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Abstract As a manifestation of a large distance effect Gru-
miller modified Schwarzschild metric with an extraneous
term reminiscent of Rindler acceleration. Such a term has
the potential to explain the observed flat rotation curves in
general relativity. The same idea has been extended herein
to the larger arena of f (R) theory. With particular emphasis
on weak energy conditions (WECs) for a fluid we present
various classes of f (R) theories admitting a Rindler-type
acceleration in the metric.

1 Introduction

Flat rotation curves around galaxies constitute one of the
most stunning astrophysical findings since 1930s. The cases
can simply be attributed to the unobservable dark matter
which still lacks a satisfactory candidate. On the general
relativity side which reigns in the large universe an inter-
esting approach is to develop appropriate models of con-
stant centrifugal force. One such attempt was formulated
by Grumiller in [1,2], in which the centrifugal force was

given by F = −
(

m
r2 + a

)
. Here m represents the mass

(both normal and dark), while the parameter “a” is a posi-
tive constant—called Rindler acceleration [3]—which gives
rise to a constant attractive force. The Newtonian potential
involved is �(r) ∼ −m

r + ar , so that for r → ∞ the term
�(r) ∼ ar becomes dominant. Since in Newtonian circu-
lar motion F = mv2

r , for a mass m, tangential speed v (r)

and radius r are related by v (r) ∼ r
1
2 for large r , which

overall amounts to come slightly closer to the concept of flat
rotation curves. No doubt, the details and exact flat rotation
curves must be much more complicated than the toy model
depicted here. Physically the parameter “a” becomes mean-

a e-mail: habib.mazhari@emu.edu.tr
b e-mail: morteza.kerachian@cc.emu.tr
c e-mail: mustafa.halilsoy@emu.edu.tr

ingful when one refers to an accelerated frame in a flat space,
known as Rindler frame, and accordingly the terminology
Rindler acceleration is adopted.

In [4] the impact of a Rindler-type acceleration is studied
on the Oort cloud, and in [5,6] the solar system constraints
on Rindler acceleration are investigated, while in [7] bending
of light in the model of gravity at large distances proposed
by Grumiller [1,2] is considered.

Let us add also that to tackle the flat rotation curves, Mod-
ified Newtonian Dynamics (MOND) in space was proposed
[8]. Identifying a physical source for the Rindler acceler-
ation term in the spacetime metric has been a challenge
in recent years. An anisotropic fluid field was considered
originally by Grumiller [1,2], whereas nonlinear electro-
magnetism was proposed as an alternative source [8]. A
fluid model with an energy-momentum tensor of the form
T ν

μ = diag[−ρ, p, q, q] was proposed recently in the pop-
ular f (R) gravity [9]. For a review of the latter we pro-
pose [10–12]. By a similar strategy we wish to employ
the vast richness of f (R) gravity models to identify pos-
sible candidates that may admit a Rindler-type acceleration.
Our approach in this study beside the Rindler acceleration
is to elaborate on the energy conditions in f (R) gravity.
Although violation of the energy conditions is not necessar-
ily a problem (for instance, any quantum field theory violates
all energy conditions), it is still interesting to investigate the
non-violation of the energy conditions. Note that energy con-
ditions within the context of dark matter in f (R) gravity have
been considered by various authors [13,14]. This at least will
filter the viable models that satisfy the energy conditions. In
brief, for our choice of energy-momentum the weak energy
conditions (WECs) can be stated as follows: (1) WEC1 says
that the energy density ρ � 0. (2) WEC2 says that ρ+ p � 0,
and (3) WEC3 states that ρ + q � 0. Among the more strin-
gent energy conditions, the strong energy conditions (SECs)
amounts further to ρ+ p+2q � 0, which will not be our con-
cern in this paper. However, some of our models satisfy SECs
as well. Our technical method can be summarized as follows.
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Upon obtaining ρ, p, and q as functions of r we shall search
numerically for the geometrical regions in which the WECs
are satisfied. (A detailed treatment of the energy condition in
f (R) gravity was given by J. Santos et al. in [15].)

From the outset our strategy is to assume the validity of the
Rindler modified Schwarzschild metric a priori and search
for the types of f (R) models which are capable to yield such
a metric. Overall we test ten different models of f (R) gravity
models and observe that in most cases it is possible to tune
the free parameters in rendering the WECs satisfied. In doing
this we entirely rely on numerical plots and we admit that our
list is not an exhaustive one in the f (R) arena.

The organization of the paper goes as follows. Section
2 introduces the formalism with derivation of density and
pressure components. Section 3 presents 11 types of f (R)

models relevant to the Mannheim metric. The paper ends
with our conclusion in Sect. 4.

2 The formalism

Let us start with the following action (κ = 8πG = 1):

S = 1

2

∫ √−g f (R)d4x + SM (1)

where f (R) is a function of the Ricci scalar R and SM is the
physical source for a perfect fluid-type energy momentum,

T ν
μ =

⎛
⎜⎜⎝

−ρ 0 0 0
0 p 0 0
0 0 q 0
0 0 0 q

⎞
⎟⎟⎠ (2)

We adopt the static spherically symmetric line element

ds2 = −A (r) dt2 + 1

A(r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
(3)

with

A (r) = 1 − 2m

r
+ 2ar (4)

which will be referred to henceforth as the Mannheim metric
[16–18] (Note that it has been rediscovered by Grumiller in
[1,2].) The Einstein field equations follow the variation of
the action with respect to gμν , reading

Gν
μ = 1

F
T ν

μ + Ť ν
μ , (5)

in which Gν
μ is the Einstein tensor. The share of the curvature

in the energy-momentum is given by

Ť ν
μ = 1

F

[
∇ν∇μF −

(
�F − 1

2
f + 1

2
RF

)
δν
μ

]
, (6)

while T ν
μ refers to the fluid source [1,2]. Following the

standard notation, � = ∇μ∇μ = 1√−g
∂μ

(√−g∂μ
)

and

∇ν∇μu = gλν∇λu,μ = gλν
(
∂λu,μ − �

β
λμu,β

)
for a scalar

function u. The three independent Einstein field equations
are explicitly given by

F Rt
t − f

2
+ �F = ∇ t∇t F + T t

t , (7)

F Rr
r − f

2
+ �F = ∇r∇r F + T r

r , (8)

F Rθi
θi

− f

2
+ �F = ∇θi ∇θi F + T θi

θi
, (9)

(
F = d f

d R

)
, (10)

in which θi = (θ, ϕ) . Adding these equations (i.e., t t , rr , θθ

and ϕϕ), one gets the trace equation

F R − 2 f + 3�F = T, (11)

which is not an independent equation. Using the field equa-
tions one finds

ρ = ∇ t∇t F − F Rt
t + f

2
− �F, (12)

p = −∇r∇r F + F Rt
t − f

2
+ �F, (13)

and

q = −∇θ∇θ F + F Rθ
θ − f

2
+ �F. (14)

In what follows we find the energy-momentum compo-
nents for different models of f (R) gravity together with their
thermodynamical properties.

3 f (R) Models covering the Rindler acceleration

In this section we investigate a set of possible f (R) grav-
ity models which admit the line element (3) as the static
spherically symmetric solution of its field equations. Then
by employing Eqs. (12–14) we shall find the energy density
ρ and the pressures p and q. Having found ρ, p, and q we
investigate the energy conditions together with the feasibil-
ity of the f (R) models numerically. More precisely we work
out the weak energy conditions, which includes the three
individual conditions

W EC1 = ρ ≥ 0, (15)

W EC2 = ρ + q ≥ 0, (16)

and

W EC3 = ρ + p ≥ 0. (17)

In the numerical plotting, we explicitly plot W EC1, W EC2,

and W EC3 in terms of r to work out the region(s) in which
the WECs are satisfied. In addition to the WECs we plot
f (R) in terms of R to find the physically acceptable model
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Fig. 1 A plot of W EC1,

W EC2, and W EC3 for m = 1,
a = 0.1, and b = 1. To have an
idea of the range in which the
WECs are satisfied we also plot
the metric function which
identifies the location of the
horizon. It is observed from the
figure that the WECs are all
satisfied for r ≥ rh , in which rh
is the event horizon of the
Grumiller metric. Since R < 0,
the plot of f (R) is from −∞ up
to zero, and as can be seen we

have d f
d R < 0, while d2 f

d R2 > 0.
We also plot the heat capacity C
w.r.t. the horizon radius rh

by imposing the well-known conditions on f (R), which are
given by

F(R) = d f (R)

d R
> 0 (18)

for not to have ghost field and

d2 f (R)

d R2 > 0 (19)

to have a stable model. Before we start to study the f (R)

models, we add that in the case of the Mannheim metric the
Ricci scalar is given by R = − 12a

r , which is negative (a > 0).

3.1 The Models

1. Our first model which we find interesting is given by [19]

f (R) =
√

R2 + b2 (20)

for b = constant. For |R| � b, this model is a good approx-
imation to Einstein’s f (R) = R gravity. For the other range,
namely |R| 	 b, b may be considered as a cosmological
constant. Taking this f (R) one finds

d f

d R
= R√

R2 + b2
, (21)

d2 f

d R2 = b2

(
R2 + b2

)3/2 , (22)

which are positive functions of R. This means that this model
of f (R) gravity satisfies the necessary conditions to be phys-
ical. Yet we have to check the WECs at least to see whether
it can be a good candidate for a spacetime with Rindler
acceleration, namely the Mannheim metric. Figure 1 displays

W EC1, W EC2, and W EC3 together with a part of A(r) in
terms of r. We see that the WECs are satisfied right after the
horizon. Therefore this model can be a good candidate for
what we are looking for. This model is also interesting in
other respects. For instance in the limit when b is small one
may write

f (R) 
 |R| + b2

2

|R|
R2 , (23)

which is a kind of small fluctuation from R gravity for |R| �
b.

In particular, this model of f (R) gravity is satisfying
all necessary conditions to be a physical model to host the
Mannheim metric. Hence we go one step further to check the
heat capacity of the spacetime to investigate if the solution
is stable from the thermodynamical point of view. To do so,
first we find the Hawking temperature

TH =
∂
∂r gtt

4π

∣∣∣∣∣
r=rh

= m + ar2
h

2πr2
h

. (24)

Then from the general form of the entropy in f (R) gravity
we find

S = A
4G

F

∣∣∣∣
r=rh

= πr2
h Fh, (25)

in which A|r=rh
= 4πr2

h is the surface area of the black hole
at the horizon and F |r=rh

= −12a√
144a2

r2
h

+b2rh

. Having TH and S

available one may find the heat capacity of the black hole as
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Fig. 2 Our choice of the
parameters is ν = 1, μ = 2, b =
1, c = −1,�1 = 0 = �2.
WECs are shown to be satisfied,
while stability is valid only for
R < −1. This can easily be
checked from
f (R) = R + 1

R + R2.

Thermodynamic stability (i.e.
C > 0) is also shown

C = T

(
∂S

∂T

)
= 12 (1 + 4arh)

(
288a2 + b2r2

h

)
r2

hπa
(
144a2 + b2r2

h

)3/2 .

(26)

We comment here that C is always positive and nonsingular,
irrespective of the values of the free parameters, given the fact
that a > 0. This indeed means that the black hole solution
will not undergo a phase change as expected form a stable
physical solution.

2. The second model which we shall study, in this part, has
been introduced and studied by Nojiri and Odintsov in [20].
As they have reported in their paper [20], “this model natu-
rally unifies two expansion phases of the Universe: inflation
at early times and cosmic acceleration at the current epoch”.
This model of f (R) is given by

f (R) = R − c

(R − �1)
ν + b (R − �2)

μ , (27)

in which b, c, �1, �2, μ, and ν are some adjustable param-
eters. Our plotting strategy of each model is such that if the
WECs are violated (note that such cases are copious) we
ignore such figures; the regions satisfying WECs are shaded.

The other conditions d f
d R > 0,

d2 f
d R2 > 0 are satisfied in

some cases whereas in the other cases they are not. In Figs. 2
and 3 we plot W EC1, W EC2, and W EC3 in terms of r for
specific values of ν, μ, b, and c, i.e., in Fig. 2 ν = 1, μ = 2,

b = 1, c = −1, �1 = 0, and �2 = 0. In Fig. 3 ν = 1,

μ = 3, b = −1, c = −1,�1 = 0, and �2 = 0.
Among the particular cases which are considered here,

one observes that Fig. 2 and Fig. 3, which correspond to

f (R) = R + 1

R
+ R2 (28)

and

f (R) = R + 1

R
− R3, (29)

respectively, are physically acceptable as far as WECs are
concerned. We also note that in these two figures we plot the
heat capacity in terms of rh to show whether the solutions

are thermodynamically stable. d2 f
d R2 reveals that Eqs. (28) and

(29) are locally stable.
3. Our next model is a Born–Infeld-type version of gravity,

which has been studied in the more general form of Dirac–
Born–Infeld modified gravity by Quiros and Ureña-López
in [21,22]. The Born–Infeld model of gravity is given by

f (R) = 2b

(
1 −

√
1 + |R|

b

)
, which implies

F(R) = 1√
1 + |R|

b

and

d2 f

d R2 = 1

2
(

1 + |R|
b

)3/2 . (30)

Clearly both are positive functions of R; therefore the solu-
tion given in this model is stable and ghost-free. In spite of
that, the WECs are not satisfied; therefore this model is not
a proper model for the Mannheim metric as far as the energy
conditions are concerned.
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Fig. 3 Our parameters in this
case are ν = 1, μ = 2, b = −1,

c = −1, with �1 = 0 = �2.
Now f (R) takes the form
f (R) = R + 1

R − R3, which
satisfies the WECs. This choice
yields a stable model for
R < − 1

4√3
. Beyond a certain

horizon radius the specific
function C is also positive

Fig. 4 From Eq. (31) we
choose the parameters as μ = 1,

b = 1, and n = −3. We find a
restricted domain in which the
WECs are satisfied. From those
parameters beside WECs from
d2 f
d R2 = 6

(
1 + R2

) (
1 + 5R2

)
>

0, the stability condition also is
satisfied

4. Another interesting model of f (R) gravity is given by
[23]:

f (R) = R − μb

[
1 −

(
1 + R2

b2

)−n
]

, (31)

in which μ, b, and n are constants. Figure 4 with μ = 1, b =
1, n = −3 shows that between horizon and a maximum
radius we may have a physical region in which f ′′ > 0.
Now let us consider [24] the model

f (R) = R − μb

( R
b

)2n

( R
b

)2n + 1
, (32)

which amounts to Fig. 5, and clearly there is no physical
region.

5. Here, we use another model introduced in [25,26],
which is given by

f (R) = R (1 − c) + cε ln

(
cosh

( R
ε

− b
)

cosh (b)

)
+ R2

6m2 , (33)
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Fig. 5 In this model given by
the f (R) in Eq. (32) we have
not been able to find a
physically admissible region to
satisfy the WECs

Fig. 6 From the f (R) model in
Eq. (33) the choice c = 1/3,

ε = 1 and b = 1, we observe
that WECs are not satisfied. The
specific heat function is also
pictured

in which c, ε, b, and μ are all constants. Our analysis yields
Fig. 6 with c = 1

3 and Fig. 7 with c = 1.1. One observes
that although in Fig. 6 there is no physical region possible for
different c, in Fig. 7 and for r > rh our physical conditions
are satisfied provided |R| < |R0|, where R0 is the point for
which f (R) = 0.

6. In Ref. [27] an exponential form of f (R) is introduced
which is given by

f (R) = Re
b
R , (34)

in which b = constant with first derivative

F(R) = e
b
R

(
1 − b

R

)
. (35)

Our numerical plotting admits Fig. 8 for this model with
b = −1. We comment here that although the case b = −1
leads to the WECs being satisfied, in both cases f ′′(R) is
negative. This makes the model unphysical.

7. Another exponential model, which is also given in [27],
reads
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Fig. 7 The choice of
parameters c = 1.1, ε = 1, and
b = 1 in Eq. (33) yields a region
where the WECs are satisfied. It
can be checked that d2 f

d R2 > 0 is
also satisfied. For |R| > |R0|,
where f ′ (R0) = 0, we have
d f
d R > 0, which implies a
ghost-free solution. The
everywhere positive specific
heat C is also shown

Fig. 8 The model with

f (R) = Re− 1
R gives a region in

which WECs are satisfied.
Furthermore, since
d2 f
d R2 = 1

R3 e− 1
R < 0, it gives an

unstable model. Beyond a
certain radius the specific heat is
also positive, which is required
for thermodynamical stability

f (R) = RebR, (36)

in which b = constant and

F(R) = ebR (1 + bR). (37)

This does not satisfy the energy conditions and therefore it
is not a physically interesting case.

8. In Ref. [28] a modified version of our models 6 and 7
is given in which

f (R) = R
(

e
b
R − 1

)
,

with b = constant and

F(R) = e
b
R

(
1 − b

R

)
− 1.

Figure 9 shows our numerical results with b = 0.1. For a
region bounded from above and from below the WECs are
satisfied, while f ′′(R) is negative, which makes our model
unphysical.

9. Among the exponential models of gravity let us consider
[29,30]

f (R) = R + beαR (38)
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Fig. 9 Our model in this case is

given by f (R) = R
(

e
b
R − 1

)

with b = const . With the choice
b = 0.1 it is observed that
WECs are satisfied, while the
stability condition is violated in
spite of the fact that the specific
heat C is everywhere positive

Fig. 10 In this model we use
f (R) = R + beαR , where α and
b are constants. For α = −1 and
b = 1, the WECs are satisfied

and d2 f
d R2 > 0. The specific heat

is shown also to be positive

where α and b are constants and

F(R) = 1 + bα eαR .

Figure 10 displays our numerical calculations for the spe-
cific value of α = −1. Evidently from these figures we can
conclude that this model is not a feasible model.

10. Finally we consider a model of gravity given in Ref.
[31]

f (R) =
(
|R|b − �

) 1
b
, (39)

in which b is a constant. The first derivative of the model is
given by

F(R) = |R|b−1
(
|R|b − �

) 1
b −1

.

Figures 11 and 12 are for b = 1
2 and b = 2, respectively, for

� = 1. We observe that WECs are satisfied in a restricted
region, while for b = 2 / 1

2 it gives a stable / unstable
model.
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Fig. 11 Our model is given by

f (R) = (| R |2 −1
)2

, which
has the WECs satisfied, but
d2 f
d R2 > 0, for |R| > |R0| where
f ′ (R0) = 0. This indicates the
stability of the solution.
Furthermore the specific heat
suggests a thermodynamically
stable model too

Fig. 12 This is the model with

f (R) =
(
| R | 1

2 −1
) 1

2
, which

has the WECs all satisfied,
while the stability condition is
violated. It is
thermodynamically stable since
C > 0

4 Conclusion

In Einstein’s general relativity, which corresponds to f (R) =
R, the Rindler modification of the Schwarzschild metric faces
the problem that the energy conditions are violated. For a
resolution to this problem we invoke the large class of f (R)

theories. From a cosmological standpoint the main reason
that we should insist on the Rindler acceleration term can
be described as follows: at large distances such a term may
explain the flat rotation curves as well as the dark matter
problem. Our physical source beside the gravitational cur-

vature is taken to be a fluid with equal angular components.
Being negative the radial pressure is repulsive in accordance
with the expectations of the dark energy. Our scan covered
ten different f (R) models and in most cases by tuning of
the free parameters we show that the WECs are satisfied. In
ten different models we searched primarily for the validity

of WECs as well as for d2 f
d R2 > 0, i.e. the stability. With some

effort thermodynamic stability can also be checked through
the specific heat. With equal ease d f

d R > 0, i.e., the absence of
ghosts can be traced. Figure 1, for instance, depicts the model
with f (R) = √

R2 + b2, (b =constant) in which WECs and
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stability, even the thermodynamic stability, are all satisfied,
however, it hosts ghosts since d f

d R < 0 for R < 0. Finally,
among all models considered herein, we note that Fig. 7 sat-
isfies WECs, stability conditions, as well as the ghost-free
condition for r > rmin in which rmin ≥ rh depends on the
other parameters.

Finally we comment that the abundance of parameters in
the f (R) theories is one of its weak aspects. This weakness,
however, may be used to obtain various limits and for this
reason particular tuning of parameters is crucial. Our require-
ments have been weak energy conditions (WECs), Rindler
acceleration, stability, and the absence of ghosts. Naturally
further restrictions will add further constraints, which may
lead us to dismiss some cases that are considered as viable
in this study.
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