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Abstract A discussion on the electrical conductivity of the
quark-gluon plasma as determined by lattice QCD is given.
After a reminder of basic definitions and expectations, vari-
ous methods for spectral reconstruction are reviewed, includ-
ing the use of Ansätze and sum rules, the Maximum Entropy
and Backus-Gilbert methods, and Tikhonov regularisation.
A comprehensive overview of lattice QCD results obtained
so far is given, including a comparison of the different lattice
formulations. A noticeable consistency for the conductivi-
ties obtained is seen, in spite of the differences in the lattice
setups and spectral reconstruction methods. It is found that
in the case of quenched QCD little temperature dependence
of σ/T is seen in the temperature range investigated, while
for QCD with dynamical quarks a reduction of σ/T in the
vicinity of the thermal crossover is observed, compared to
its value in the QGP. Several open questions are posed at the
end.

1 Introduction

The experimental heavy-ion programmes at the Relativistic
Heavy Ion Collider (RHIC) and the Large Hadron Collider
(LHC), and, in the near future, at the Nuclotron-based Ion
Collider fAcility (NICA) and the Facility for Antiproton and
Ion Research (FAIR), offer exciting probes into the dynam-
ics of strongly interacting matter under extreme conditions.
The relation with the underlying theory, Quantum Chromo-
dynamics, is established via phenomenology, which permits
a connection between quantities computable from first prin-
ciples, such as the equation of state, and measurable observ-
ables in the experiments.

In this contribution we focus on one such quantity, the
electrical conductivity σ of the quark-gluon plasma (QGP).
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As we will review in the next section, the usual definition
of the conductivity, employing the Kubo formula, relates it
to a specific limit of Green’s functions in quantum field the-
ory, allowing for a computational formulation using, e.g.,
lattice QCD in principle. On the other hand, the conductivity
plays a role in charge transport, particle production and the
time evolution of electromagnetic fields generated in heavy-
ion collisions, see e.g. Refs. [1–6] and references therein,
emphasising its phenomenological relevance.

On the theoretical side, the conductivity can be computed
using a variety of methods, ranging from Feynman diagrams
at weak coupling [7,8] and kinetic theory in QCD [9,10] or
effective models [11,12] to holographic methods at strong
coupling [13,14]. Here we will focus on the results obtained
using numerical simulations of QCD discretised on the lat-
tice, as a first-principle tool to access nonperturbative infor-
mation in the vicinity of the deconfinement transition.

So far there are O(10) papers which have attempted
to compute the conductivity on the lattice [15–24]. These
papers differ substantially in detail, partly indicating the
increase in available computing power over the past 15 years
or so. For instance, there are simulations with N f = 0
flavours (quenched QCD), and N f = 2 and 2 + 1 dynam-
ical flavours; with quarks heavier than in nature or at the
physical point; using a continuum extrapolation or at fixed
lattice spacing; with isotropic and anisotropic (aτ � as)
lattices, etc (a detailed comparison is given in Sect. 4).
Importantly, the methods used to extract the conductivity
from the Euclidean lattice correlators differ substantially as
well, and include the use of Ansätze [17–19,22,23], sum
rule constraints [19,25,26], Bayesian approaches such as
the Maximum Entropy Method [15–18,20,21], the Backus-
Gilbert method [22,24], and analytical continuation of data
after short-distance vacuum subtractions [27–29]. Despite
these differences, a consistent picture is seen to emerge,
with approximate agreement between simulations with either
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dynamical quarks or in the quenched case. The aim of this
review is to give a comprehensive overview of what has been
obtained so far and provide a comparison of the results. For
completeness, we note here that we restrict ourselves to the
conductivity in the case of light quarks; we will not discuss
heavy-quark diffusion [30–32] and neither other transport
coefficients such as the shear [33–35] and bulk viscosities
[36,37].

This paper is organised as follows. In the following section
we present some basic expressions relating the conductivity
to various Green’s functions, notably the spectral function
and the corresponding Euclidean correlator, using the Kubo
relation. Some general remarks on expectations at high tem-
perature and the so-called transport peak are given as well.
In Sect. 3 we discuss the various approaches that have been
employed to reconstruct the spectral function and extract the
conductivity, given a numerically determined Euclidean cor-
relator. An overview of available lattice results is given in
Sect. 4, including a comparison between the values of σ

obtained so far. Some related developments are summarised
in Sect. 5. The final section contains a summary, including
some open questions. In the Appendix some well-known rela-
tions between the various Green’s functions are collected.

2 Kubo formula and spectral function

The electromagnetic current in QCD receives contributions
from all quark flavours and reads

jem
μ (x) =

N f∑

f =1

(eq f ) j
f

μ (x), j fμ (x) = ψ̄ f (x)γμψ f (x).

(1)

Here q f denotes the fractional charge of the quark (2/3 or
−1/3) and e the elementary charge. We restrict the discussion
to light quarks, with N f = 2 or 2+1. The current is hermitian,
jem
μ

†(x) = jem
μ (x).

The electrical conductivity σ indicates the linear rela-
tionship between the current density and an electric field,
jem
i = σ Ei , according to Ohm’s law. Using linear-response

theory, it can be related to the current-current correlator in
thermal equilibrium, in absence of the external electric field,
see e.g. Ref. [9]. More precisely, the conductivity is propor-
tional to the slope of the current-current spectral function in
thermal equilibrium,

ρem
μν (ω,p) =

∫
d4x eiωt−p·x〈[ jem

μ (t, x), jem
ν (0, 0)]〉, (2)

at vanishing energy and momentum, i.e.,

σ = 1

6

∂

∂ω
ρem
i i (ω, 0)

∣∣∣
ω=0

. (3)

Fig. 1 One-loop contribution
to the current-current spectral
function

Here the summation over spatial components, i = 1, 2, 3,
is understood. The current-current spectral function is the
expectation value of the commutator of the electromagnetic
current, evaluated at temperature T .

The conductivity is closely related [9] to the charge diffu-
sion coefficient D, according to the Einstein relation,

σ = χQD, (4)

where χQ is the charge susceptibility,

χQ = 1

T V

〈
(Q − 〈Q〉)2

〉
. (5)

Here V is the spatial volume and Q is the total charge, i.e.
the volume integral of jem

0 (x).
Some well-known relations between the spectral function

and other Green’s functions are given in Appendix A. In
particular, the spectral function is related to the Euclidean
correlator,

Gem
μν(τ, x) = 〈 jem

μ (τ, x) jem
ν (0, 0)〉, (6)

via the standard relation [see Eq. (69)]

Gem
μν(τ,p) =

∫ ∞

0

dω

2π
K (τ, ω)ρem

μν (ω,p), (7)

with the kernel

K (τ, ω) = cosh[ω(τ − 1/2T )]
sinh(ω/2T )

. (8)

Here the Euclidean time 0 ≤ τ < 1/T . The question of com-
puting the conductivity on the lattice therefore boils down to
numerically computing Eq. (6), inverting Eq. (7) and extract-
ing the slope according to Eq. (3). From now we work at van-
ishing spatial momentum and drop the p dependence. When
prefactors involving eq f are dropped, the superscript ‘em’ is
omitted as well.

Lattice QCD simulations include quarks scattering with
gluons, but the electromagnetic field and other charge car-
riers (leptons) are not included. The QCD computation will
hence yield a result valid to all orders in αs and to leading
order in αem, in principle (see, however, the discussion on dis-
connected contributions further down in this Section). Since
the conductivity reviewed here includes the contribution from
the strong interaction, it yields insight into the strongly cou-
pled nature of the quark-gluon plasma.

In order to prepare for the discussion of the lattice QCD
results below, it is useful to recall what can be expected at
very high temperature, where QCD is weakly coupled. At
leading (zeroth) order in an expansion in αs (see Fig. 1), the
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spectral function, for a single flavour with mass m, reads
[38]1

ρi i (ω) = 2πNc Iωδ(ω)

+ Nc

2π
θ(ω2 − 4m2)

√
ω2 − 4m2

ω2

×
(
ω2 + 2m2

) [
1 − 2nF

(ω

2

)]
, (9)

with Nc = 3. Here nF (ω) = 1/[exp(ω/T )+1] is the Fermi-
Dirac distribution. The quantity I in the first term reads

I = −4
∫

d3k

(2π)3 n′
F (ωk)

k2

ω2
k

, (10)

with ωk = √
k2 + m2. For massless quarks this evaluates as

I
∣∣
m=0 = T 2

3
. (11)

Since

1 − 2nF
(ω

2

)
= tanh

( ω

4T

)
, (12)

the spectral function is odd, ρi i (−ω) = −ρi i (ω), as it should
be. Below we take ω ≥ 0. The corresponding Euclidean
correlator reads, in the massless limit [38],

Gii (τ ) = NcT
3
[

1

3
+ 3u + u cos(2u) − 2 sin(2u)

sin3(u)

]
, (13)

where u = 2πT (τ − 1/2T ). The first (constant) term comes
from the first term in Eq. (9); the τ dependent term from
the second one. At the midpoint, τ = 1/2T , the contribu-
tions from both terms are comparable, Gii (τ = 1/2T ) =
NcT 3(1/3 + 2/3) = NcT 3.

Let us now discuss the two contributions in Eq. (9) in more
detail. We start with the second one. This term arises from
the cut of the one-loop polarisation diagram in Fig. 1 corre-
sponding to a decay process, with ω = ωk + ωp+k (with k
the loop momentum and p = 0), which is permissible once
|ω| > |2m|. It contains the vacuum contribution, increas-
ing as ω2 at large ω, and a thermal contribution, leading to
Pauli blocking, which is exponentially suppressed at large
energies. Note that this term does not contribute to the con-
ductivity; in the massless limit it increases as ω3 as ω → 0.
We will refer to this term as the continuum or perturbative
contribution.

The first term, with ωδ(ω), is only present at nonzero tem-
perature and arises from the cut corresponding to scattering
with particles in the heatbath, ωk + ω = ωp+k, in the limit
that p → 0. Extracting the conductivity from this term yields
infinity, reflecting the fact that for free particles the mean free
path and hence the conductivity diverges. Interactions make

1 Note there is a typo in the last line of Eq (19) in Ref. [38]: a(1)
H + a(2)

H

should read a(1)
H + a(3)

H .

the mean free path finite, due to scattering in the plasma. The
result is that the δ function in Eq. (9) is smeared out and takes
the form of a so-called transport peak,

2πNc Iωδ(ω) → ρtrans(ω) = Atrans
γω

ω2 + γ 2 , (14)

where γ is proportional to the collisional scattering width
or the inverse mean free path, Atrans(= 2Nc I ) is the overall
coefficient, and σ ∝ Atrans/γ . The origin of the transport
peak can be seen in various ways, using e.g. Feynman dia-
grams and pinching poles [39,40] or kinetic theory [41,42].
It should be noted that this form of transport peak is the sim-
plest form encountered. An important observation is that in
the case of a narrow transport peak (γ � T ), as is the case
for weakly-coupled theories, the Euclidean correlator is not
sensitive to details of the transport peak but only to its area
[39]. In the limit that ω < Λ � T , the kernel (8) simplifies to
2T/ω, and integrating the transport peak (14) in Eq. (7) yields

G trans(τ ) =
∫ Λ

0

dω

2π
K (τ, ω)ρtrans(ω)

∼ Atrans

∫ Λ

0

dω

2π

2T

ω

γω

ω2 + γ 2 ∼ 1

2
AtransT,

(15)

where in the last expression the cutoff Λ on ω has been
removed. The crucial observation is that this expression is
independent of γ and the Euclidean time τ , indicating the
insensitivity of the correlator to narrow transport peaks. In
fact, taking Atrans = 2Nc I , its value is the same as in the
non-interacting theory.

So far we have only considered the diagram given in Fig. 1,
dressed with gluons and closed loops of sea quarks in the
presence of interactions (in lattice QCD this is referred to as
the connected contribution). However, when interactions are
included, there are also contributions from diagrams with a
different topology, namely with two closed fermion loops,
connected via gluons. These arise from Wick contractions of
the current operator, ji = ψ̄γiψ , with itself. In lattice QCD,
this is commonly referred to as the disconnected contribu-
tion. Perturbatively, they start contributing at O(α3

s ) only,
and hence are suppressed at very high T . Another distinction
between the connected and disconnected contributions con-
cerns the appearance of the electromagnetic charges. Take
for simplicity N f = 2 or 3 degenerate flavours. In the con-
nected contribution one finds the sum over charges squared,
which is usually denoted as

Cem =
∑

f

(eq f )
2 =

⎧
⎨

⎩

5
9e

2 (u, d),

6
9e

2 (u, d, s).
(16)

In the disconnected contribution on the other hand, we find
the square of the sums,
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Cdisc
em =

⎛

⎝
∑

f

eq f

⎞

⎠
2

=
{

1
9e

2 (u, d),

0 (u, d, s).
(17)

Hence it is noted that the disconnected contribution vanishes
for three degenerate flavours.

Up to now we have focussed on the expectation at high
temperature. At low temperature, in the hadronic phase, the
current-current correlator couples to vector mesons, with
details depending on the flavour content. A comprehensive
discussion in the N f = 2 case can be found in Ref. [19]. In
the spectral function one therefore expects bound-state peaks,
representing mesonic ground and excited states. As the sys-
tem is heated, these bound states are expected to dissolve and
the high-temperature behaviour to emerge.

3 Spectral reconstruction

The main problem in extracting the conductivity from numer-
ically determined Euclidean lattice correlators is the inver-
sion problem, see Eq. (7). As a reminder, on the lattice
temperature is encoded in the compact direction in imag-
inary time, with circumference 1/T = aτ Nτ . Here aτ is
the temporal lattice spacing and Nτ the number of points in
the time direction; Euclidean time is discretised as τ/aτ =
0, . . . , Nτ − 1. Since the correlator G(τ ) is known at a finite
number of temporal points and the spectral function ρ(ω) is
in principle a continuous function of ω, this inversion prob-
lem is far from straightforward. To be more precise, due to
reflection symmetry, K (τ, ω) = K (1/T −τ, ω), the number
of points available for the analysis is on the order of Nτ /2;
even after placing an upper limit on the ω interval, such that
0 < ω < ωmax, and discretising the finite interval, typically
on the order of Nω = 1000 points are used to present ρ(ω).
Since Nω  Nτ , the inversion problem is ill-posed. In addi-
tion, the focus on the ω → 0 limit makes the inversion more
challenging than for spectral functions in general, when the
interest is in frequencies on the order of the temperature or
above, as the discussion around Eq. (15) indicates.

Several methods have been developed to tackle this prob-
lem. Here we briefly review the ones applied to the conduc-
tivity. It is fair to state that no single method is yet fully robust
on its own. Hence it is of interest to compare and contrast the
results obtained so far, and seek for (in)consistencies. This
will be done in Sect. 4.

3.1 Reconstructed correlators

Before investigating the temperature dependence of the spec-
tral function, we note that the Euclidean correlator (7)
depends on temperature in two ways:

– via the temperature dependence of the kernel, K (τ, ω),
due to the compact time direction, 0 ≤ τ < 1/T ;

– via the temperature dependence of the spectral function,
due to changes in the quark-gluon plasma.

The first effect leads to temperature dependence of the cor-
relator even when the spectral function is unchanged. It
is important to disentangle this from the sought second
(physical) effect due to actual changes in the plasma. This
can be investigated using so-called reconstructed correlators
[43,44]. Let us suppose a spectral function ρ(ω; T0) is deter-
mined (with some confidence) at a reference temperature T0.
Assuming that the spectral function is unchanged, a correla-
tor at a different temperature T can then be defined as

Grecon(τ, T ; T0) =
∫ ∞

0

dω

2π
K (τ, ω; T )ρ(ω; T0). (18)

This construction takes into account the trivial temperature
dependence due to the kernel, the first effect above. Compar-
ing this reconstructed correlator with the actual correlator at
temperature T allows one to draw conclusions on the second
effect, i.e. changes in the spectral function due to a change in
the physical situation. A difference between the actual and
the reconstructed correlator implies a change in the spectral
function (the inverse is not necessarily true).

3.2 Sum rules

Exact sum rules are important [19] to constrain the current-
current spectral function at nonzero temperature. Defining
the difference between the finite and zero-temperature spec-
tral function as

Δρ(ω, T ) ≡ ρi i (ω, T ) − ρi i (ω, 0), (19)

one finds the sum rule [19], in the thermodynamic limit,
∫ ∞

−∞
dω

ω
Δρ(ω, T ) = 0. (20)

Note that the zero-temperature ω2 contribution cancels in
the subtraction (19). Since the Operator Product Expansion
(OPE) predicts [45] that the thermal contribution decays as
(T/ω)2 at large ω, the integral in the sum rule converges. One
may verify that this sum rule indeed holds for free fermions,
using Eq. (9).

The sum rule indicates that enhancement of spectral
weight at small energies, i.e. due to a larger transport peak,
should be compensated by a loss of spectral weight else-
where. Since the sum rule is exact, it should be satisfied by
reconstructed spectral functions on the lattice, where it can
be implemented as a check or a constraint. This sum rule, and
two additional ones, are further analysed in Refs. [25,26].
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3.3 Ansätze

The first step to resolve the ill-posedness of the inversion
is to reduce the number of parameters needed to model the
spectral function. The easiest way to do so is by providing
an Ansatz for ρ(ω) with less fit parameters than data points.
The downside is that this introduces an obvious bias, which
is difficult to avoid. Moreover, since the spectral function is
expected to behave in quite a different manner in the low- and
high-temperature phases, the Ansatz has to be sufficiently
rich to capture this. Some features to be included are

– a transport peak at small ω, with in particular a linear
slope in ω;

– continuum (ω2) contribution at high ω, possibly modified
by lattice artefacts [38,46];

– at least one bound-state peak in the low-temperature
phase, to represent the vector meson.

References [17,18,23] employ an Ansatz combining a trans-
port peak and the expected perturbative continuum behaviour
(for massless quarks) in the deconfined phase,

ρ(ω) = ρtrans(ω) + ρpert(ω), (21)

where ρtrans(ω) is given in Eq. (14) and

ρpert(ω) = 3

2π
Apertω

2
[
1 − 2nF

(ω

2

)]
, (22)

c.f. Eq. (9). The three temperature-dependent parameters are
the coefficients Atrans,pert and the width γ of the transport
peak. Note that Apert = 1 for free fermions; it parametrizes
deviations from a free spectral function at large energies. As
stated, the functional form of this Ansatz is the combination
of two functions. Modifying the transport peak to a flat fea-
tureless function, as seen e.g. in holography [14], Ref. [23]
finds that the data may not have the resolution to differen-
tiate between these two shapes. This is incorporated in the
systematic uncertainty of the final quoted result for σ [23].

Reference [19] employs a related Ansatz for the subtracted
spectral function, Δρ(ω, T ), defined in Eq. (19). In addition
to the transport peak and the continuum contribution, this
Ansatz also includes a bound-state peak. It reads

Δρ(ω) = ρtrans(ω) + Δρpert(ω) + ρbound(ω), (23)

with the new term

ρbound(ω) = Abound
2gB tanh(ω/T )3

4(ω − mB)2 + g2
B

. (24)

Here mB, gB and Abound indicate the mass, width and
strength of the bound state. The factor tanh(ω/T )3 ensures
the contribution does not contribute to the conductivity in
the ω → 0 limit and decays as 1/ω2 at large ω, as predicted
by the OPE [45]. It is also noted in Refs. [19,29] that the

transport peak (14) in fact violates this condition. Hence it is
proposed [19] to modify it as

ρtrans,mod(ω) = Atrans
T tanh(ω/T )γ

ω2 + γ 2 , (25)

which still has linear behaviour at small ω but decays as 1/ω2

at large ω. Finally, the main reason for the subtraction is to
eliminate the zero-temperature ω2 term,

Δρpert(ω) = ρpert(ω; T ) − ρpert(ω; T = 0), (26)

which eliminates the “1” in Eq. (22). This allows the anal-
ysis to focus on frequencies on the order of the tempera-
ture, without being overwhelmed by the ω2 term. Overall,
the number of parameters (Atrans,pert,bound,mB, gB, γ ) to be
fitted is quite large, which is carried out by fixing them in
steps, while satisfying the sum rule (20). A reduced model,
using only ρtrans + ρpert, is employed as well. A variation
of this Ansatz is also used in Ref. [22], replacing the bound
state by a delta-function and introducing explicit thresholds
for the various terms.

3.4 Maximum entropy method

The Ansätze described above have to incorporate a wide
range of physics input (bound states, transport peak, contin-
uum contribution), each of which is defined by a number of
parameters, making the fit highly nonlinear and depending on
the choice of model functions. It is therefore desirable to use
model-independent reconstruction methods for the spectral
function. It will be necessary to regularise standard minimi-
sation procedures, due to the ill-posedness of the inversion.
Before proceeding, we note the possibility to rescale the ker-
nel and the spectral function,

K (τ, ω) → f (ω)K (τ, ω), ρ(ω) → ρ(ω)/ f (ω), (27)

leaving the product unchanged, to stabilise the inversion. A
common rescaling is to use f (ω) = ω, to resolve the 1/ω

divergence in the kernel as ω → 0 [16].
The Maximum Entropy Method (MEM) provides such a

reconstruction method, based on Bayes’ theorem. The inver-
sion is regularised by the prior probability (see below) and
the most probable spectral function is obtained. In Bryan’s
method [47], the (rescaled) spectral function is parametrised
as [16,48]

ρ(ω)

ω
= m(ω)

ω
exp

Ncoeff∑

i=1

ci ui (ω), (28)

with ui (ω) (i = 1, . . . , Ncoeff) an orthogonal but incomplete
set of basis functions,
∫ ∞

0

dω

2π
ui (ω)u j (ω) = δi j . (29)
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Since Ncoeff ∼ Nτ /2 � Nω, this parametrisation leads to a
significant reduction in the number of parameters to be deter-
mined. The form (28) is motivated by positivity, ρ(ω)/ω ≥ 0.
In MEM, m(ω) is referred to as the default model, see below.
The conductivity is now determined by

σ ∼ m′(0) exp
∑

i

ci ui (0), (30)

and hence depends on all coefficients and the default model.
In MEM the coefficients ci are determined by construct-

ing the most probable spectral function as defined by the
extremum of the conditional probability P(ρ|DH) [48].
Here D indicates the data and H additional prior knowledge.
The method relies on Bayes’ theorem,

P(ρ|DH) = P(D|ρH)P(ρ|H)

P(D|H)
, (31)

where P(A|B) stands for the conditional probability of A
given B. In this expression, P(D|ρH) is the likelihood func-
tion, P(ρ|H) the prior probability, and P(D|H) a normali-
sation. While the likelihood function, P(D|ρH) = e−L(ρ),
is familiar from standard χ2-minimisation, the prior proba-
bility contains an entropy-like term,

P(ρ|H) = eαS(ρ), (32)

with

S(ρ) =
∫ ∞

0

dω

2π

[
ρ(ω) − m(ω) − ρ(ω) ln

ρ(ω)

m(ω)

]
, (33)

giving the method its name. The conditional probability now
reads

P(ρ|DH) ∝ e−L(ρ)+αS(ρ), (34)

with α determining the balance between the two terms. While
at α = 0 the method reduces to a standard fitting procedure,
in absence of any data the probability is extremised when
ρ(ω) = m(ω), yielding the default result. For further details
on MEM we refer to Ref. [48].

MEM has been applied to the conductivity in Refs. [15–
18,20,21]. We note here that the basis functions ui (ω) are
obtained via a singular value decomposition (SVD) of the
kernel K (τ, ω), when viewed as a Ncoeff ×Nω matrix, where
Ncoeff � Nτ /2, linking the size of the set of basis functions
to the temporal extent. This is a limitation for small Nτ and
has motivated the use of anisotropic lattices to increase the
number of data points and basis functions at a given temper-
ature, see Ref. [20] and especially Ref. [21] for a systematic
study. While at first sight the choice of default model appears
to play an important role in the formulation, in practice it has
been found that the dependence on m(ω) is quite mild, in
particular when the number of temporal points is sufficiently
large. It is noted that the standard default model m(ω) ∼ ω2

for large ω is modified due to perturbative corrections. On the

lattice there are additional lattice artefacts due to the finite
Brillouin zone [38,46]. These effects can be incorporated
in the reconstruction, by using more elaborate default mod-
els, see e.g. Ref. [43], and should lead to more sensitivity.
Another systematic uncertainty enters via the formulation of
the method, such as the choice of the prior probability, which
can be addressed e.g. by a comparison with other Bayesian
methods, such as Bayesian Reconstruction (BR, see Sect. 3.7)
[50,51], or fully independent approaches, as discussed next.

3.5 Backus–Gilbert method

The Backus–Gilbert method is such an independent approach,
designed for solving linear ill-defined problems with arguably
controllable regularisation and systematic uncertainty, alth-
ough this may be hard to quantify in practice. Rather than
reconstructing the entire spectral function ρ(ω), it aims to
represent it by an estimator

ρ̂(ω0) =
∫ ∞

0
dω δ(ω0, ω)ρ(ω), (35)

where δ(ω0, ω) is called the resolution function, which
should be narrowly peaked around ω0 and normalised,
∫ ∞

0
dω δ(ω0, ω) = 1, (36)

similar to a delta function. Ideally one wants to make the
resolution function as narrow as possible, for given correlator
and kernel. For this purpose the following linear Ansatz is
assumed [22,24]

δ(ω0, ω) =
Nτ −1∑

n=1

qn(ω0)K (τn, ω). (37)

The functions qn(ω0) are found by minimising the second
moment of the resolution function squared,

Γω0 =
∫ ∞

0
dω (ω − ω0)

2δ2(ω0, ω), (38)

which should effectively minimise its width. Combining the
equations above, one obtains the solution (summation over
repeated indices implied)

qn(ω0) = W (ω0)
−1
nm Rm

RkW (ω0)
−1
kl Rl

, (39)

in terms of

W (ω0)nm =
∫ ∞

0
dω (ω − ω0)

2K (τn, ω)K (τm, ω), (40)

Rn =
∫ ∞

0
dω K (τn, ω) . (41)

Note that since the kernel K (τ, ω) is symmetric around the
midpoint, the number of independent basis functions qn is
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limited by Nτ /2. In general, the larger the number of avail-
able time slices, the narrower resolution functions can be
constructed.

The spectral function can now be estimated by combining
Eqs. (35, 37) and the definition of the correlator (7), as

ρ̂(ω0) =
∫ ∞

0
dω

∑

n

qn(ω0)K (τn, ω)ρ(ω)

= 2π
∑

n

qn(ω0)G(τn). (42)

The conductivity is then extracted in a usual way,

σ ∼ lim
ω0→0

ρ̂(ω0)

ω0
, (43)

assuming that the estimator ρ̂(ω0 ∼ 0) is close to the physical
spectral function. The goal is therefore to find the optimal
set of functions qn(ω0) which make δ(ω0, ω) as narrow as
possible in ω for ω0 ∼ 0.

The main difficulty in this formulation is the inversion of
the matrix W (ω0), which is usually ill-conditioned, due to
the exponential decay of the kernel. This can be ameliorated
by rescaling, see Eq. (27), changing the estimator to

ρ̂(ω0) = f (ω0)

∫ ∞

0
dω δ(ω0, ω)

ρ(ω)

f (ω)
, (44)

and finding an optimal choice for f (ω) (e.g. f (ω) = ω).
Secondly, the matrix W can be regularised as

Wnm → λWnm + (1 − λ)Snm, (45)

where Snm is the covariance matrix for the correlator G(τn),
and λ is a tunable parameter, determined empirically by
comparing the behaviour of δ(ω0, ω) for different values of
λ. Further discussion on successes and limitations of this
approach in the context of the conductivity can be found in
Refs. [22,24].

3.6 Tikhonov regularisation

The method of additive regularisation, see Eq. (45), is not the
only one. Tikhonov regularisation [49] acts as a complimen-
tary instrument to other reconstruction methods, where an
inversion of an ill-conditioned matrix has to be performed.
Let us consider the N × N matrix W , defined in Eq. (40),
for which a straightforward inversion fails. A singular value
decomposition yields

W = UΣV T , UTU = V T V = 11,

Σ = diag(σ1, σ2, . . . , σN ), (46)

with σ1 ≥ σ2 ≥ . . . ≥ σN . Since W−1 = VΣ−1UT , the
inversion of W comes down to the inversion of Σ , which can
be regularised as follows,

Σ−1 = diag

(
σ1

σ 2
1 + ε2

,
σ2

σ 2
2 + ε2

, . . . ,
σN

σ 2
N + ε2

)
, (47)

where the parameter ε has to be chosen carefully; small ε’s
lead to precise but unstable results, while large ε’s guarantee
stable inversion at a cost of loss of accuracy. Further experi-
ments with this approach can be found in Ref. [24].

3.7 Other approaches

Here we briefly list some additional inversion methods. Ref-
erences [28,29] further develop the proposal of Ref. [27],
which formulates a unique analytic continuation which can
be constructed explicitly, provided the correlator satisfies cer-
tain asymptotic behaviour in Minkowski time. The crucial
requirement is that a continuum-extrapolated result for the
lattice correlator is available, and that short-distance diver-
gences, present at zero temperature, have been subtracted.
So far these requirements are only met in quenched QCD;
in Sect. 4 the application of this approach will be discussed
further.

The following methods have not been yet been applied
to the determination of the conductivity, or other transport
coefficients, in QCD, as far as we know. The Maximum
Entropy Method is only one of a number of Bayesian meth-
ods; alternative Bayesian Reconstruction (BR) approaches
in an extended search space can be found in Refs. [50,51].
Ref. [52] proposes an inversion based on the Schlessinger
point or Resonances Via Padé method, which is based on a
rational-fraction representation similar to Padé approxima-
tion methods. It is found that the method is competitive to
MEM and Backus-Gilbert, provided the errors of the input
data are small enough. Interestingly, Ref. [52] applies the
method to the extraction of the conductivity in graphene,
described by a tight-binding model.

A very recent development is the implementation of
machine learning approaches to tackle spectral reconstruc-
tion. Supervised learning of fully connected as well as con-
volutional neural networks was applied to mock data in
Ref. [53]. In Ref. [54] kernel ridge regression was applied to
mock data in quantum many-body physics; a first application
to QCD data can be found in Ref. [55] for bottomonium cor-
relators. More developments in the realm of machine learning
are expected in the near future.

4 Lattice QCD results

In this section we give an overview of results obtained for
the electrical conductivity in QCD, with gauge group SU(3),
for N f = 0 (quenched QCD) and N f = 2 and 2 + 1 dynam-
ical flavours. We do not discuss results obtained in effec-
tive models or in other gauge theories; see Sect. 5 for some
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Table 1 Details of the lattice QCD ensembles to compute the electrical conductivity. Fermion properties refer to sea quarks. Here aτ and as denote
the temporal and spatial lattice spacing respectively

Ref. arXiv number N f (sea) Fermion type mπ [MeV] aτ [fm] as/aτ Discretisation

[15] hep-lat/0301006 0 Quenched − aτ → 0 1 Continuum limit

[16] hep-lat/0703008 0 Quenched − 0.0488, 0.0203 1 Fixed cutoff

[17] 1012.4963 0 Quenched − aτ → 0 1 Continuum limit

[18] 1112.4802 0 Quenched − 0.015 1 Fixed scale

[19] 1212.4200 2 Wilson-clover 270 0.0486(4)(5) 1 Fixed cutoff

[20] 1307.6763 2 + 1 Wilson-clover 384(4) 0.0350(2) 3.5 Fixed scale

[21] 1412.6411 2 + 1 Wilson-clover 384(4) 0.0350(2) 3.5 Fixed scale

[22] 1512.07249 2 Wilson-clover 270 0.0486(4)(5) 1 Fixed scale

[23] 1604.06712 0 Quenched − aτ → 0 1 Continuum limit

[24] 1910.08516 2 + 1 Staggered 134.2(6) 0.0618, 0.0493 1 Fixed cutoff

results in the SU(2) theory. The papers we discuss are listed
in Table 1 in chronological order, with some details on the
ensembles. References [15–18,23] concern quenched QCD,
while in Refs. [19–22,24] dynamical quarks are included
(N f = 2 and 2 + 1). In the dynamical studies the sea quarks
are of the Wilson-clover type, with a pion mass heavier than in
nature. The exception is Ref. [24], with staggered sea quarks
and a physical pion mass. All studies employ an isotropic lat-
tice, with as = aτ (the spatial and temporal lattice spacing
respectively), except Refs. [20,21], in which anisotropic lat-
tices, with as/aτ = 3.5, are employed. The advantage of the
latter is the finer temperature resolution, when Nτ is varied.
The lattice cutoff is dealt with in a variety of ways:

– continuum limit, indicated by aτ → 0;
– fixed scale: the lattice cutoff is fixed and temperature is

varied by changing Nτ , according to T = 1/(aτ Nτ );
– fixed cutoff: one lattice spacing is available at each tem-

perature, lattice spacings at different temperatures are not
identical.

In simulations with dynamical quarks, continuum limits are
not yet available and the (temporal) lattice spacings lie in the
range 0.0350 < aτ < 0.0618 fm.

Table 2 contains the details of the lattice geometry, i.e. the
number of lattice points in spatial (Ns) and temporal (Nτ )
direction. The corresponding temperatures are expressed in
units of Tc for the quenched ensembles and in units of MeV
for the dynamical ones. The largest number of temperatures
is considered in Refs. [20,21], with 8 temperature values,
ranging from 117 to 352 MeV.

Table 3 finally lists some details on the currents and meth-
ods used to compute the conductivity:

– so far the type of valence quarks used in the current
have been either staggered or Wilson-clover fermions.

For staggered quarks, the current-current correlator (6)
has an oscillating structure, of the form [16,24],

Gi j (x) = 〈Ai (x)A j (0)〉 − (−1)τ/aτ 〈Bi (x)Bj (0)〉,
Ai = ψ̄γiψ, Bi = ψ̄γ4γ5γiψ. (48)

To resolve this staggering, the spectral reconstruction is
performed on even and on odd time slices independently,
obtaining two spectral functions, ρeven,odd

i j (ω). In the sum

ρi j (ω) = 1

2

[
ρeven
i j (ω) + ρodd

i j (ω)
]
, (49)

the oscillating contribution cancels, and one can proceed
with ρi j (ω) as usual. This procedure limits, however, the
number of time slices effectively available by a factor of
two. This issue does not arise with Wilson-type fermions,
which are hence the preferred choice.

– local/conserved current: the simplest choice for the cur-
rent operator is the local one, j loc

x,i = ψ̄xγiψx , with the
quark fields residing at the same lattice point x . This
operator requires renormalisation, i.e. the determination
of a renormalisation factor ZV . The earliest contributions
[15,16] did not determine this renormalisation factor,
which was accounted for in the systematic uncertainty.
Later studies using the local current did renormalise it
properly.
The conserved current, of the point-split form (the expres-
sion below is for Wilson fermions, Ux,i is the gauge link
in the spatial direction)

jcons
x,i = 1

2
ψ̄x+ı̂ (1 + γi )U

†
x,iψx

−1

2
ψ̄x (1 − γi )Ux,iψx+ı̂ , (50)
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Table 2 Lattice sizes used compute the electrical conductivity: number of spatial (Ns ) and temporal (Nτ ) lattice points, and corresponding
temperatures

Ref. Ns Nτ Temperature

[15] 18, . . ., 44 14, 12, 10, 8 T/Tc = 1.5, 2, 3

[16] 48, 64 24, 16 T/Tc = 0.62, 1.5, 2.25

[17] 128 48, 32, 24, 16 T/Tc = 1.45

[18] 128 40, 32, 16 T/Tc = 1.16, 1.49, 2.98

[19] 64 16 T = 250 MeV

[20,21] 24, 32 48, 40, 36, 32, 28, 24, 20, 16 T = 117, 141, 156, 176, 201, 235, 281, 352 MeV

[22] 64 24, 20, 16, 12 T = 169, 203, 254, 338 MeV

[23] 96, 128, 144, 192 64, 56, 48, 42, 32, 28, 24 T/Tc = 1.1, 1.3, 1.5

[24] 48, 64 10, 16 T = 200, 250 MeV

Details of the so-called “zero-temperature” lattices used for tuning are not listed

Table 3 Details of the current and inversion method used to compute the electrical conductivity

Ref. Fermion type Current Renormalised Inversion method

[15] Staggered Local − Bayesian priors, MEM, Ansatz

[16] Staggered Local − MEM

[17] Wilson-clover Local � Ansatz, MEM

[18] Wilson-clover Local � Ansatz, MEM

[19] Wilson-clover Local � Ansatz, sum rule constraints

[20,21] Wilson-clover Conserved � MEM

[22] Wilson-clover Mixed local-conserved � Ansatz, sum rule constraints, Backus-Gilbert

[23] Wilson-clover Local � Ansatz

[24] Staggered Conserved � Backus-Gilbert, Tikhonov regularisation

Fermion and current properties refer to valence quarks

is the Noether current corresponding to a global phase
symmetry of the fermion lattice action and hence does not
require renormalisation, even at finite lattice spacing. For
the current-current correlator, 〈 jx,i jy,i 〉, combining two
conserved currents, as in Refs. [20,21,24], eliminates
the need to compute the ZV factor, but it is also the most
expensive numerically, due to the need to invert more
combinations of quark propagators. Ref. [22] employs a
mixed combination, 〈 jcons

x,i j loc
y,i 〉, which is cheaper to eval-

uate and exactly conserved on one side. It still requires
knowledge of the ZV factor, which can e.g. be obtained
from 〈 j loc

x,i j
loc
y,i 〉/〈 jcons

x,k j loc
y,k〉.

– the final column lists the methods, discussed above,
employed to reconstruct the spectral function and extract
the conductivity. Ansätze and MEM have traditionally
been the most popular ones, with the Backus-Gilbert
method and Tikhonov regularisation being applied to this
problem more recently.

Before moving to the results obtained so far, we note that
none of the papers listed above include the so-called discon-
nected contributions, discussed in Sect. 2. The neglect of the

disconnected contribution can be motivated in a number of
ways:

– the contribution vanishes at very high T , since it isO(α3
s )

at leading order in perturbation theory;
– the contribution vanishes for three degenerate flavours,

due to the sum over the charges;
– the contribution is expected to be noisy numerically.

This last comment is an excuse, rather than a motivation,
and indeed, it would be of interest to estimate the level of
statistics required to compute a signal in the N f = 2 or the
non-degenerate N f = 2 + 1 case and verify e.g. the first
remark at high temperature. We also note that all studies dis-
cussed here have been carried out at zero spatial momentum;
the extension to nonzero momentum is straightforward (see
e.g. Refs. [56,57]) and can provide an additional handle on
hydrodynamic behaviour at small ω and |p|, as well as a bet-
ter constraint of the spectral function by using perturbative
information.

After this overview of the lattice details, we are now in
a position to compare the conductivities computed in the
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Fig. 2 Results for the electrical conductivity, normalised asσ/(TCem),
in quenched QCD (N f = 0) as a function of T/Tc. The early result
[15], σ/(TCem) ≈ 7, is not shown for clarity

references listed above. The conductivity is normalised with
the temperature (to make it dimensionless) and with Cem =∑

f (eq f )
2, the sum over the charges squared, see Eq. (16).

The latter division allows one to compare e.g. the N f = 2
and 2 + 1 cases. We separately discuss the quenched results
and the results with dynamical quarks.

Results in quenched QCD are shown in Fig. 2, as a
function of T/Tc. The very early result from Ref. [15],
σ/(TCem) ≈ 7, is not included, since it is about a fac-
tor of 20 larger than the other results. The remaining four
quenched studies are in good agreement, with a value of
σ/(TCem) ≈ 0.2 − 0.5. Note that Ref. [17] provides both
a precise result, σ/(TCem) = 0.37(1) at T/Tc = 1.45, and
a more conservative range, indicated with the tallest verti-
cal green column. Although these are four studies, we note
that they emerge from two groups only, Ref. [16] on the one
hand and Refs. [17,18,23] on the other hand, making the
agreement is perhaps less surprising. In any case, it is inter-
esting that the early quenched result of Ref. [16], obtained
using staggered quarks without taking a continuum limit,
remains to be consistent with the renormalised continuum-
extrapolated Wilson-clover results of Refs. [17,18,23]. A
second observation of interest is that there appears to be
very little temperature dependence in the temperature range
investigated, 1.1 < T/Tc < 3. We remind the reader that
in quenched QCD the deconfinement transition is first-order,
signalled by the spontaneous breaking of the centre symme-
try.

We note here that the error bars are dominated by uncer-
tainties due to the reconstruction method. Statistical uncer-
tainties in the current-current correlators themselves are
under control. To assess the uncertainty in the reconstructed
spectral functions, the statistical uncertainty is typically eval-
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Fig. 3 Results for electrical conductivity, normalised as σ/(TCem),
in QCD with N f = 2 and 2 + 1 dynamical flavours as a function of
temperature in MeV

uated using a jackknife or bootstrap analysis. Estimates
of systematic uncertainties are method-dependent. These
include using different model functions (for fits), and vary-
ing default models (for MEM) and regularisation parameter
λ (for Backus-Gilbert). In all methods, the rescaling function
f (ω) – see Eq. (27) – and the number of time slices included
can be varied to investigate robustness. With regard to the
summary of results in Figs. 2 and 3, it is important to keep
in mind that each publication partly follows its own method-
dependent strategy to estimate the final error, which can differ
quite significantly; we refer to the original publications for
further detail and come back to this in the Conclusion.

We now turn to the dynamical results, shown in Fig. 3
as a function of temperature in MeV. In this case, the ther-
mal transition is a smooth crossover. It should be noted that
the crossover temperature is slightly different between the
various studies, due to the difference in the pion mass and
the number of flavours, see Table 4 (note that Ref. [24] fol-
lows the lattice formulation and choice of parameters of Refs.
[58,59]. Moreover, Ref. [24] has results at two lattice spac-
ings; the red star symbols denote the results at the smaller
spacing, Nτ = 16). In particular, the transition temperatures
in Refs. [20–22] are higher than in Ref. [24], with simu-
lations in the latter being at the physical point. In Fig. 3 a
temperature-dependent σ/T can be observed, with a reduc-
tion in the vicinity of the thermal crossover, in contrast to
the quenched case. This temperature dependence is espe-
cially visible in the data from Refs. [20,21] and Ref. [22],
which have results at a number of temperatures (8 and 4 val-
ues respectively). The difference in crossover temperatures
might explain the slightly lower values for the conductivity
at T = 200 MeV in Refs. [20–22], compared to Ref. [24],
as in the former cases 200 MeV is closer to the pseudocriti-
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Table 4 Estimates of the pseudocritical temperatures for the studies
with dynamical quarks

Ref. N f mπ [MeV] Tpc [MeV]

[19,22] 2 270 ∼ 203

[20,21] 2 + 1 384(4) 185(4)

[24] 2 + 1 134.2(6) 155(2)(3)

cal temperatures and the thermal crossover region. As men-
tioned above, in quenched QCD, with a first-order transition,
no reduction of the conductivity above the critical temper-
ature is seen. These observations suggest that the reduction
of the conductivity is due to the smooth transition to the
hadronic phase. We also note that Refs. [19,22] are from the
same group; hence the data point indicated by the square is
effectively superseded by those indicated with the circles.
This allows us to conclude that there is good consistency
between the various studies, which is a nontrivial result, given
the difference in lattice formulations, lattice geometries and
inversion methods employed. Finally we observe that at the
highest temperatures studied the value for σ/(TCem) is com-
parable to the one obtained in the quenched case.

In order to judge whether the observed magnitude of the
conductivity signifies strong- or weak-coupling behaviour,
we note that at weak coupling (including only QCD pro-
cesses) the usual expectation is thatσ/(TCem) ∼ 1/g4 ln 1/g
[9], which is much larger than 1 in the region where the
weak-coupling analysis is valid, namely at asymptotically
high temperatures. A useful benchmark at strong coupling
comes from holography, for the charge diffusion coefficient
D = σ/χQ , where χQ is the charge susceptibility. The
characteristic result at strong coupling is D = 1/(2πT ) in
N = 4 Yang- Mills theory at nonzero temperature [13,14].
In Ref. [21] the temperature dependence of D was com-
puted in a self-contained manner, i.e. by also computing
χQ within the same lattice QCD setup, with the result that
0.5 < 2πT D < 2, compatible with the holographic order of
magnitude at strong coupling. Moreover, it was observed that
2πT D has a minimum in the crossover region, see Fig. 14
of Ref. [21].

A related aspect is the width of the so-called transport
peak, assuming it is present. As mentioned in Sect. 2, in the
case of a narrow transport peak, with a width γ � T , indica-
tive of weak coupling, the correlator is only sensitive to its
area but not to further details, making the extraction of the
conductivity not possible. Concerning the work discussed
above, it is possible to analyse the observed widths, either
directly from the spectral functions reconstructed or because
the width is a fit parameter. It is observed that the transport
peak is indeed not narrow, and the widths fall in the range
γ ∼ 1 − 4T . In this case the correlator is sensitive to details
of the peak, and assuming, e.g. in the case of a fit, that the

peak is still characterised by its height and width, the con-
ductivity is accessible. A caveat here is that this reasoning is
at best self-consistent (or perhaps self-fulfilling), since only
broad transport peaks lead to accessible conductivities. The
insensitivity to narrow peaks [39] remains an outstanding
open problem.

Before concluding this section, we note that the lattice
data of Ref. [17] have been re-analysed in two papers. Ref.
[29] employed the approach of Ref. [27], see also Ref. [28],
in which short-distance divergences are subtracted from the
Euclidean correlator. Additional insight on the ultraviolet
asymptotics of the thermal contribution to the spectral func-
tion is taken from Ref. [45], such that only the contribution
of the vacuum spectral function needs to be subtracted. For
this, a 5-loop computation of the vector current correlator in
vacuum is employed. A smaller result for the conductivity
and diffusion coefficient are found with respect to Ref. [17],
namely, at T/Tc = 1.45,

σ/(TCem) � 0.1, 2πT D � 0.8, (51)

which is indeed smaller by a factor of 3 for the conductivity. It
is stated [29] that the results in Eq. (51) should be interpreted
as lower bounds.

The data of Refs. [17] and [22] has also been re-analysed
in Refs. [25] and [26] respectively, using thermal sum rules
to constrain the Ansätze used in the fits. In Ref. [25], a higher
result was found for quenched study at T/Tc = 1.45, namely

σ/(TCem) ∼ 0.57. (52)

In Ref. [26] the N f = 2 data given in Ref. [22] at four
temperatures was re-analysed. Approximate agreement was
found, with the important caveat that the fits were seen not
to be as stable as desired.

Even though good consistency between the various stud-
ies can be seen, nevertheless continuing uncertainty in spec-
tral reconstruction remains, with an ongoing need to further
develop methods for analytical continuation, emphasising
robustness and quantification of underlying uncertainties.

5 External conditions

The electrical conductivity, as well as other transport coeffi-
cients, may be studied under other external conditions than
temperature, such as in the presence of an external magnetic
field or at nonzero quark density. In this section we briefly
mention some related developments in nonabelian gauge the-
ories.

The first attempts to investigate the dependence of the
electrical conductivity on an external magnetic field using
lattice simulations were performed in the quenched SU(2)
theory in Refs. [60,61], using the overlap Dirac operator
with exact chiral symmetry in the current-current correlator.
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MEM is used for spectral reconstruction. The emphasis is
on the conductivity in the presence of an external magnetic
field, both in the confined and the deconfined phase, and on
the quark mass dependence. It is found that in the confined
phase the external magnetic field induces a nonzero electric
conductivity along the direction of the field, while in the
deconfined phase no sizable dependence on the magnetic
field is observed.

In Ref. [62] the conductivity is studied in the SU(2) gauge
theory with dynamical quarks at nonzero density, which is
feasible due the absence of a sign problem in this theory.
Gauge configurations are generated with dynamical stag-
gered quarks, while current-current correlators are computed
with Wilson-Dirac and Domain Wall fermions, tuned in such
a way to match the pion mass of the ensembles. The conduc-
tivity is extracted via several methods, including the Backus-
Gilbert method with the use of Tikhonov regularisation. At
small quark chemical potential μ, the dependence on chem-
ical potential is considered via the expansion

σ(μ)

σ(0)
= 1 + c(T )

μ2

T 2 + O
(

μ4

T 4

)
, (53)

and it is found that the maximal value of the second-order
coefficient, c(T ) ≈ 0.15(5), is reached in the vicinity of the
chiral crossover. Hence the coefficient c(T ) is quite small,
and even at μ/T ≈ 1 the conductivity changes no more than
15–20% compared to its zero-density value. As for the large
density region, QCD with Nc = 2 and 3 colours differ, due to
the formation of a diquark condensate in the former. Never-
theless, at smaller μ the SU(2) theory can provide qualitative
insights for real QCD.

Also in QCD (with Nc = 3 and N f = 2+1) the electrical
conductivity has been studied in the presence of an external
constant uniform magnetic field [24]. The B = 0 results of
this reference have been discussed above; with nonzero B
field, it is found that the conductivity rises in the direction
parallel to the magnetic field and decreases in the transverse
direction. This may potentially be explained by the Chiral
Magnetic Effect [5] and magnetoresistance.

6 Conclusion

In this paper we reviewed the status of the electrical con-
ductivity in the quark-gluon plasma, as seen through non-
perturbative lattice QCD simulations. After an overview of
basic definitions and expectations, we listed several meth-
ods that have been used for spectral reconstruction, the main
challenge in this endeavour. No method has yet reached full
acceptance, due to the apparent lack of robustness and han-
dle on systematic uncertainties. This remains therefore the
outstanding challenge to be tackled. One way forward is to
contrast and combine the various approaches for spectral

reconstruction, using the same data. In addition, progress
can be made by developing a common framework for esti-
mates of systematic uncertainties in spectral reconstruction,
especially since each approach comes with its own method-
ology, making a direct comparison more involved. It is also
noted that none of the results include the disconnected con-
tributions yet, for reasons discussed in Sect. 4. It would be
worthwhile to estimate the importance of those eventually.

Nevertheless, a comparison between the existing lattice
studies, presented in Sect. 4, reveals a noticeable consistency,
which is encouraging, given the difference in lattice formu-
lations, lattice geometries (in particular the number of tem-
poral points), and reconstruction methods employed. Taking
the results at face value, the main findings are

– in quenched (N f = 0) QCD σ/T appears to have very
little temperature dependence in the temperature range
investigated, 1.1 < T/Tc < 3. The magnitude is approx-
imately 0.2 � σ/(TCem) � 0.5, where Cem is the sum
over electric charges squared appearing in the electro-
magnetic current-current correlator;

– in QCD with N f = 2 and 2 + 1 dynamical flavours,
the main finding is a noticeable reduction of σ/T in
the vicinity of the thermal crossover, compared to its
value at higher temperatures in the QGP. This should
be contrasted with the quenched case. This effect has
been observed by two groups independently and is fur-
ther (indirectly) supported by simulations at the physical
point by a third group. One possible interpretation is that
the reduction of the conductivity is due to the smooth
transition to the hadronic phase. This might be of interest
for phenomenology. It is further noted that at the highest
temperatures studied the value for σ/(TCem) is compa-
rable to the one obtained in the quenched case. Overall,
the magnitude of the conductivity is compatible with the
plasma being strongly coupled, using the comparison of
the charge diffusion coefficient D = σ/χQ , where χQ is
the charge susceptibility, with the one obtained in holog-
raphy.

So far most studies have focused on the quark-gluon
plasma and the crossover region. Deeper in the hadronic
phase the conductivity should be dominated by the light-
est charged hadrons. So far, lattice studies have not given a
detailed study of this regime, possibly because the signal is
hard to detect. We refer to Ref. [63] for an overview from
the perspective of chiral perturbation theory. Studies in the
presence of an external magnetic field or at finite density
require further attention. While direct access to the latter is
not feasible in QCD due to the sign problem, a Taylor series
expansion in the powers of μ/T is possible, although it is
expected to be noisy numerically [64]. Another interesting
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possibility is the analysis of the current-current correlator at
imaginary chemical potential.
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A Green’s functions

For the convenience of the reader we collect in this Appendix
some relations between the various two-point functions for
an operator O(x) = O(tx , x). These relations are well known
[65,66].

Let us start with the retarded and advanced Green’s func-
tions

GR(x − y) = iθ(tx − ty)〈[O(x), O†(y)]〉 = GA(y − x),

(54)

and the spectral function

ρ(x − y) = 〈[O(x), O†(y)]〉
= −i [GR(x − y) − GA(x − y)] . (55)

Expectation values are taken in thermal equilibrium, which
explains the x − y dependence. After going to momentum
space and using the identity

∫ ∞

−∞
dω

2π

e−iωt

ω + iε
= −iθ(t), (56)

we arrive at the dispersion relation

GR(ω,p) =
∫ ∞

−∞
dω′

2π

ρ(ω′,p)

ω′ − ω − iε
. (57)

Employing the identity

1

x + iε
− 1

x − iε
= −2iε

x2 + ε2 → −2iπδ(x), (58)

then yields the important relation,

ρ(ω,p) = −i
[
GR(ω,p) − GA(ω,p)

] = 2Im GR(ω,p),

(59)

i.e. the spectral function is twice the imaginary part of
retarded Green function, or equivalently the discontinuity
across the real axis.

The Euclidean correlator,

GE (τ, x) = 〈O(τ, x)O†(0, 0)〉, (60)

with 0 ≤ τ < 1/T , is written in momentum space as

GE (ωn,p) =
∫ 1/T

0
dτ eiωnτGE (τ,p), (61)

GE (τ,p) = T
∑

n

e−iωnτGE (ωn,p), (62)

where ωn = 2πnT , n ∈ Z, are the Matsubara frequencies
(we consider bosonic operators here). By analyticity, it sat-
isfies a similar dispersion relation as above,

GE (ωn,p) =
∫ ∞

−∞
dω′

2π

ρ(ω′,p)

ω′ − iωn
, (63)

leading to the important relation

GR(ω,p) = GE (iωn → w + iε,p). (64)

If a Euclidean correlator is known analytically, the spectral
function can be obtained following the sequence

GE (τ, x) → GE (ωn,p) → GR(ω,p) → ρ(ω,p). (65)

Unfortunately, this path is not accessible with numerically
determined correlators on a finite number of points in the
temporal direction.

Instead we will relate the correlator and the spectral func-
tion via a Laplace transform, generalised to nonzero temper-
ature. Going back to Euclidean time, we find, using Eq. (63),

G(τ,p) =
∫ ∞

−∞
dω

2π
K̃ (τ, ω)ρ(ω,p), (66)

with the kernel

K̃ (τ, ω) = T
∑

n

e−iωnτ

ω − iωn
= e−ωτ [1 + nB(ω)]. (67)

Here nB(ω) = 1/[exp(ω/T ) − 1] is the Bose–Einstein dis-
tribution and we have taken 0 < τ < 1/T .

For hermitian operators O†(x) = O(x), the spectral func-
tion is odd in ω,

ρ(−ω,p) = −ρ(ω,p). (68)
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Hence in Eq. (66) only the odd part of the kernel K̃ (τ, ω)

survives, and we arrive at the standard integral relation

G(τ,p) =
∫ ∞

0

dω

2π
K (τ, ω)ρ(ω,p), (69)

with

K (τ, ω) = K̃ (τ, ω) − K̃ (τ,−ω)

= e−ωτ [1 + nB(ω)] + eωτnB(ω) (70)

= cosh[ω(τ − 1/2T )]
sinh(ω/2T )

, (71)

where we used the identity

nB(ω) + nB(−ω) + 1 = 0. (72)
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