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Abstract. Inversion is a key method for extracting nonlinear dynamics governed by heterogeneous reaction
that occur in parallel in the natural sciences. Therefore, in this study, we propose a Bayesian statistical
framework to determine the active reaction pathways using only the noisy observable spatial distribution
of the solid phase. In this method, active reaction pathways were explored using a Widely Applicable
Bayesian Information Criterion (WBIC), which is used to select models within the framework of Bayesian
inference. Plausible reaction mechanisms were determined by maximizing the posterior distribution. This
conditional probability is obtained through Markov chain Monte Carlo simulations. The efficiency of the
proposed method is then determined using simulated spatial data of the solid phase. The results show that
active reaction pathways can be identified from the redundant candidates of reaction pathways. After these
redundant reaction pathways were excluded, the controlling factor of the reaction dynamics was estimated

with high accuracy.

1 Introduction

Nonlinear reaction dynamics in natural sciences are
governed by reaction mechanism variables, such as reac-
tion rate constants, diffusion coefficients, and reaction
pathways [1,2]. Therefore, understanding the nonlin-
ear dynamics of reaction and mechanism are important
for scientific theory and ensuring precise simulations
in Earth sciences. Many of the important reactions in
natural sciences are heterogeneous, i.e., the reaction
occurs at the interface between two or more phases,
which are typically minerals and water [1,3]. Under-
standing the mechanism of heterogeneous reactions is
important for multiple disciplines, including environ-
mental science, geochemistry, hydrogeology, oceanogra-
phy, nuclear waste disposal, and soil science. Inversion
is a common way of understanding the mechanism of
heterogeneous reactions; however, the complexity and
nonlinearity of heterogeneous reactions, which typically
involve sequences of several reactions occurring in par-
allel, makes inversion difficult.

Many laboratory experiments have attempted to
understand the mechanism of heterogeneous reactions.
These experiments typically involve quantitative obser-
vations of either (1) the temporal evolution of the con-
centrations of aqueous species [4-7], or (2) the spatial
distribution of minerals or concentrations of aqueous
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species at a single time [8-11]. The reaction rate con-
stant in a reaction pathway can be determined inversely
from the former by analyzing the temporal evolution of
the solution chemistry and equilibration. However, it is
impossible to determine the reaction rate and reaction
pathways from the latter because the stability of a min-
eral cannot be determined without fluid composition
data. Therefore, it is important to develop a versatile
method that can extract nonlinear dynamics directly
from a spatial dataset.

The number of model parameters to be estimated
is an important factor for inversion analysis. In het-
erogeneous parallel reactions, many possible reaction
pathways are present, and many reaction rate constants
need to be estimated. However, in general, the extent of
fitting increases with the number of model parameters
used for fitting. This phenomenon is well known as over-
fitting, which is a very common concept in the field of
machine learning [12-14]. When overfitting occurs, the
estimated model parameters are substantially affected
by noise, which can reduce the predictive ability of the
model. Thus, to estimate reliable reaction rate con-
stants by inversion, reaction rate constants of unimpor-
tant reaction pathways must be identified and excluded
from redundant candidates of reaction pathways.

In this study, we propose a framework for exploring
the reaction pathways of nonlinear and parallel hetero-
geneous reactions from the spatial distribution of min-
erals alone. We used the concept of Bayesian estima-
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tion from machine learning [12,13]. The concept has
been applied to various fields including physics [15-20],
brain science [21], astronomy [22], and Earth sciences
[23]. Notably, the Bayesian estimation has been applied
to identify reaction pathways in the fields of biology and
chemical engineering [24-30]. In these fields, the esti-
mation of reaction rates from noisy observations is the
technically important and challenging topic. Biochem-
ical reaction networks are characterized by nonlinear
systems that can be changed by spatio-temporal scale.
These characteristics are similar to reactions in the
Earth sciences where heterogeneous reactions between
rock and solution are coupled with diffusive and/or
advective transport of solution. Therefore, the Bayesian
estimation can be an effective way to identify heteroge-
neous reaction pathways in the Earth sciences.

Under Bayesian estimation, a statistical model can be
selected by evaluating the Bayesian free energy, and the
important variables can be identified among redundant
variables from a set of candidate models and given data
[12]. Typically, huge computational costs are required
to estimate the Bayesian free energy. Therefore, the
Schwarz information criterion [31] that approximates
Bayesian free energy has been used, but its usage is val-
idated only if the statistical model is regular (i.e., the
posterior distribution can be approximated by normal
distribution). Recently, an alternative approach that
gives an approximate value of the Bayesian free energy
and can be used for both regular and singular statistical
models has been proposed [32]. This approach has made
it significantly easier to apply Bayes’ theorem for non-
linear model selection problems. Using the framework
proposed in this study, we successfully extract impor-
tant reaction pathways of heterogeneous reactions using
only the observable spatial distribution of minerals after
the reaction.

This paper is organized as follows. In Sect. 2, we
introduce the method for estimating the reaction rate
constants form the observed spatial mineral distribu-
tion. We first present a forward modeling approach
for an observed spatial distribution of solids. Bayesian
inference is employed to construct the posterior distri-
bution, i.e., the conditional probability of the model
parameters for an observed spatial distribution of
phases. In Sect. 3, we validate the proposed estimation
method by determining the reaction mechanism from a
synthetic spatial distribution of solid phases. Section 4
presents the discussion and summary.

2 Method for estimating Model parameters

In this study, we analyze the spatio-temporal dynam-
ics of a nonlinear heterogeneous reaction. To reflect
prospected experimental constraints, we suppose a sit-
uation in which temporal changes are not observable
and spatial changes at a single time are observable.
Figure 1 shows a conceptual model of parallel hetero-
geneous reactions. In this conceptual model, three min-
erals (M,, My, and M,) are present at the initial time
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Fig. 1 Conceptual model of parallel heterogeneous reac-
tions in the presence of three minerals (M,, My, and M.)
in discretized time t and space x for a finite difference
approach. At each grid point, a set of partial differential
equations conserving the masses of the chemical compo-
nents in the system is solved, considering diffusion and het-
erogeneous reactions.y Heterogeneous mineral-water reac-
tions are included in the model by using reaction rates
that depend on the solution composition at each = and ¢
(Cq,). Active reaction pathways are determined from the
local variable Cy . At the observable time ¢ = 7', the type
and amount of mineral present varies with x because the
reaction pathways differ according to Cy +

t = 0. These minerals can react and either be consumed
or produced by each other. For example, one reaction
can be written in the following generalized form:

Ko
My + A(ag) + H20 k:b M,

ba

where A(,q) is an aqueous species in the solution, and

', and ky (s7!) are the rate coefficients of the reaction
pathway for M, after M, and M, after My, respectively.
Other reactions can be written similarly; in this hetero-
geneous reaction network, the total number of reaction
pathways L is given by L = N,,(N,, — 1) where N,,
is the total number of minerals. Notably, the value of
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k; is non-zero when the reaction pathway [ is active
but zero when the reaction pathway [ is inactive. This
concept is used for identifying important reaction path-
ways, as described later. Whether the reaction path-
ways are active depends on the local variable of con-
centration of A,q) (C' (mol ecm™3); Fig. 1). The con-
centration C varies in space a’ and time ¢ according
to the reaction and the diffusion of A(,q). The amount

of mineral i (m(” (mol cm~3)), varies with 2’ and #'
because it is a function of C.

To reflect realistic experimental environments, C' is
set as an unobservable value. The observable values in
this study are the spatial variation of the amount of
minerals and the volume fraction of the solution (poros-
ity) at the start (¢ = 0 in Fig. 1) and end of the reaction
(' = T in Fig. 1). Note that discretized space and time
step (x,t) are used in Fig. 1 rather than continuous
space and time (z/,t’)

2.1 Forward modeling of mineral-fluid interactions
using a reaction-diffusion model

The spatio-temporal evolution of C,/p can be mod-
eled using the mass-conservation equation of aqueous
species [1];

(¢C) _ 9 ( ,0C & 92(0)
ot ox’ p

— & =) 1
¥ o D T (1)

where ¢ (—) is porosity, D (cm?/s) is the constant of
diffusivity for aqueous species, and =Z!(C) (mol cm™?)
is the loss or gain density of aqueous species according
to the reaction pathway [. The first term on the right
side of Eq. (1) expresses the concentration change due
to diffusion of the aqueous species, whereas the sec-
ond term expresses the change due to heterogeneous
reactions. The rate of the heterogeneous reaction in a
reaction pathway [, 0= (C) /0t (mol cm™3 s~1), can be
written as a linear equation as a function of concentra-
tion, as follows:

(e
2200 kel - ), ®
where Cf,,y (mol cm™) and &; (s~') are the constant
of equilibrium concentration and the rate constant for
a reaction pathway [, respectively. From the rate of het-
erogeneous reactions, the rate of increase or decrease in
the amount of mineral i can be written as

om L 05(C)
O @
=1

where m(® (mol cm™3) and v} are the amount of min-
eral 7 and stoichiometric coefficient of mineral 7 relative
to aqueous species in the reaction pathway [, respec-
tively. ¢ can be calculated from one minus the sum of
the volume fraction of all minerals, as follows:
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p=1- Zvim(i), (4)

where V;(cm?® mol™!) is a constant representing the
molar volume of mineral i. When Egs. (1)-(3) are
solved, ' and ¢’ need to be discretized. The discretiza-
tion of Eq. (1) is described in the Appendix.

As a result of discretization, the concentration (Cly ¢),
amount of mineral 4 (mgy)t), and porosity (p,) for
a discretized space x (€ {1,...,X}) and time ¢ (€
{1,...,T}) are obtained through forward modeling by
inputting the following unknown parameter vector ©’:

O = {ki, kb, ... kL }. (5)

For a given parameter set ®’, the theoretical amount of
all observation series (i.e., minerals and porosity) at the
observable target time 7" with dimensions of J = N, +1
is

y, = {yV, .y gy ©)
1 Np,
=m0 i) pa ).

(j), is the sum of
the response function for the corresponding input y;(pj )

and the observation noise e(zj ); that is,

The output for observation series j, yq

@) = @) 4 ), (7)

ex
Yz

At this point, we assume that the observation noise
follows a Gaussian distribution with a mean of zero and
a standard deviation of o;:

ex(j) (4)y2
ex(j j 1 Yz — Yz
Py yY)) = ——exp <( o7 ) ) (8)
2mo? 7j

for x € X,ps, where X ps is a set of observable spatial
points. Thus, in the forward modeling, the conditional
probability of the observed spatial distribution of the
mineral and porosity using the model parameters @' is
written as

p(ySy,) = p(ys<|O")
7 ex() ()2
1 €T - Yx
) LI <_<y22y>> |
=1 271'0']2- gj

(9)
where y&* = {y&® =Y i the set of observed
series at position . This formula can be used to obtain
the probabilistic estimation of the mineral distribution
after reaction as the conditional probability for the
given model parameters. This can then be compared
with experimental data.

@ Springer
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Fig. 2 Schematic of the Bayesian modeling procedure. The
model parameter (@' = {ki,...,kL}) is generated from the
indicator vector ¢. The observed data set is generated from
the model parameters. To identify the active reaction path-
ways, p(c|Yx ) is calculated using Bayes’ theorem

2.2 Exhaustive search method for exploring reaction
pathways

This section describes the method for achieving the first
goal of this study, i.e., to identify the active reaction
pathways. After the active reaction pathways are iden-
tified, the value of the rate constants are estimated (goal
2) in Section II C.

We can determine whether a reaction pathway [ is
active or inactive using the k] value of a reaction path-
way [. Thus, @’ can be formulated as

® =co® (10)
= {Clkil, CQ]CQ, ..

) CLkL}a

where k; is the intrinsic rate constant of the reaction
pathways, the symbol o represents the Hadamard prod-
uct, and @ = {ky,...,kr}. cis an L dimensional binary
vector, defined as

c=(c1,¢o,...,c0) €{0,1}F, (11)
Each variable ¢; is 0 or 1; ¢ = 1 if the [th variable
belongs to the combination and is used for inversion. In
contrast, ¢; = 0 if it does not . The term ¢ is used to
represent the indicators (Fig. 2).

This formulation is key for clarifying one aspect of
the program setting; i.e., identifying the active reaction
pathways. The best ¢ for modeling an objective variable
is determined by minimizing the Bayesian free energy F
using the exhaustive search (ES) method, which is the
simplest variable selection method [33,34]. In the ES
method, all combinations of used and unused variables
are exhaustively searched, which requires estimation of
2L combinations of variable. With the ES method, the
F(c) is calculated for all combinations of explanatory
variables; the combination that minimizes the F(c) is
determined as the optimal combination.

Using Bayes’ theorem, the posterior probability can
be expressed as proportional to the likelihood function
and the prior probability, as follows:

p(Yx[e)p(c)

P = vy

x p(Y x|c). (12)
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Here, Yx = {y5*,...,y<} and X is the number of
spatial data points in the single observation series. We
assume a continuous uniform prior probability p(c),
where the posterior distribution is proportional to a
marginalized likelihood function defined as follows:

(Y xle) = / (Y xle, @)p(@lc)de.  (13)

In addition, we assume that previous quantitative mea-
surements of the minerals and porosity do not affect
the present measurement; thus,

X
p(Y x|e,®) = [ p(y5¥|c, ©)

x=1
X J ex(j j
| <_}yz(”y§52>
= p 3 .
e=1j=1 y/2m0% 203
(14)

J
Because reaction rate constants must be positive and
may vary by orders of magnitude, as for p(©|c), we
assume that the case of ¢; = 1, p(ki|¢e; = 1) has a con-
tinuous uniform distribution in logarithmic space, as
follows:

1 min max
plkilep =1) = { ko (k™) —In (k™) ) for = € (K™, 77
0 otherwise

(15)
where kl(max) and k:l(mm) are the maximum and mini-
mum values of the rate coefficient for the reaction path-
way [ within the range of searched values. In the case of
¢; =0, p(ki|e; = 0) is assumed to be the delta function,
as follows:

plkilee=0)=0(k) (I=1,...,L). (16)

The negative logarithm of the marginalized likelihood
is termed the Bayesian free energy JF, which is defined
as

F =—-Inp(Yx|c). (17)

The minimization of F is identical to the posterior
probability maximization. However, it is difficult to
analytically calculate the integral over the parameter @
in the marginal likelihood. A well-established solution is
thermodynamic integration [16] that numerically calcu-
lates F using the Markov chain Monte Carlo (MCMC)
method [35]; however, this method generates huge com-
putational costs because the expectations over several
distributions with different pseudo-temperatures must
be calculated. In this study, we numerically calculate
the WBIC for the Bayesian model selection of reaction
pathways. The WBIC value gives an approximate value
of F [32]. This approach is expected to substantially
reduce the computational costs of numerical calcula-
tion. The WBIC is defined as
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JnL,p(Y x|ec, 0)’ p(®|c)d®
[p(Yx|e,©)"p(®|c)d®

8= (18)

WBIC =

, where

where n is the total number of data points (n = X .J)
and [ is the inverse pseudo-temperature (8 > 0). L,, is
a negative logarithmic likelihood function, defined as

1
Ly =——lnp(Yxle, ©). (19)

As defined in Eq. (18), WBIC is identical to the average
nL, over the posterior distribution with 8 = 1/1In(n),
whose ( is different from the standard Bayesian esti-
mation of the posterior (5 = 1). The MCMC method
[36] is employed to obtain WBIC values. In the MCMC
simulations, the candidate is generated using a Gaus-
sian proposal density (NV(0,0.01)). The same proposal is
used for all models. The candidate is accepted with the
Metropolis-type probability from the transition from @
to ®* as follows:

w(©"®) = min{l, exp[-A(E(O) — E(O))]}, (20)

where E is an energy function,

E(®)=nL, — %lnp(@|c). (21)

Using these equations, WBIC values for 27 combina-
tions of ¢ were calculated using the MCMC method
with the setting of § = 1/In(n). The vector of active
reaction pathways, i.e., the reaction pathways with non-
zero rate constants, can be given by the indicator vector
that minimizes the WBIC value.

é = arg min WBIC(c). (22)

2.3 Estimation of model parameters

After ¢ is identified, the parameter in @ can be esti-
mated using Bayes’ theorem, as follows:

p(@|Y x,¢é) x p(Y x|0, é)p(O]¢). (23)

The likelihood function p(Y x|@, &) is then given by

X
p(Yx|@,8) =[] p(v5*|©, &)

=1
X J ex(j j
- T o (52
= 3 .
z=1j=1 4 /27To‘12- 207
(24)
Thus, the posterior distribution can be expressed as
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Fig. 3 Schematic illustration of the reactive transport
model considered in this study [37]. At & = 0, SiOg(aq) is
transported by diffusion at a rate of D through the porous
media of powdered olivine, and secondary minerals (talc,
serpentine, and brucite) are formed. The gray bold line
shows the overall reaction between the two minerals. k; is
the effective rate constant of the reaction pathway [

1 J 1 X . .
p(OIY x, &) ccexp | =2 37 —5 > (w5 —u?)?| p(Oe),
j=1"J z=1
(25)
which is obtained by the MCMC method.

3 Validation

3.1 An example of parallel heterogeneous reactions

In this section, we validate the proposed method using
simulated data. As an example of the potential applica-
tions of the proposed methodology, we consider coupled
diffusion and reaction in the presence of olivine, quartz,
and HyO (Fig. 3). This is chosen for the following rea-
sons: (1) The diffusional metasomatic zoning of talc and
serpentine zones between quartz and olivine has been
classically modeled [38-40]; (2) this heterogeneous reac-
tion network is relatively simple, but involves the dis-
solution/precipitation processes of several minerals as
well as element diffusion [8,41].

In this example, heterogeneous reactions between
four types of minerals (m;i)t, i=1,...,4) at 300 °C and
10 MPa are considered (N,, = 4). At t = 0, the porous
media of the reactant mineral, Mg,SiO4 (olivine), are
initially present (Fig. 3). The minerals predicted to
be produced from the reactant are Mg;SipO5(OH),
(serpentine), Mg3Si4019(OH), (talc), and Mg(OH),
(brucite). At x = 0, the concentration of SiO2(aq), Cy 1,
is externally buffered at a constant value. All reaction
pathway candidates can be given as

Reaction 1 (R1):

3 Mg,Si0, + 5Si0,(aq) + 2H,0 *L 2 Mg,Si,0,,(OH),
Reaction 2 (R2):

3 Mg,Si0, + Si0,(aq) + 4H,0 2 2 Mg,Si,0,(OH),
Reaction 3 (R3):

@ Springer
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theoretical spatial distribution of minerals (m

Mg,Si, O5(0OH), + 2810, (aq) % Mg33i4010(OH)2 + H,0
Reaction 4 (R4):
Mg,Si0, + 2H,0 %% 2 Mg(OH), + SiO, (aq)
Reaction 5 (R5):
Mg(OH), + 2810, (aq) Z: Mg, 81,0, (OH), + H,0
;

Here, we assume that R1, R2, and R4 are irreversible
reactions (Fig. 3). Based on the stoichiometric relation-
ship in these reaction equations, the v! for Mg,SiOy4 are
given as {vi,...,v7} ={3/5,3,0,0,-1,0, 0}. Similarly,
for Mg;SisO10(OH),, {v3,...,vi} = {-2/5, 0, -1/2, -
1/2, 0, 0, 0}; for Mg(OH),, {vi,...,vI} = {0, 0, 0, 0,
2, 1/2, 1/2}; and for Mg;Si>O5(0H),, {v},...,vf} =
{0,-2, 1/2, 1/2, 0, -1/2, -1/2}. The model parameters
(i.e., rate constants of each reaction pathway) can be
expressed by ® = {k{, kb, ..., k%} with the dimension
L=T1.

3.2 Validation dataset

The black dotted line in Fig. 4 (a—e) shows the
mineral spatial distribution, which is obtained by
e = {10—3.3017 10—3.3017 07 07 10—3.301, O, O}, i.e.,
1, k5, and kf are non-zero. The equilibrium concentra-
tions are set as {C(leq),. . Cgeq)} = {107657 107941,
10—5.86’ 10—5.86’ 10—7.54’ 10—8.01’ 10—8.01} and D is
set to 10742 [41]. The temperature-pressure variable
V,; at 300 °C and 10 MPa was obtained from the
petrological software Perple_X [42], which can deter-
mine physical properties of minerals thermodynami-

@ Springer

Distance [mm]
t=1,...,4), and porosity (¢=,7). The black dotted line is the
) with artificial parameters at a certain time step 7. The pink circle shows

) with added Gaussian noise

cally. We assume that the mineral spatial distribu-
tion can be observed at steps of 0.03 cm and is repre-
sented by adding Gaussian noise. To impose the same
level of Gaussian noise on each observable series, o
was assumed to be o; = o’ X yfg;x(j = 1,...,5),
whereas ¢’ is an noise magnitude, and y,ﬂ{&x is max-
imum value of a single observation series (yfﬁix =
max(yy), e yg))) The o’ is set to 10715, which cor-
responds to 6.3% deviation, and thus {o1,...,05} =
{10734, 107517 10=445 10~7-11,10°-29}, After adding
Gaussian noise, we set negative values of the syn-
thesized spatial data to zero, because the amount of
mineral cannot be negative. The circle in Fig. 4(a—
e) shows the synthesized mineral spatial distribution.
Each observed series contains 60 data points (X = 60)
and there are five observation series (J 5); thus,
the total number of data points is 300 (n = 300). The
parameters for prior information k:l(mm) and k:l(max) are
set to 1078 and 10°, respectively. The noisy dataset is
then analyzed using the proposed method to determine
its effectiveness for extracting and estimating the model
parameters ©.

3.3 Validation result

10* samples were obtained using the MCMC method
with the setting of § = 1/In(n), 1000 burn-in time,
and 10 thinning intervals, which were used to calculate
WBIC values for 2° candidates of ¢. As shown in a later
section (Sect. 3.5), autocorrelation of chains is generally
low in each MCMC run, suggesting that chains are well
mixed. Figure 5 shows the calculated value of WBIC for
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Fig. 5 a 2"(= 128) combinations of used (¢; = 1) and unused (¢; = 0) parameters k..., k-. b A magnified image of (a).
¢ Number of kinetic parameters used. d A magnified image of (c). e WBIC values for each combination of used and unused
parameters. f A magnified image of (e). In (a—e), the horizontal axes show the ranking of WBIC values in increasing order.
Among 128 combinations, 32 combinations have uniformly highest WBIC values, which are ranked at 97

27 combinations of . Among 27 combinations, 96 mod-
els have different WBIC values, and WBIC increases as
ranking increases from 1 to 96 (Fig. 5a—d). In contrast,
another 32 models have the highest WBIC values, and
these worst models are uniformly ranked at 97 (Fig.
5a—d). The ranking result shows that ¢y, co, and ¢; = 1
appeared frequently in combinations ranked at < 15
(Fig. ba, b). In contrast, cs, c4, cg, and ¢z = 0 fre-
quently ranked at < 15 (Fig. 5a, b), indicating that k3,
k., kg, and k% are comparably unimportant parameters.
When all parameters are used (¢; = 1,1 =1,...,7), the
WBIC value is —2324.7 and ranked at 11 (Fig. 5a—d).
WBIC is lowest (WBIC = —2327.4) when ¢, ¢z, and
¢5 = 1, which is the same combination used in the input
observation series. This demonstrates that the proposed
method can identify the active reaction pathways from
redundant candidates of reaction pathways.

For the combinations of used model parameters that
minimize WBIC values (i.e., ki, k%, and kf), another
MCMC run was conducted to estimate the model
parameters. The first 103 trials of MCMC sampling
were not used. The auto correlation (AC) between
MCMC sampling and lag time showed steep decay
with increasing lag length, suggesting that MCMC sam-
pling is less correlated and independent (Fig. 6a—c).
The posterior distribution of these parameters after
10* Monte Carlo steps is similar to the shape of a
normal distribution with a single peak (Fig. 6). The
mean values of the posterior distribution for parameters
log,o(k}), logyo(kS), and logy(k5) are —3.299, —3.301,

and —3.291, respectively (Fig. 6a—c), which are close to
their true values.

3.4 Dependence of model selection accuracy on
spatial resolution and observation noise

Here we investigated how robustly the true model can
be selected for different numbers of total observations
and different levels of observation noise. With a set of
n and o', the validations are repeatedly conducted for
10 trials. Different datasets are used for each trial.

Figure 7a—i show the result of model selection for all
ten trials at each set of n and ¢’. Combination of indi-
cators ranked within 5th are shown. At n = 300, true
models are definitely selected as the best (rank 1) mod-
els four times when noise levels are low (o/ = 1072Y;
Fig. 7a). The number of times the true models were
selected are decreased at high noise levels, and are
five and three times among ten trials at ¢/ = 10715
(Fig. 7b) and 1010 (Fig. 7c), respectively. Similarly,
at n = 100, the number of times the true models were
selected as the best model are 2, 3, and 2 times among
10 trials for o/ = 10729 (Fig. 7d), 1015 (Fig. 7e), and
10~ 10 (Fig. 7f), respectively; At n = 30, the number of
times the true models were selected as the best model
are 2, 1, and 0 times among 10 trials for o/ = 10720
(Fig. 7g), 10~15 (Fig. 7h), and 10710 (Fig. 7i), respec-
tively.

We note that the true combination of the indicator
(c1, c2, and ¢5 = 1) appeared frequently in the top 5
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Fig. 6 Result of MCMC sampling, showing MCMC chains for 10* iterations, posterior distributions, and autocorrelation
(AC) of MCMC sampling for parameter a ki, b k5, and ¢ ki. The red dotted line in the AC plot is the 95 % confidence

interval

models during 10 trials at any set of n and o’ (Fig. 7a—
i). Moreover, the true model is generally selected in the
top 5 models. For example, at n = 300, the true models
are ranked in top 5 for 10, 8, and 7 times among 10
trials for o/ = 10729 (Fig. 7a-—c), 1075, and 10~1°
(Fig. 7a—c), respectively.

3.5 Dependence of parameter estimation accuracy
on spatial resolution and observation noise

Here we investigated how robustly the non-zero vari-
ables (ki, k), and kf) can be estimated for differ-
ent numbers of total observations and different lev-
els of observation noise. We evaluated the discrepancy
between estimated value and true value as the normal-
ized root mean square error (NRMSE) by

1 es rue rue 2
NRMSE = |- 3 ((k;( 0 ple)) )) 7
1=1,2,5

where kY and k"™ are the posterior mean and
true value of the rate constant for reaction pathway I,
respectively. For each setting of the number of observa-
tions (n) and observation noise (¢’), we evaluated the
NRMSE values for several trials because the NRMSE
values can be affected by a random number. Then, we
used one of the trials as a typical result because the
calculated NRMSE results for the several trials were
consistent.

@ Springer

Figure 8 shows that the calculated NRMSE on n and
o’. We obtained NRMSE in the range of n = 15 — 300
(log,o(n) = 1.17 — 2.48) and ¢’ = 10720 — 10710 (cor-
responding to 2 — 20% deviation relative to the max-
imum value of each observation series). Results pre-
sented in Fig. 8 suggest that the NRMSE increases
with (1) decreasing total number of observation and
(2) increasing noise intensity. The NRMSE shown in
Fig. 6 (log,o(n) = 2.48 (n = 300) and ¢’ = 10~1:5) was
10~17, which corresponds to 2% error on average. Even
when the number of observation was limited (log;q(n)
= 1.30 (n = 20)), rate constants were estimated with
similar NRMSE (10~17) for moderate noise levels (o’ =
10~ 175), whereas it was estimated with slightly higher
NRMSE (10~!-?) for intense noise levels (o’ = 1071:25).
For most regions except for logo(n) < 1.30 (n < 20)
and ¢’ > 107159 the NRMSE was lower than 10719,
which corresponds to 10% estimation error on average
(Fig. 8). The estimates were very accurate from the
viewpoint of heterogeneous reaction in the Earth sci-
ences, suggesting that our proposed method is effective
against both observational sparseness and noise intensi-
ties and can be used for estimating kinetic parameters.

4 Discussion and summary

In this study, we developed a method for identifying
active reaction pathways from redundant reaction path-
way candidates using observed spatial data of the solid
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phase and Bayesian modeling. Verification using simu- estimation of known kinetic parameters from the noisy
lated data showed that the proposed method provides  spatial distribution of minerals, our method objectively
effective estimation for a given noisy dataset. identifies both the active reaction pathways and unim-

In general, it is difficult to determine the reaction  portant reaction pathways, instead of arbitrarily ignor-
pathways in nonlinear parallel heterogeneous reactions  ing them. The proposed method can also be employed
without measuring the solution chemistry. Even when  to evaluate the estimation accuracy for each unknown

the solution chemistry dataset is provided, the explo-  variable, which is important for scientific research.
ration and identification of reaction pathways involves In this study, the lowest WBIC value was not
multiple considerations due to the complexity and non-  attained using all seven variables (-2324.7, correspond-

linearity of the reactions. As demonstrated during the  ing to a ranking of 11; Fig. 5a). This suggests that
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Fig. 8 Dependence of discrepancy between true and esti-
mated parameters in the total number of observations (n)
and the magnitude of observation noise (o).

overfitting can be avoided thorough Bayesian inversion,
and the estimated model parameters are not affected by
noise.

For variable combinations ranked at < 15, the indi-
cator suggests that non-zero parameters kf, kb, and ki
always appeared in the combinations (Fig. 5a, b); how-
ever, the number of unimportant parameters (i.e., with
a zero value) included in each combinations differed.
For the model ranked first, no zero-value parameters
were included. For the model ranked second, the indi-
cator suggests that ki, kb, kL, and kf were included,
whereas ki, kb, k5, ki, and k§ were included in the
model ranked third (Fig. 5a, b). Because unimportant
parameters were included in the models ranked second
and third, the WBIC values were larger than those for
the parameter combination ranked first.

Large variability was observed in WBIC values, espe-
cially between rank 48 (WBIC = 138.2) and 49 (WBIC
= 5665.7; Fig. 5e). The indicators suggest that the
former used three variables: kb, k§, and k% (Fig. 5a),
whereas the latter used two variables: &} and &} (Fig.
5). When the variable combinations ranked 48 and 49
were compared, the number of variables was larger for
the lower-ranked model. This suggests that the extent
of fitting led to large differences in the WBIC values
between the models ranked at 48 and 49.

It is important to note the characteristics of the 32
worst models identified by highest WBIC value (Fig.
5a—e). Among these worst models, all of the models
without any parameters (i.e., all rate parameters set
to zero) and with less than five parameter are simi-
larly selected as worst models. This is because reactions
that are necessary for another reaction to take place are
restricted by these models. Common features in these
worst models is that k] and &} are not used (Fig. 5a).
Without these reaction pathways, the combination of
variables become worst case, even when the important
reaction kf is used. These results suggests that reac-
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tion pathway ki and kf are necessary to drive another
reaction, such as k. We suggest that identifying the
common features of variables in the worst models may
also be helpful to understand the sequences of reactions.

Although it is difficult to analytically derive Bayesian
free energy F in general, there are several methods
to calculate F [16], such as thermodynamic integra-
tion [43], nested sampling [44], and the non-equilibrium
Monte Carlo method [45]. In this study, we used an
information criterion, WBIC, that may provide a com-
putationally efficient approximation of the F. The F
can be approximated by a Bayesian information crite-
ria (BIC) [31] only when the statistical model is reg-
ular, i.e., the posterior distribution can be approxi-
mated as the normal distribution [31,32]. In the exam-
ple described in this study, the shape of the posterior
distributions obtained by MCMC method are similar to
those of the normal distribution (Fig. 6). To investigate
the effectiveness of BIC, the same validation numerical
experiments were conducted. As a result, we found that
the BIC also identified active reaction pathways in the
case of the validation test shown in the present study.
However, the usage of BIC cannot be validated with-
out sampling because the shape of the posterior dis-
tribution cannot be constrained prior to sampling. In
contrast, the WBIC, which is a generalized version of
the BIC, can be used in both regular and singular sta-
tistical models and regardless of the shape of the pos-
terior distribution [32]. Analyzing real heterogeneous
reactions could require a solution for a singular model
because heterogeneous reactions between minerals and
fluids can be complex. Thus, WBIC as a generalized
version of BIC would be the preferred information cri-
terion for selecting models via Bayesian inference.

In this study, the noise variances o; for each obser-
vation series are treated as known constants. In the
realistic situation, noise variance can be estimated as a
hyperparameter by Bayesian estimation. However, such
hyperparameter estimation is not necessary because
approximate values for noise variance are known for
the heterogeneous reaction between minerals and fluid.

In this study, spatial data points at a single time are
used as observable data (n). As we showed in Fig. 7,
the true model is likely difficult to be selected when
n = 30 with a corresponding space interval of 0.3 cm
(Fig. 7g-i). Because the spatial observation step can
be 0.01 cm at minimum, n may not be less than 100,
and an extreme situation in which only 30 observation
data points can be used is unrealistic. However, even in
the extreme situation, the parameters used (c1, co, and
¢5 = 1) in the true model frequently appeared in the
top five models, suggesting that the true models can be
interpreted by checking common indicators in the high
ranked models.

The Bayesian approach has been applied to infer
kinetic reaction pathways in the fields of chemical engi-
neering and biochemistry [26,29]. In these works, the
Bayes factor, which quantifies the support for one model
over another, was used to select models. The Bayes fac-
tor between two hypothesized models is obtained by
calculating the difference of F between the two models.
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Such a calculation of F can be substituted by WBIC
to reduce computational cost.

Although the effectiveness of our approach was
demonstrated by analyzing a synthesized dataset, the
limits of its applicability must be noted. It is easy to
imagine that the exhaustive search method used in this
study will become intractable for a large number of
variables (L). Therefore, to reduce the computational
load, a relaxation approach such as the least abso-
lute shrinkage and selection operator (LASSO) method
[21,46] using an [;-norm regularization term could be
used when the ES method is computationally infeasi-
ble. However, exhaustive search (ES) is necessary for
the strict selection of efficient variables [33,34,47]. This
computational explosion problem associated with the
ES method can be improved through the development
of another relaxation method.

The proposed approach serves as a basic inversion
framework for extracting active reaction pathways dur-
ing parallel heterogeneous reactions. The applications
of our methods to real data will be considered sepa-
rately. The development of analytical methods for het-
erogeneous reactions and applications to a real dataset
will provide a better understanding of important and
dynamic Earth processes.
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A Discretization of partial differential
equation

The partial differential equation (Eq. 1) must be discretized
to solve. The left side of Eq. (1) can be discretized with
respect to time to obtain the difference equation

0(pC) 01110141 — Po,tCo
o o : (26)

where ¢ denotes a time step and At is a time interval used
for time discretization. The first term on right side of Eq.
(1) can be discretized with respect to space to obtain the
difference equation

o 2 0C
Dax’ (90 E)x’)

=D [gb Cotre = Coa g, Ot = Comr o
© Ax? v Ax? ’
where
P, — 2Put Lot _ 201t Part (28)

e — 5 w = 5
Pt + Pr41,t Pr—1,t + Pt

and Az is a space interval used for space discretization.
Combining the previous discretized equations, we obtain the
following difference equation:

Soz,t+lcz,t+1 - Soz,tcz,t
At
o Cz+1,t - Cz,t Cz t
=D {QSG As? Ar? (29)

L
- Z kz(céeq) - Cz,t)-
l

We note that for Eq. (29) to be solved, the parameter ¢ ;
must be known. Therefore, Egs. (2)—(4) were first calculated
to obtain ¢z :+1. Using Eq. (29) and g ++1, the parameter
Cy,t+1 was constrained.

References

1. A.C. Lasaga, Kinetic Theory in the Farth Sciences
(Princeton University Press, 1998), ISBN 0-691-03748-5

2. C.I. Steefel, In kinetics of water-rock interaction
(Springer, New York, 2008), pp. 545-589

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

42 Page 12 of 12

3.

10.

11.

12.

13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

J.D. Rimstidt, Geochemical Rate Models (Cam-
bridge University Press, Cambridge, 2013), ISBN
9781139342773,  http://ebooks.cambridge.org/ref/id/
CBO09781139342773

J.D. Rimstidt, H.L. Barnes, Geochim. Cosmochim. Acta
44, 1683 (1980)

T. Omori, T. Kuwatani, A. Okamoto, K. Hukushima,
Phys. Rev. E 94, 033305 (2016)

A. Okamoto, Y. Ogasawara, Y. Ogawa, N. Tsuchiya,
Chem. Geol. 289, 245 (2011)

C. Zhu, P. Lu, Z. Zheng, J. Ganor, Geochim. Cos-
mochim. Acta 74, 3963 (2010)

R. Oyanagi, A. Okamoto, N. Hirano, N. Tsuchiya, Earth
Planet. Sci. Lett. 425, 44 (2015)

K. Maher, C.I. Steefel, D.J. DePaolo, B.E. Viani,
Geochim. Cosmochim. Acta 70, 337 (2006)

K. Maher, C.I. Steefel, A.F. White, D.A. Stonestrom,
Geochim. Cosmochim. Acta 73, 2804 (2009)

R. Abart, E. Petrishcheva, F.D. Fischer, J. Svoboda,
Am. J. Sci. 309, 114 (2009)

C. Bishop, Pattern recognition and machine learning
(Springer, Verlag New York, 2006)

1. Goodfellow, Y. Bengio, A. Courville, Deep Learning
(The MIT press, 2016), http://www.deeplearningbook.
org

J. Lever, M. Krzywinski, N. Altman, Nat. Methods 13,
703 (2016)

Q. Yang, C. Sing-Long, E. Reed, Chaos: an interdisci-
plinary. Journal of Nonlinear Science 30, 53122 (2020)
U. Von Toussaint, Rev. Modern Phys. 83, 943 (2011)
R. Tamura, K. Hukushima, Phys. Rev. B 95, 1 (2017)
M. Meier, R. Preuss, V. Dose, New J. Phys. 5, 133 (2003)
U.V. Toussaint, R. Fischer, K. Krieger, V. Dose, New J.
Phys. 1, 11 (1999)

IEEE Nuclear Science Symposium And Medical Imaging
Conference 1, 52425 (2008)

S. Otsuka, T. Omori, Neural Networks 109, 137 (2019)
K. Nagata, S. Sugita, M. Okada, Neural Networks 28,
82 (2012)

T. Kuwatani, H. Nagao, S.I. Ito, A. Okamoto, K.
Yoshida, T. Okudaira, Phys. Rev. E 98, 043311 (2018)
S. Matera, W.F. Schneider, A. Heyden, A. Savara, ACS
Catal. 9, 6624 (2019). https://doi.org/10.1021/acscatal.
9b01234

N. Pullen, R.J. Morris, PLoS One 9, 1 (2014)

V. Vyshemirsky, M.A. Girolami, Bioinformatics 24, 833
(2008)

P. Loskot, K. Atitey, L. Mihaylova, Front. Genetics 10,
549 (2019)

N. Galagali, Y.M. Marzouk, Chem. Eng. Sci. 123, 170
(2015)

@ Springer

29.

30.

31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.

47.

Eur. Phys. J. B (2021) 94:42

T.R. Xu, V. Vyshemirsky, A. Gormand, A. von
Kriegsheim, M. Girolami, G.S. Baillie, D. Ketley, A.J.
Dunlop, G. Milligan, M.D. Houslay et al., Sci. Signal. 3,
ra20 (2010)

D. Schnoerr, G. Sanguinetti, R. Grima, J. Phys. A:
Math. Theor. 50, 093001 (2017)

G. Schwarz, Annal. Stat. 6, 461 (1978)

S. Watanabe, J. Mach. Learn. Res. 14, 867 (2013)

K. Nagata, J. Kitazono, S. Nakajima, S. Eifuku, R.
Tamura, M. Okada, IPSJ Online Trans. 8, 25 (2015)
Y. Igarashi, K. Nagata, T. Kuwatani, T. Omori, Y.
Nakanishi-Ohno, M. Okada, J. Phys.: Conf. Ser. 699,
(2016)

Y. Ogata, Ann. Inst. Stat. Math. 42, 403 (1990)

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth,
A H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953),
5744249209

R. Oyanagi, A. Okamoto, N. Tsuchiya, Minerals 8, 579
(2018)

P.C. Lichtner, Geochim. Cosmochim. Acta 52, 143
(1988)

J.D. Frantz, H K. Mao, Am. J. Sci. 276, 817 (1976)
D.S. Korzhinskii, Miner. Deposita 3, 222 (1968)

R. Oyanagi, A. Okamoto, N. Tsuchiya, Geochim. Cos-
mochim. Acta 270, 21 (2020)

J. Connolly, Geochem. Geophys. Geosyst. 10 (2009)

Y. Ogata, Numer. Math. 55, 137 (1989)

J. Skilling et al., Bayesian Anal. 1, 833 (2006)

H. Ahlers, A. Engel, Eur. Phys. J. B 62, 357 (2008)

R. Tibshirani, J. Roy. Stat. Soc.: Ser. B (Methodol.) 58,
267 (1996)

T. Nakayama, Y. Igarashi, K. Sodeyama, M. Okada,
Chem. Phys. Lett. 731, 136622 (2019)


http://ebooks.cambridge.org/ref/id/CBO9781139342773
http://ebooks.cambridge.org/ref/id/CBO9781139342773
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://dx.doi.org/https://doi.org/10.1021/acscatal.9b01234
http://dx.doi.org/https://doi.org/10.1021/acscatal.9b01234

	Exploration of nonlinear parallel heterogeneous reaction pathways through Bayesian variable selection
	1 Introduction
	2 Method for estimating Model parameters
	2.1 Forward modeling of mineral-fluid interactions using a reaction-diffusion model
	2.2 Exhaustive search method for exploring reaction pathways
	2.3 Estimation of model parameters

	3 Validation
	3.1 An example of parallel heterogeneous reactions
	3.2 Validation dataset
	3.3 Validation result
	3.4 Dependence of model selection accuracy on spatial resolution and observation noise
	3.5 Dependence of parameter estimation accuracy on spatial resolution and observation noise

	4 Discussion and summary
	Author contributions
	A Discretization of partial differential equation
	References
	References




