(2G M − rc2)
. (27)

Evidently, the components of the curvature tensor would get
arbitrary smaller values in the limit r → ∞. This fact is the
basis for using the results in the previous section which are
valid in the small curvature limit. Therefore, for one-electron
atoms sufficiently far from the origin, the quantum theory dev
eloped in Sect. 3 is applicable.

4.1 Bare one-electron atom

Setting A0
α = A1

a = 0, we have

H = Ĥ0 + 1

2
m R0i0 j x̂ i x̂ j + 1

4
QeR0

i0 j x̂ i x̂ j r−1, (28)

where Ĥ0 stands for the unperturbed Hamiltonian of the one-
electron atom. The second term in the above represents the
direct effect of the gravitational field on the energy, firstly
considered by [3,4] and used by [5] to obtain the correc-
tions to the energy levels and the transition rates for large
quantum numbers n. The third term in the above is evidently
originating from the correction to the nuclei potential due to
the curvature. As we will see, this added term would give
comparable changes in the energy levels, specially for states
with lower n. The typical radius of the curvature should be
as small as D ∼ 10−3 cm, by which in the nonrelativistic
limit the perturbation would give larger corrections than the
relativistic fine structure [3,4]. The following relations are
useful in the subsequent calculations:

x2

r2 =
√

4π

3
Y0,0(θ, φ)− 1

6

√
16π

5
Y2,0(θ, φ)

+ 1

4

√
32π

15
(Y2,2(θ, φ)+ Y2,−2(θ, φ)),

y2

r2 =
√

4π

3
Y0,0(θ, φ)− 1

6

√
16π

5
Y2,0(θ, φ)

− 1

4

√
32π

15
(Y2,2(θ, φ)+ Y2,−2(θ, φ)),

z2

r2 =
√

4π

3
Y0,0(θ, φ)+ 1

3

√
16π

5
Y2,0(θ, φ),

and also

π∫

0

dθ sin θ

2π∫

0

dφ Y �lm(θ, φ)Yl1m1(θ, φ)Yl2m2(θ, φ)

=
√
(2l1 + 1)(2l2 + 1)

4π(2l + 1)
Cl1l2,l

00,0 Cl1l2,l
m1m2,m,

where Cl1l2,l
m1m2,m stands for the Clebsch–Gordan coefficients.

In what follows we represent the one-electron atom states as
usual:

|ψ〉 = |n l ml〉, (29)

where n, l, and ml are the relevant quantum numbers. Thus
the first-order correction to the energy of the S-states (l = 0)
is given by
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〈H1
S 〉 = 1

4
QeR0

i0 j

∫
d3x ψ�n00(x)x

i x j r−1ψn00(x). (30)

Using the given form of R0i0 j by Eq. (27), we readily have

R0101x2 + R0202 y2 + R0303z2 = R0303(r
2 − 3x2), (31)

by which for the S-states the first correction to the energy
by the correction to the nuclei potential by the curvature
vanishes. By this the present model coincides with those
by Parker and Pinto’s for S-states [3–5]. However, the sit-
uation is different for the P-states (l = 1). To calculate
the P-states (l = 1) the diagonalization of the degenerate
block of the Hamiltonian is required. Due to the electric
quadrupole transition selection rules, we have �l = 0,±2
and �m = 0,±1,±2. With a similar calculation for the
P-states, one finds the matrix elements of the shifted Hamil-
tonian,

H1
mm′ = 1

4
QeR0303

(
〈r̂〉n,1 − 3〈 x̂2

r̂
〉
)

= 1

4
QeR0303〈r〉n,1

×
(

C21,1
00,0C21,1

0m′,m −
√

3

2
C21,1

00,0(C
21,1
2m′,m + C21,1

−2m′,m)

)
,

(32)

where m and m′ take the values 0,±1, corresponding to
the Px , Py , and Pz orbits, respectively. By setting β =
1

10 QeR0303
h̄2

me2 (3n2 − 2), and using the diagonal form of
R0i0 j , the explicit form of the matrix is found to be

H1
mm′ =

⎛
⎜⎝

−β
4 0 3β

4
0 β

2 0
3β
4 0 −β

4

⎞
⎟⎠ . (33)

By the corresponding eigenvalue equation,

Det
(

H1
mm′ − E1δmm′

)
= 0, (34)

the following values are obtained for the corrections:

E1
P = β

2
,−β. (35)

As mentioned earlier, the correction to the nuclei potential
is absent in [5]. As a consequence, in [5] the S-states, in
agreement with the present model would not get corrections
at first order. It would be useful to compare the result for the
P-states. By the last expression in the above, we would get

E1
new

E1
Pinto

∼ 10−1 Qe〈r〉
m〈r2〉 ∝ 10−1 e2(3n2 − l(l + 1))

2ma0n3(2l + 1)
, (36)

in which E1
new and E1

Pinto are the first corrections due to the
corrections to the nuclei potential by the present model, and
the curvature by [3,5]. As is evident, the corrections by the
additional term in (35) are not negligible for lower values of
n and have to be considered.

4.2 The normal Zeeman effect

Here we consider the effect of an external uniform magnetic
field on the energy levels of the one-electron atom, which is,
in the absence of spin effects, known as the normal Zeeman
effect. For the nonzero uniform magnetic background field
B = B0 k̂, due to the specific form of the Riemann tensor, it
is easy to see that there is no change in the correction to the
scalar potential A0 of previous section, and we have

A1
0 = 1

4
Q R0

j0k x j xkr−1. (37)

In the Coulomb gauge, the unperturbed components of the
vector potential are given by

A0
i = − B0

2
εi j3x j . (38)

The components of the correction to the potential, A1
i , satisfy

∂2 A1
i = B0

6

(
3R2

002 + 2R1
212

)
εi j3x j , (39)

by which, using R0101 + R0202 + R0303 = 0, we have

A1 = B0

6

(
3R2

002+2R1
212

)(1

3
y3 − yx2,−1

3
x3+xy2, 0

)
,

(40)

by which at the first order in curvature,

A =
⎛
⎝− B0

2 y + B0
6

(
3R2

002 + 2R1
212

) ( 1
3 y3 − yx2

)
B0
2 x − B0

6

(
3R2

002 + 2R1
212

) ( 1
3 x3 − xy2

)
0

⎞
⎠ . (41)

By these the operator of the Dewitt Hamiltonian of the one-
electron atom for the normal Zeeman effect takes the form

ĤZeeman
Perturbed �−eB0

2mc
L̂z − eB0

6mc

(
3R2

002 + 2R1
212

)

× (
p̂x

(
1

3
ŷ3 − ŷ x̂2

)
− p̂y

(
1

3
x̂3 − x̂ ŷ2

))

+ O(B0)
2, (42)

in which the first two terms represent the unperturbed Hamil-
tonian. The above expression is valid for the so-called weak
field, or B0 � 10−2 G. In fact the last term above is the
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result of corrections to the potential. One can calculate the
contribution of the correction related to the Zeeman effect,
as follows:

�EZeeman
Perturbed = �EZeeman

0 +
( eB0

18mc

(
3R2

002 + 2R1
212

)

×
(

n2 5n2 + 1 − 3l(l + 1)

2
a2

0

)

× ml h̄
(

1 − C2l,l
00,0C2l,l

0ml ,ml

) )
. (43)

Evidently, there are nonzero corrections due to the second
part for the P-states. The Weber Hamiltonian of the one-
electron atom for the normal Zeeman effect takes the form

ĤZeeman
Perturbed � − eB0

2mc
L̂z + eB0

6mc
ε j i Ri ji j p̂i x̂ j x̂ j x̂ j

+ eB0

18mc
Ri j jiε

i j

×
(

3 p̂i x̂ j x̂ i x̂ j + 2ı h̄ x̂ iδi i + ı h̄ x̂ iδ j j
)

+ O(B0)
2, (44)

in which one can transform to a more useful form by the
identity

p̂x ŷ3 − p̂y x̂3 = L̂z

(
r̂2 − ẑ2

)
+ p̂y x̂ ŷ2 − p̂x ŷ x̂2. (45)

By the above, the contribution of the correction related to
the Zeeman effect can be calculated. Following [5] and from
a semi-classical point of view, we can calculate the energy
levels based on the Bohr quantization procedure. In fact, the
stability of motion of the one-electron atom in the xy plane
does not last long. However, after neglecting the effect of the
last correction, the Bohr radius is definable. One can choose
the orientation of the spatial axes of the normal coordinates
such that z ∼ y′, y ∼ x ′, and x ∼ z′. Now, if we restrict
ourselves to circular orbits in the x ′y′ plane and by assuming
the presence of a magnetic field in the z (radial) direction and

with ρ′ =
√

x ′2 + y′2, the equation of motion can be shown
to be

m
v′2

ρ′ = ev′ B0

c
+ Qe

ρ′2 + m R0202ρ
′ + Qe

4
R0202, (46)

by the Bohr quantization condition (mρvn = nh̄) and R =
R0202, we get

n2 − eB0

ch̄
nρ′2 = zme2

h̄2 ρ′ + m QeR

4h̄2 ρ′3 + m2 R

h̄2 ρ′4, (47)

or

(
n − eB0

2ch̄
ρ′2
)2

= m Qe

h̄2 ρ′ + m QeR

4h̄2 ρ′3

+
(

m2 R

h̄2 + e2 B2
0

4c2h̄2

)
ρ′4. (48)

Comparing the above with a similar treatment by [5], the term
proportional to ρ′3 is new. Therefore, although there is no
change in the Landau–Bohr radius obtained in [5], however,
a new radius can be defined by this new term, namely

ra =
(

4h̄2

3m QeR

)1/3

. (49)

The obtained radius goes to infinity when R = 0, leading to
motion on a straight line.

4.3 The Stark effect

This energy shift of atomic levels in the presence of an exter-
nal uniform electric field is known as the Stark effect. On this
topic, the Hamiltonian describing the Stark effect is encoun-
tered with a technical agreement between the DeWitt and
Weber approaches. The deformed Maxwell equations are
used to reproduce the potential and redefine the distribution
of electrical charges in order to produce a uniform electric
fields in the presence of the gravitational background. To be
specific and for the case of Weber’s method, we assume that
J0 = Qδ(r−) − Qδ(r+), with r± = r ± R. Thus, if the
size of R is infinite, then the electric field will be uniform.
However, according to Eq. (20), the scalar potential gets the
form

A0 = A0
0 − 1

4
E0 R0

i0 j x i x j z, (50)

where

A0
0 = Q

r−
− Q

r+
= Q	∞

0
rl

Rl+1 (Pl(cos (γ )− Pl(− cos (γ ))

= 2Q

R2 r cos (γ ) | 2Q
R2 =E0

, (51)

where γ is the angle between r and R. So, by setting R = Rk̂,
the potential by which the uniform electric field in curved
background is produced is given by

A0 = −E0r cos(θ)− E0

4
R0

i0 j x i x j r cos(θ)

= −E0z − E0

4
R0

i0 j x i x j z. (52)
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Hence, in Schwarzschild background, the perturbed Hamil-
tonian for the Stark effect is given by

ĤStark
perturbed � H0 + 1

4
QeR0

i0 j x̂ i x̂ j r̂−1

+ 1

2
m R0i0 j x̂ i x̂ j + eE0 ẑ + e

E0

4
R0

i0 j x̂ i x̂ j ẑ. (53)

Due to the parity, the correction to the energy of the S-states
by the term e E0

4 R0
i0 j x i x j z vanishes.

5 Concluding remarks

The results for nonrelativistic charged particles on a curved
background are extended. In particular, within the Weber
framework, we consider the case with one-electron atoms in
the presence of additional external electromagnetic fields in
the small curvature limit to obtain the first corrections to the
energy levels. Extending the results by [3–5], for given source
or field configurations, the corrections due to curvature to
the electromagnetic potentials as well as their effects on the
energy levels are studied. It is seen that the obtained cor-
rections to the nuclei potential and the external fields due to
curvature can result in changes in meaningful orders of mag-
nitude. As a specific example, the corrections to the energy
levels of the one-electron atom in the Schwarzschild metric
is considered. In particular, for the case with a bare atom it
is observed for lower values of quantum number n that the
corrections to the scalar potential of the nucleus cannot be
ignored and are comparable with the corrections by [5]. In
the case of the Zeeman effect it is seen that, as is well known,
the Hamiltonian would take a different form in comparison

with that based on DeWitt’s approach [5]. As a consequence,
the semi-classical behavior of the systems would be different
in comparison with a similar treatment of the system in [5].
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