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Abstract Excited state contributions represent a formidable
challenge for hadron structure calculations in lattice QCD.
For physical systems that exhibit an exponential signal-to-
noise problem they often hinder the extraction of ground state
matrix elements, introducing a major source of systematic
error in lattice calculations of such quantities. The develop-
ment of methods to treat the contribution of excited states and
the current status of related lattice studies are reviewed with
focus on nucleon structure calculations that are notoriously
affected by excited state contamination.

1 Introduction

The lattice formulation of quantum chromodynamics (QCD)
is the only known ab initio method to study the properties
of hadrons from first principles. Through the development
of more powerful computers and algorithms over the last
decades it has become possible to perform precise lattice
calculations for a broad range of applications. However, in
order to make contact with experimental results from a con-
trolled extrapolations of lattice results to the physical point, it
is crucial to not only improve statistical precision but also to
achieve control over systematics. A lot of progress has been
made regarding chiral, continuum and finite size extrapola-
tions which are now part of many current lattice studies, as
simulations at physical quark mass and including multiple
values of the lattice spacing and volumes have become feasi-
ble in the last few years. Still, in the presence of an exponen-
tial signal-to-noise problem, which is typical for observables
involving baryons, a fourth systematic effect often remains a
challenge, i.e. residual excited state contamination. The rea-
son for this is that the signal is lost in noise at Euclidean
time separations that are still insufficient to gain ground state
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dominance. Therefore, isolation of the ground state cannot
be achieved in a direct way without taking further measures.

Most notably affected by this kind of systematic effect
are lattice QCD calculations of nucleon structure, that cover
a rich variety of observables. Among the most basic such
observables are nucleon charges that can be computed from
forward matrix elements at zero momentum transfer. An
important example is the nucleon axial charge gu−d

A =
1.2724(23) [1] which is experimentally measured in neu-
tron β-decay and often serves as a benchmark observable
for nucleon structure calculations in lattice QCD. On the
other hand, there is less experimental information available
on scalar and tensor charges which may give beyond the Stan-
dard Model (BSM) contribution to the nucleon β-decay [2].
Therefore, control over excited states is all the more impor-
tant in lattice QCD calculations of these observables which
may provide crucial input on searches for BSM physics as
they are relevant to dark matter searches [3]. Furthermore,
the tensor charge plays a role in BSM searches for CP-
violation as it controls the contribution of quark electric
dipole moments to the neutron electric dipole moment [4].
Another example for an observable of great phenomeno-
logical interest at zero momentum transfer is the average
quark momentum fraction which contributes to the nucleon
spin decomposition [5]. At non-vanishing momentum trans-
fer various form factors are studied, e.g. electromagnetic
and axial form factors and the corresponding radii that
parametrize the slope of these form factors at vanishing
momentum. In particular, the proton radius has received a
lot of attention in the last decade due to the so-called pro-
ton radius puzzle, see e.g. refs. [6–12], although this has
likely been resolved by now [13] and the most recent mea-
surement from electron-proton scattering [14] indeed agrees
with the very precise results obtained from measurements of
the Lamb shift measured for muonic hydrogen [8,12]. Axial
form factors in turn are experimentally less well-known [15–
17] but may provide critical input for future experiments
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related to neutrino physics [18,19], which makes them attrac-
tive observables to be studied in lattice QCD.

The aim of this article is to review the state-of-the-art of
methods that are applied to tame residual excited state con-
tamination in modern nucleon structure calculations and to
perform a critical assessment of the efficacy of these methods.
Therefore, further systematics related to chiral, continuum
and finite size extrapolations that affect these calculations
are not within the scope of this review. From a physics point
of view, a subset of nucleon structure observables will be
considered for which excited state contamination is known
to be an important, or even the dominant systematic. The
selection comprises observables that can be computed with
sufficiently good statistical precision and for which dedicated
studies of excited state systematics and related methods can
be found in the literature.

The review is organized as follows: In the next section
basic methods for nucleon structure calculations in lattice
QCD are summarized and observables relevant to this review
are defined. In Sect. 3 theoretical aspects of excited states
and their expected effects on such calculations are discussed.
The following sections are dedicated to the review of various
methods that have been employed in the treatment of excited
state contamination and their respective applications in recent
lattice studies. More specifically, methods that aim at addi-
tional suppression of excited states by summation over the
operator insertion are reviewed in Sect. 4, while Sects. 5 and 6
deal with the various application of multi-state fits and the
variational approach, respectively. In the end, a summary on
the advantages and shortcomings of the individual methods
and a brief outlook on possible future developments is given.

2 Nucleon structure calculations in lattice QCD

The calculation of nucleon properties in lattice QCD is based
on the numerical evaluation of n-point functions in dis-
cretized Euclidean spacetime. For the simple example of a
two-point function

C2pt( p, t) =
∑

x

ei px〈χ(x, t)χ†(0, 0)〉, (1)

with source at the origin and sink at (x, t), the corresponding
spectral decomposition

C2pt( p, t) =
∑

k

1

2Ek( p)
|〈Ω| χ |k, p〉| e−Ek ( p)t , (2)

contains all possible hadronic states |k, p〉 with integer label
k and energies Ek( p) that share the same continuum quantum
numbers compatible with the choice of the interpolating oper-
ator χ(x, t). This typically includes excitations of the ground

state as well as matching multi-particle states. The reason for
this is that the wave functions of the hadronic states |k〉 are
unknown and thus it is impossible to directly construct inter-
polating operators that couple only to a desired state k′ while
the remaining overlap factors 〈0| χ |k〉 for k �= k′ vanish
exactly. Moreover, rotational symmetry is broken at finite val-
ues of the lattice spacing which may lead to additional mix-
ing between operators that would otherwise fall into different
irreducible representation in the continuum limit. Therefore,
the extraction of the ground state energies and overlap fac-
tors requires to compute C2pt( p, t) at large Euclidean time
separation t , such that all higher terms are exponentially sup-
pressed

C2pt( p, t) → |〈Ω| χ |0, p〉|2 e−E0( p)t

×
(

1 + O
(
e−(E1( p)−E0( p))t

))
. (3)

This motivates the definition of the effective energy

Eeff( p, t, τ ) = 1

τ
log

C2pt( p, t)
C2pt( p, t + τ)

, (4)

which is called effective mass for p = 0. For large values
of t it asymptotically approaches a plateau from which the
energy can be extracted. The parameter τ is commonly set
to τ/a = 1. In practice, the plateau can be identified once
the residual slope has become negligible compared to the
statistical error of the individual data points.

2.1 Nucleon matrix elements and ratio method

While hadron masses can be readily obtained from two-point
functions, the study of the structure of hadrons from lattice
QCD relies on the computation of matrix elements. With
respect to excited states a particularly relevant application
are nucleon matrix elements (NMEs)

〈
N (p f , s f )

∣∣OX
μ1...μn

|N (pi , si )〉
= ū(p f , s f )W

X
μ1...μn

(Q2)u(pi , si ), (5)

where N (pi , si ), N (p f , s f )denote nucleon states with initial
(final) state momentum pi (p f ) and spin si (s f ). On the
right hand side of u(pi , si ), ū(p f , s f ) are the corresponding
Dirac spinors, while WX

μ1...μn
(Q2) contains form factors and

kinematic factors. The form factor decomposition depends
on the choice of the operator insertion that we restrict to a
bilinear operator of the form

OX
μ1...μn

= q̄(x)Γ X
μ1...μn

q(x). (6)

where Γ X
μ1...μn

collects Dirac matrices and possibly deriva-
tives, and q(x), q̄(x) denote quark fields. Actual examples
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of operator insertions relevant to nucleon structure calcula-
tions will be discussed in Sect. 2.3. In practice, most lattice
calculations are performed assuming exact isospin symme-
try in the light quark sector. In this case, the insertion of the
isovector combination

OX,u−d
μ1...μn

= ū(x)Γ X
μ1...μn

u(x) − d̄(x)Γ X
μ1...μn

d(x), (7)

leads to the cancellation of quark-disconnected diagrams that
are inherently more noisy then quark-connected contribu-
tions. For the isoscalar counterpart OX,u+d

μ1...μn
this cancellation

does not occur, which further increases the signal-to-noise
problem. Moreover, for studies of observables that probe the
contributions of strange and charm quarks to nucleon struc-
ture such as e.g. strange and charm electromagnetic form fac-
tors, quark-disconnected diagrams give the only contribution
apart from possible mixing with quark-connected contribu-
tions under renormalization.

The lattice determination of NMEs as defined in Eq. (5)
generally requires the computation of spin-projected two-
point functions

C2pt( p, t − ti ) = Γ
αβ

2pt

∑

x

ei p·(x−xi )〈χα(x, t)χ̄β(xi , ti )〉,

(8)

and three-point functions

CX
μ1...μn

( p f , pi , tO − ti , t f − ti )

= Γ
αβ

3pt

∑

x f ,xO
ei p

′·(x f −xO)ei p·(xO−xi )

× 〈χα(x f , t f )OX
μ1...μn

(xO, tO)χ̄β(xi , ti )〉. (9)

where χα(x f , t f ) and χ̄β(xi , ti )) denote interpolating oper-

ators for the final and initial nucleon state, Γ
αβ

2pt and Γ
αβ

3pt
are suitable spin projectors and the operator is inserted at
xO = (xO, tO). A common choice for the nucleon interpo-
lating field is given by e.g.

χα(x, t) = εabc(u
T
a (x, t)Cγ5db(x, t))uc,α(x, t), (10)

where C is the charge conjugation matrix and u, d denote
up- and down quark fields that are usually smeared.

Assuming that the source time is zero, the two-point func-
tion in momentum space for t > 0 reads

C2pt( p, t) = Γ
αβ

2pt 〈χα( p, t)χ̄β( p, 0)〉
=

∑

k

Ak( p)A∗
k( p)e

−Ek ( p)t , (11)

where the overlap of the interpolating operator χ with the
k-th state Ak( p) = 〈Ω| χ |k, p〉 of momentum p has been

introduced in the spectral decomposition in the second line.
Similarly, the three-point function can be expressed as

CX
μ1...μn

( p f , pi , tins, tsep)

= Γ
αβ

3pt 〈χα( p f , tsep)OX
μ1...μn

( p f − pi , tins)χ̄β( pi , 0)〉
=

∑

k,l

Ak( p f )Al( pi )
∗ 〈
k, p f

∣∣OX
μ1...μn

∣∣l, pi
〉

× e−Ek ( p f )(tsep−tins)e−El ( pi )tins, (12)

where the source-sink separation tsep = t f − ti and the short-
hand tins = tO − ti for the insertion time have been defined
and again ti = 0 has been assumed. The extraction of the
ground state matrix element

〈
0, p f

∣∣OX
μ1...μn

∣∣0, pi
〉

requires
cancellation of the unknown overlap factors Ak( p f ) and
Al( pi ). This can be achieved by taking an appropriate ratio
of two- and three-point functions. A common choice is the
ratio [20]

RX ( p f , pi , tins, tsep) = CX
μ1...μn

( p f , pi , tins, tsep)

C2pt( p f , tsep)

×
√
C2pt( pi , tsep − tins)C2pt( p f , tins)C2pt( p f , tsep)

C2pt( p f , tsep − tins)C2pt( pi , tins)C2pt( pi , tsep)
,

(13)

which has been shown to be particularly beneficial with
respect to statistical errors in Ref. [21]. For asymptotically
large Euclidean time separations ground state dominance is
achieved

lim
tins→∞ lim

tsep→∞ RX ( p f , pi , tins, tsep) = 〈
0, p f

∣∣OX
μ1...μn

∣∣0, pi
〉
.

(14)

giving access to the matrix element from a plateau of the
effective form factor, similar to the extraction of the ground
state energy from Eq. (4). For this reason the ratio method
for matrix elements is also sometimes referred to as plateau
method.

2.2 Lattice techniques

The computation of NMEs from the ratio in Eq. (13) requires
three-point functions at several source-sink separations tsep

to allow for a controlled study of excited state effects. The de
facto standard approach is to use sequential inversion through
a fixed sink, which gives access to all values of the inser-
tion time tins for any given value of tsep. However, in this
setup each source-sink separation needs additional sequen-
tial inversions. Besides, the number of inversion per source-
sink separation increases if non-local operator insertions are
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used, e.g. for point-split currents or the derivative operators
in Eqs. (28)–(30).

Another possibility is to perform sequential inversions
through a fixed operator insertion at tins = const [22]. This
approach is complementary to the previous one as it gives
access to all values of tsep without the need for additional
inversions while allowing for also freely choosing momen-
tum projection and operator at sink without incurring extra
computational cost. The latter makes this an attractive choice
for certain setups used for employing a dedicated variational
analysis that will be discuss in Sect. 6. However, additional
inversions are needed for each value of tins as well as every
operator insertion which usually outweighs the aforemen-
tioned advantages in terms of computational cost.

A third method that effectively eliminates tins is obtained
by summation over the operator insertion. This approach can
be considered a particular case of the summation method [23]
and will be discussed in Sect. 4.2. In this setup it is possible
to change the operator at sink without the need for additional
inversion, but again not the operator insertion. It has only
been employed in a few studies in recent years [24–26].

Most calculations of connected contributions use point-
like sources in combination with smearing of the quark fields
q(x) to increase the ground state overlap, hence improving
suppression of excited state contamination. This setup gives
also full flexibility with respect to momentum projection at
the source unlike e.g. timeslice sources that would require
new inversion for each momentum. A common choice for
the smearing of quark fields is Gaussian smearing [27,28]

q(x) → q̃(x) = (1 + κGΔ)Nsmear (15)

together with spatial APE smearing [29] of the gauge fields
that enter through the three-dimensional Laplacian Δ. In gen-
eral, the smearing parameter κG and the number of smearing
steps Nsmear need to be tuned to give optimal results. Besides,
smearing can be used as a comparably cheap way to define
additional interpolating operators which will be discussed in
the context of variational techniques in Sect. 6. For the fixed
sink and fixed insertion method the same point-to-all forward
propagators can be used for two- and three-point functions.

Since control over excited states depends on large source-
sink separations, methods to reduce the computational cost
are of particular importance for nucleon structure calcu-
lations as this requires high statistics. Commonly used
approaches for the sequential method are the truncated solver
method [30] or all-mode averaging (AMA) [31], that allow
to increase statistics at reduced cost compared to perform-
ing only exact inversions. Further methods that have been
investigated include replacing the conventional sequential
propagators by a stochastic estimator [32–34] which facil-
itates the reuse of the propagator at the expense of introduc-
ing stochastic noise, the coherent sink method [35,36] that

allows to invert simultaneously on multiple, temporally sep-
arated sequential sources, and finally distillation [37] which
is suitable to systematically build a basis of interpolating
operators and that has been employed in a recent study in
Ref. [38].

Furthermore, a lot of progress has been made in the last
few years regarding the inclusion of disconnected diagrams
which has become feasible through the development and
application of variance reduction techniques such as hier-
archical probing [39], low-mode deflation [40], the one-end
trick [41], the hopping parameter expansion [42,43] and com-
binations thereof [44,45]. This lead to a substantial reduction
in computational cost compared to e.g. using naive stochastic
all-to-all estimators. However, the relative statistical error of
quark-disconnected contributions remains inherently larger
than the one of purely quark-connected diagrams even if
gauge noise is reached.

2.3 Observables

There exists a large variety of nucleon structure related
observables that are computed in lattice QCD. However, for
the purpose of this review mainly a subset of observables
will be considered for which uncontrolled excited state con-
tributions have been shown to produce a bias at the current
level of precision. As a first example, the insertion of a local
vector current for a generic quark flavor

OV
μ (x) = q̄(x)γμγ5q(x), (16)

or the corresponding point-split current gives rise to the elec-
tromagnetic form factors F1(Q2), F2(Q2) through

WV
μ = γμF1(Q

2) + σμνQν

2NN
F2Q

2). (17)

Usually, mean square radii 〈r2〉 are defined from the expan-
sion of a form factor in the Euclidean four-momentum trans-
fer Q2 around zero

F(Q2) = F(0)

(
1 + Q2

6
〈r2〉 + O(Q2)

)
. (18)

For example the electric and magnetic mean square charge
radii of the nucleon are given by

〈r2
E,M 〉 = −6

dGE,M (Q2)

dQ2

∣∣∣∣
Q2=0

, (19)

where F1(Q2), F2(Q2) enter through the Sachs form factors

GE = F1(Q
2) − Q2

4M2
N

F2(Q
2), (20)
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Fig. 1 Examples for the effective form factors of the isovector charges
gu−d
A,S,T and the average quark momentum fraction 〈x〉u−d from the ratio

method as a function of the insertion time tins and for five values of
the source-sink separation corresponding to tsep ∈ [1.03 fm, 1.54 fm].
Results have been computed on 1540 configurations of a CLS ensemble

(labeled N203; c.f. Ref. [46]) with Mπ ≈ 350 MeV, a = 0.06426 fm
and T × L3 = 128a × (48a)3 as part of a study published in Ref. [47]
for a fixed number of measurements on each configuration independent
of the value of tsep

GM = F1(Q
2) + F2(Q

2). (21)

Note that for the neutron Gn
E (0) = Fn

1 (Q2) = 0 and the
factor 1/Fn

1 (0) is dropped from Eq. (19) to obtain a finite
definition. Since radii are not explicitly momentum depen-
dent they are more readily compared to other lattice calcu-
lations than the full momentum dependence of the form fac-
tors themselves. Moreover, radii can be directly compared to
experimental results as well.

Another set of observables for which excited state effects
are particularly relevant are nucleon charges defined at zero
momentum transfer. However, for the vector current the elec-
tric charge GE (0) is conserved and the computation of the
magnetic moment μM = GM (0) is hindered by a momentum
prefactor in the form factor decomposition which vanishes at
Q2 = 0. The latter introduces additional systematic effects
as the extraction of μM requires either an extrapolation in Q2

or position space methods, see e.g. Refs. [48,49]. The situa-
tion is different for NMEs from other local bilinear operators,
i.e. the axial, scalar and tensor currents

OA
μ(x) = q̄(x)γμγ5q(x), (22)

OS(x) = q̄(x)q(x), (23)

OT
μν(x) = q̄(x)σμνq(x). (24)

for which the associated charges gA,S,T are not conserved.
While radii require knowledge of the momentum dependence
of the form factor, the axial, scalar and tensor charges are
readily computed at zero-momentum transfer (up to renor-
malization) from a simple ratio of a three- and a single two-
point function

RX
μ1...μn

( p, p, tins, tsep) = CX
μ1...μn

( p, p, tins, tsep)

C2pt( p, tsep)
, (25)

for equal initial and final state momentum p ≡ pi = p f .

For example, the isovector nucleon axial charge gu−d
A that is

defined as

〈
P(p, s f )

∣∣ ūγμγ5d |N (p, si )〉 = gu−d
A ū(p, s f )γμγ5u(p, si ),

(26)

for p f = pi ≡ p where P(p, s f ) and N (p, si ) refer to the
final proton and initial neutron state, is obtained from

lim
tins→∞ lim

tsep→∞
CA

μ ( p, p, tins, tsep)

C2pt( p, tsep)
→ gA. (27)

Some example data for the ratio as a function of tsep for
the three charges are shown in the first three panels of Fig. 1.
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Since radii are less straightforward to compute, it is the exper-
imentally well-known isovector axial charge gu−d

A that is con-
sidered a benchmark quantity for lattice QCD, although the
statistical quality for the signal of a vector current insertion
is superior to any of the operators in Eqs. (22)–(24). Still,
the axial charge has rather good signal quality compared
to e.g. the scalar charge shown in the upper right panel of
Fig. 1, which makes statistical errors of order O(1%) achiev-
able in modern lattice simulations. Beyond charges also the
axial and (induced) pseudoscalar form factors GA(Q2) and
GP (Q2) have very recently received attention with focus
on excited states from both, the theory [50–52] and the lat-
tice side [36,53,54]. This will be discussed in more detail in
Sects. 3.2 and 5.2.

In addition to nucleon charges, the related form factors at
non-zero Q2 and radii, NMEs have been studied for operators
involving derivatives, e.g. the twist-2 operators

OvD
μν (x) = q̄(x)γ{μ

↔
D ν} q(x), (28)

OaD
μν (x) = q̄(x)γ{μ γ5

↔
D ν} q(x), (29)

Ot D
μνρ(x) = q̄(x)σ[μ{ν ]

↔
D ρ} q(x), (30)

where {...} and [...] denote symmetrization with subtraction
of the trace and antisymmetrization, respectively, and the

symmetric derivative is defined as
↔
Dμ= 1

2 (
→
Dμ − ←

Dμ).
Matrix elements of these operators occur for example in the
computation of the average quark momentum fraction of the
nucleon 〈x〉q , helicity and transversity moments 〈x〉Δq and
〈x〉δq or for the generalized parton distribution functions con-
tributing in the computation of the spin decomposition of the
proton, see e.g. Refs. [55,56]. The latter involves also a glu-
onic operator insertion. In principle, any such NME may
exhibit sizable excited state effects, as will be discussed in
the next section. A rather well-studied example is the average
quark momentum fraction of the nucleon for which example
data is shown in the lower right panel of Fig. 1 for the isovec-
tor combination. However, for many of these observables a
systematic treatment of excited states is more difficult due to
the signal quality which especially becomes an issue if quark-
disconnected contributions are involved, see e.g. Refs. [57–
59]. It is for this reason that methods to treat excited states
are currently of particular importance compared for simple
observables like gu−d

A,S,T , 〈x〉u−d or in precision calculations
of the nucleon radius because the achievable statistical error
for these quantities does not allow to conceal the system-
atic effect of residual excited state contamination in final
results.

3 Excited states

While excited states are present in essentially any lattice cal-
culation, they become especially an issue in calculations of
nucleon structure. In the following the reasons for this are
discussed in more detail and some theoretical expectations
from chiral perturbation theory (χPT) and modeling excited
states are reviewed.

3.1 The signal-to-noise problem

The primary cause why excited states are a persistent issue
in nucleon structure calculation is an exponential signal-to-
noise problem that prevents computation of n-point functions
at large Euclidean time separations as required for e.g. obtain-
ing a plateau in the effective mass in Eq. (4) or for the ratio
method in Eq. (14). For the nucleon this problem has been
formulated a long time ago [60,61] from a field theoretical
computation of the variance σ 2

stat(t) of the nucleon two-point
function, showing that the dominating contribution at large
values of t is a three pion state, i.e.

σ 2
stat(t) ∼ e−3Mπ t . (31)

For the signal-to-noise behavior of a nucleon two-point func-
tion this implies

C2pt(0, t)
ΔC2pt(0, t)

∼ e−(MN− 3
2 Mπ )t , (32)

unlike the pion, for which a constant signal-to-noise ratio is
expected. An example is shown in Fig. 2 for the effective
mass of the nucleon and the pion computed on an ensemble
at physical quark mass. Clearly, the signal for the nucleon is

Fig. 2 Signal-to-noise ratio for the effective mass M(t)/ΔM(t) of a
pion and a nucleon two-point correlator computed on 250 configurations
of a CLS ensemble (E250) with physical quark mass (T ×L3 = 192a×
(96a)3, a = 0.06426 fm)
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lost between 1.5 fm and 2 fm, while for the pion at rest the
ratio Mπ (t)/ΔMπ (t) remains constant as expected.

Regarding the behavior of excited states and the signal-to-
noise problem in the ratio method, it is instructive to consider
the two-state truncation for the zero-momentum case (initial
and final state at rest) of the ratio in Eq. (25)

RX (tins, tsep) = A00 + A01e
−Δtins + A10e

−Δ(tsep−tins)

+ A11e
−Δtsep + · · · , (33)

where momentum arguments as well as Dirac indices have
been suppressed and Δ = E1 − E0 denotes the energy gap
between the first excited state and the ground state. Overlap
factors and matrix elements from the spectral decomposition
of the two- and three-point functions in Eqs. (11, 12) have
been collected in the Akl factors. In particular, the first term
A00 is proportional to the ground state matrix element, e.g.
the nucleon charges gS,A,T if the generic operator OX

μ1,...,μn

in Eq. (25) is chosen appropriately and A01 = A10 holds for
the zero-momentum case. Using the midpoint of the ratio as
an estimate at any given source-sink separation, the leading
excited state contamination σesc is therefore expected to scale
as

σesc ∼ e−Δtsep/2. (34)

Note that at non-zero momentum transfer the behavior of the
ratio midpoint is similar, however, the time dependence in
Eq. (33) is no longer symmetric if initial and final state differ
by momentum. Considering the forward scattering case and
neglecting the Nπ interaction one may assume at least for a
qualitative analysis that the leading gap is close to 2Mπ , i.e.
the scaling is approximately ∼ exp(−Mπ tsep). In Fig. 3 this
behavior is plotted for several pion masses as a function of
tsep and it is obvious that the issue of residual excited states
for the ratio method becomes more severe towards the physi-
cal quark masses. For example, at a source-sink separation of
1.5 fm that is typically reached in NME lattice calculations,
σesc is roughly one order of magnitude larger at physical light
quark mass compared to the situation at Mπ = 400 MeV.
Assuming that the matrix element is ofO(1) this implies cor-
rections of up to ∼ 40% for tsep = 1.5 fm at physical pion
mass. Therefore, it is doubtful if the values of tsep that can be
reached in lattice calculations are sufficiently large to ensure
control over excited states in the ratio method particularly
at small light quark mass. Furthermore, excited-state effects
can be strongly operator-dependent which is also observed
empirically in lattice calculations; see e.g. Fig. 1. Conse-
quently, it cannot be concluded from observing ground state
dominance for an observable in the ratio method that similar
values of tsep will be sufficient for a different observable.

Fig. 3 Expected scaling of the leading excited state contamination for
the midpoint in the ratio method assuming a mass gap of Δ = 2Mπ as
a function of tsep for different values of the pion mass

Fig. 4 Signal-to-noise ratio averaged over individual timeslices tins at
given value of tsep obtained from the effective form factor in Eq. (25)
for isovector gu−d

A,S,T and 〈x〉u−d . Data are shown for the same ensemble
as used for Fig. 1

On the other hand, the statistical error of the effective form
factor behaves as

σstat ∼ e

(
MN− 3

2 Mπ

)
tsep

√
N

, (35)

i.e. it exponentially grows with tsep. Even at moderately heavy
quark mass the effect is sizable as shown in Fig. 4 for a selec-
tion of zero-momentum NMEs measured with fixed statistics
at several values of tsep. In fact, going from tsep = 1 fm to
tsep = 1.5 fm the signal-to-noise ratio becomes roughly four
times smaller. This means that any desired reduction in resid-
ual excited state contamination by increasing tsep competes
with the statistical precision of the final result. Moreover,
lowering the light quark mass increases both σstat and σesc

individually. If one demands that the statistical error σstat

and the systematic uncertainty σesc scale in the same way,
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Fig. 5 Multi-particle energy spectra of finite volume states as a func-
tion of Mπ L . Left panel: non-interacting states with quantum numbers
of a single nucleon at rest. The black solid line corresponds to the
nucleon mass and the dashed line to the threshold for the Nπ state
with opposite parity. The blue, green and magenta lines correspond to
Nπ states with back-to-back momentum, first few Nππ states with

one pion at rest and first few Nππ states with the nucleon at rest,
respectively. Right panel: interacting Nπ states with quantum num-
bers I (J P ) = 1/2(1/2+) (blue, solid curves) and corresponding non-
interacting levels (black, dashed curves). Both figures are reproduced
from Ref. [63] under the Creative Commons CC-BY license

i.e. σesc = const · σstat ≡ σ , the required statistics N for a
target uncertainty σ can be inferred in the asymptotic regime
from Eqs. (34, 35) leading to [62]

N ∼ σ
−

(
2+ 2MN−3Mπ

Δ

)

. (36)

In the review in Ref. [62] it has been further pointed out
that at physical quark mass and again assuming Δ = 2Mπ

the exponent is approximately −13 which must be com-
pared to the naive factor of −2 obtained when neglecting the
effects of excited states. It is in this sense that the presence
of excited states strongly enhances the issue of the signal-to-
noise problem in lattice calculations of NMEs, particularly
when approaching physical quark mass.

3.2 Multi-particle states and theory predictions

A further complication arises from the particular excited
state pattern expected in nucleon structure calculations, i.e.
a dense spectrum of multi-particle states in addition to reso-
nances, which limits the efficacy of a variational treatment or
fits. In finite volume only discrete momenta p = 2π

L n with
n = (n1, n2, n3)

T and integer ni are allowed and any combi-
nation of a single nucleon with an arbitrary number of pions
that is compatible with symmetries and momentum conser-
vation will occur in the spectrum. Increasing the (spatial) box
size L while keeping the remaining physics parameter fixed,
will reduce the size of a momentum unit 2π/L , thus leading
to a denser spectrum. Neglecting the interactions between

the nucleon and the pions, an approximation of the multi-
particle spectrum can be obtained that is shown in the left
panel of Fig. 5 for physical pion mass. Up until Mπ L = 4
the lowest lying excited state is a Nππ state, which justifies
the previously made assumption of Δ = 2Mπ for the lowest
gap. Note that at heavier pion mass this remains true for even
larger values of Mπ L . Moreover, corrections to the lower,
non-interacting Nπ levels are rather small as can be seen
in the right panel of Fig. 5. The results shown in this figure
have been obtained in Ref. [63] using the χPT in infinite
volume together with the Lellouch-Lüscher formalism. For
higher Nπ states E � 1400 MeV deviations become more
apparent, although the general pattern is not affected.

At heavier-than-physical quark mass the spectrum of
multi-particle states is thinned out while keeping Mπ L fixed.
Therefore, systematics related to excited states are again
expected to become more severe at lighter quark masses.
This is demonstrated in Fig. 6, where the ratio MN (t)/MN

of the effective mass and the fitted ground state value is shown
for four ensembles with quark masses covering a range from
∼ 135 MeV up to 350 MeV. At small values of t a clear hier-
archy is observed before the signal becomes to noisy, i.e. a
plateau is approached more rapidly at heavier quark masses.

In the last few years there have been several studies [50–
52,64–69] carried out using χPT to predict effects of excited
states in nucleon structure calculations. While recent lat-
tice calculations are performed near or at physical quark
mass which already removes a major systematic effect, other
restrictions with respect to the applicability of χPT results to

123



Eur. Phys. J. A (2021) 57 :50 Page 9 of 28 50

Fig. 6 Examples for the ground state convergence in the nucleon effec-
tive masses. The relative excited state contamination in the nucleon
effective mass MN (t) defined as the ratio of MN (t) and its fitted
(asymptotic) value MN is shown as a function of t computed on four
CLS ensembles (E250, D200, N200, N203) at a common value of the
lattice spacing a = 0.06426 fm. The pion masses on these ensem-
bles cover a range of roughly [135 MeV, 350 MeV] corresponding to
Mπ L = 4.2, 4.2, 4.4, 5.4

lattice data remain. This concerns e.g. the size of the avail-
able source-sink separations in case of three-point functions.
Regarding the use of smeared interpolating operators it has
been pointed out in Ref. [66] that they are mapped onto the
point-like nucleon field in the effective theory, provided that
the smearing radius is small compared to the Compton wave-
length of the pion. The resulting effective operators contain-
ing the pion-nucleon coupling in the second term

χeff(x) = α̃

(
ψ(x) + i

2 f
π(x)γ5ψ(x)

)
, (37)

then only differ by the value of a low energy constant (LEC)
α̃ for different smearings. Furthermore, at leading order this
LEC is canceled in ratios, hence χPT predictions for excited
state corrections are independent of the actual choice of
smearing at leading order. At the very least, these studies
provide qualitative insight into the behavior of excited state
contamination, but in more recent work χPT predictions have
also been used to systematically remove excited state con-
tamination from lattice data; see e.g. Ref. [50].

Excited states in nucleon two-point functions have been
studied in Refs. [64–66,69]. For the nucleon effective mass
it was found that the excited state correction due to Nπ

contributions are expected to be below 2% at t ≥ 0.5 fm
and to become a sub-percent effect for t ≥ 1 fm. This is
roughly consistent with empirical findings in lattice studies
e.g. considering the behavior of the (total) relative excited
state contribution in Fig. 6 as a function of t . In the most
recent Ref. [69] the study has been extended to three-particle
(Nππ ) states which where found to contribute at most at

the permille level and thus considered to be negligible for all
practical purposes in the foreseeable future.

For three-point functions and the resulting matrix ele-
ments the situation is more complicated. In the past, the
main focus has been on Nπ contributions in the three-point
function with an axial vector insertion relevant for gu−d

A
[64,65,67,68]. The predicted effect on gu−d

A is an over-
estimation of at least several percent at typical values of
tsep � 1.5 fm that are accessible in lattice simulations. An
effect of similar size has been predicted for gu−d

T , while for
gu−d
S the overestimation was determined to be ∼ 50% larger

[67]. In Ref. [68] the first moments of parton distribution
functions, 〈x〉u−d , 〈x〉Δu−Δd and 〈x〉δu−δd have been ana-
lyzed in addition to charges and it has been found that the
contribution of the Nπ state lead to an overestimation of 5–
10% at tsep = 2 fm in all of these observables. Furthermore,
it has been pointed out that the source-sink separations that
are currently accessible in lattice simulations are too small
for a direct application of χPT and hence these predictions
are of limited applicability. In particular, resonances that are
not included in χPT might give non-negligible contributions.
This may explain why the predicted effect for gu−d

A is oppo-
site to what is actually observed in lattice simulations, i.e.
excited states lead to smaller values for gu−d

A . An example is
shown in the first panel of Fig. 1 where the effective form fac-
tor for gu−d

A appears to approach the asymptotic value from
below.

In Ref. [63] the issue of excited states in lattice calcula-
tions of gA has been revisited using the Lellouch-Lüscher
formalism and experimental results for the Nπ scattering
phases. While the inclusion of information on the spectrum
has been found to only give a small correction to the χPT
prediction for the excited state contamination in gA, it has
been argued that plausible model assumptions for the over-
lap factor and particularly postulating a sign change in the
infinite volume axial-vector transition amplitude can qualita-
tively reproduce the observed behavior of lattice data which
is shown in Fig. 7. The mechanism behind this indeed turned
out to be a cancellation between the (positive) contribution
of lower lying states and the (negative) contribution of higher
excited states to the overall excited state contamination.

Recently, χPT studies of Nπ state contamination have
been extended beyond zero-momentum for the axial form
factor GA(Q2) and the related, induced pseudoscalar form
factor G̃ P (Q2) in Ref. [50]. For GA(Q2) it has been found
that the leading order χPT prediction for the Nπ contribu-
tion remains at the 5% level at tsep = 2 fm and is basically
independent of Q2. This is in stark contrast to the findings
for G̃ P (Q2) for which an underestimation of 10 to 40% due
to Nπ states has been predicted that is strongly dependent on
Q2. This is in good agreement with numerical findings of lat-
tice calculations, unlike the prediction of an overestimation
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Fig. 7 Prediction of the excited state contamination in the ratio method
for gA from Ref. [63]. The two upper curves represent the leading
order χPT prediction, but taking into account interacting values of the
Lellouch–Lüscher factors. The remaining two pairs of curves corre-
spond to certain variations of model assumptions for the overlap factor
and axial-vector transition amplitude. The lower pair of curves qualita-
tively reproduces the behavior observed in lattice calculations and the
two values of Mπ L roughly cover the range found in modern lattice
calculations. The figure has been originally published in Ref. [63] and
is reproduced under the Creative Commons CC-BY license

in case of the axial form factor. This very different behav-
ior of the two axial form factors has been attributed to how
Nπ states contribute in the two observables: For GA(Q2)

the entire tower of Nπ state contributes, while for G̃ P (Q2)

the Nπ excited state contamination consists of only a single
Nπ state associated with a pion with its spatial momentum
determined by the momentum transfer Q2. Consequently,
the prediction for G̃ P (Q2) remains valid for much smaller
source-sink separations than for GA(Q2) and it has been
demonstrated that this can used to reliably correct lattice data
at source-sink separations well below 1.5 fm. An example
for this correction of lattice data from Ref. [70] is shown in
Fig. 8 together with experimental data and predictions from
the pion pole dominance model.

In the same study in Ref. [50] Nπ states have also been
found to be a likely cause for the strong excited state contam-
ination observed in the effective form factor obtained from an
operator insertion of the time component of the axial vector
current, see e.g. Refs. [53,71]. While the excellent agreement
of lattice data with the χPT prediction demonstrated in Fig. 9
may be accidental to some extent, it can be concluded that the
Nπ contribution to the excited state contamination is large
and dominant in this case and source-sink separations even
beyond 3 fm might be required to sufficiently suppress them.
Note that this is also the reason why lattice computations of
the axial charge and GA(Q2) commonly employ three-point
functions from spatial components of the axial vector inser-
tion, which exhibit much milder excited state contamination.

Fig. 8 Lattice data on a PACS ensemble (T × L3 = (96a)4, Mπ ≈
146 MeV, a ≈ 0.085 fm) for isovector G̃ P (Q2) from Ref. [70] with
and without correction for Nπ states. The lattice data is generally well
described by the pion pole dominance (ppd) model before and after
correction for the Nπ states and is found to be in agreement with
experimental results after the correction. The figure has been originally
published in Ref. [50] and is reproduced under the Creative Commons
Attribution 4.0 International license

Fig. 9 Raw (red circles) and corrected (black circles) lattice data for
the effective form factor from the insertion of the time component of
the axial vector current at tsep ≈ 1.07 fm and Q2 ≈ 0.073 GeV2. The
lattice data have been produced in a study published in Ref. [53] on an
ensemble with T × L3 = (64a)4, Mπ ≈ 150 MeV and a ≈ 0.071 fm.
The solid red line represents the χPT prediction; not a fit to the data.
In addition, results from χPT for tsep = 2.1 fm and tsep = 3.2 fm
are shown as red and blue dotted lines. The figure has been originally
published in Ref. [50] and is reproduced under the Creative Commons
Attribution 4.0 International license
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Fig. 10 Lattice results for the violation of the generalized Goldberger-
Treiman relation. Left panel: results from Ref. [54] on an ensemble
with physical pion mass for rPCAC (open symbols) and rPPD (filled
symbols) obtained from the two analysis strategies SA4 and S2pt in this
study. Right panel: Results from Ref. [36] for rPCAC on a set of CLS
ensembles at fixed lattice spacing a ≈ 0.064 fm. Data denoted by filled

symbol are obtained from a modified fit ansatz accounting for excited
states enhanced by the presence of the pion pole, while open symbols
refer to data obtained from a conventional fit. The two figures have been
originally published in Refs. [36,54], respectively, and are reproduced
under the Creative Commons Attribution 4.0 International license

Furthermore, in Ref. [51] an analysis of the Nπ -state con-
tamination has been performed for the pseudoscalar form
factor GP (Q2). Similar to the induced form factor G̃ P (Q2)

a large contamination of −20% up to 50% depending on Q2

has been predicted at tsep = 2 fm. Moreover, it has been
argued that a Nπ -state contamination is the most relevant
source for the large violations of the generalized Goldberger-
Treiman relation that have been observed in lattice simu-
lations [70,72–75]. This relation establishes a connection
between the form factors GA(Q2) and G̃ P (Q2) associated
with the partially conserved axial-vector current (PCAC) and
the form factor GP (Q2) of the pseudoscalar density. A quan-
titative measure of its violation is given by the deviation from
unity for the following expression [53,72]

rPCAC = m̂

MN

GP (Q2)

GA(Q2)
+ Q2

4M2
N

G̃P (Q2)

GA(Q2)
, (38)

where m̂ denotes the average bare PCAC quark mass. A sec-
ond, closely related ratio that can be directly tested from
lattice data is the pion-pole dominance (PPD) hypothesis

rPPD = Q2 + M2
π

4M2
N

G̃P (Q2)

GA(Q2)
, (39)

relating GA(Q2) and G̃ P (Q2). An example for the viola-
tion of these relations by lattice results are the lower sets
of data points in Fig. 10 that have been obtained using con-
ventional fit ansätze to two- and three-point functions in two
recent studies in Refs. [36,54]. Again, the theoretical find-
ings in Ref. [51] were corroborated by lattice data, even at
source-sink separations as small as tsep = 1.3 fm, although

no definite conclusion has been drawn in this study. This
has motivated further lattice investigations of the issue in
Refs. [36,53,54]. In Ref. [53] a projection method has been
introduced to remove excited state contamination in nucleon
form factor calculations, however, this only lead to improve-
ment for rPCAC but not for rPPD. Subsequently, it has been
argued in Ref. [52] using chiral perturbation theory that this
projection method in fact enhances the Nπ contamination in
GP (Q2) and the improvement observed for the PCAC rela-
tion in Eq. (38) is caused by the enhanced Nπ contribution
in GP (Q2) compensating the underestimation of G̃ P (Q2).
However, no such cancellation takes place for rPPD which
does not depend on GP (Q2).

Finally, in Ref. [54] it has been demonstrated that the devi-
ations from unity for Eqs. (38) and (39) observed in previ-
ous lattice studies can indeed be attributed to a low-lying
excited state which is missed in commonly used fits, e.g. fit
strategy S2pt in the left panel of Fig. 10. This result and the
correspondingly modified fit procedure SA4 determining the
energy of this state from a fit to the three-point function will
be discussed in some more detail in Sect. 5.2 in the con-
text of multi-state fits. A different ansatz explicitly modeling
the excited state contamination in presence of the pion pole
has been introduced in Ref. [36] and has been found to lead
to very similar results. Results from the modified analysis
strategies in both studies are visible in Fig. 10, i.e. the upper
sets of data points in both panels, which are compatible with
one.
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4 Summed operator insertions

The ratio method introduced in Sect. 2.1 depends on two
Euclidean time separations to become large such that excited
states are sufficiently suppressed. As discussed in the previ-
ous section this can hardly be achieved in the presence of the
nucleon signal to noise problem. While it may be possible
to explicitly remove specific excited state contamination for
certain matrix elements like e.g. Nπ states in axial and pseu-
doscalar form factors, there is no general way how this can be
achieved using additional, theoretical input only. Therefore,
methods are needed that improve the suppression of excited
states using data from the available source-sink separations
and that are equally applicable to a broad class of nucleon
structure observables. A simple approach that satisfies this
requirement is the summation method that has been originally
published in Ref. [23]. It is based on summing the operator
insertion over tins, leaving tsep as the only time dependence.

4.1 Summation method

In its commonly used version [76,77] the summation is per-
formed at the level of the ratio in Eq. (13) running only over
timeslices between source and sink, i.e. tins ∈ [

tex, tsep − tex
]

with some additional freedom of leaving out further times-
lices parameterized by tex

SX
μ1...μn

(tsep) =
tsep−tex∑

tins=tex

RX
μ1...μn

(tsep, tins)

= const + 〈0|OX
μ1...μn

|0〉 tsep + O(e−Δtsep).

(40)

The leading excited state contamination related to the gap Δ

is still present but more strongly suppressed compared to the
excited state contamination at the midpoint of the effective
form factor in the ratio method that scales with O(e−Δtsep/2).
It should be noted, that only at zero-momentum transfer the
gap Δ is actually the same as in Eq. (33). However, the
resulting suppression of the leading excited state contami-
nation is always of O(e−Δtsep), where Δ is the smallest gap
to the ground state, see also Refs. [78,79]. Figure 11 shows
an example for the improved suppression of excited states
compared to the ratio method for 〈x〉u−d . While the mid-
point of the effective form factor approaches the result from
the summation method, the errors overlap only at the largest
source-sink separation of tsep = 1.54 fm and the central value
from the ratio method is still larger.

Key advantages of the summation method are that it is
trivial to implement, does not introduce model dependence or
additional parameters (apart from the choice of tex) and that it
is often possible to reuse data generated for other methods e.g.
the ratio method or multi-state fits. Therefore, it has seen very

Fig. 11 Comparison of results for 〈x〉u−d from the summation method
and from the midpoint (tins = tsep/2) in the ratio method. Example data
shown for the same ensemble as in Fig. 1

widespread use in lattice calculations, often for crosscheck-
ing results obtained from other methods, but also for obtain-
ing final results. On the other hand, the summation method
tends to produce larger statistical errors in the matrix element
of interest compared to the ratio method; cf. Fig. 11. Besides,
the excited state suppression in the summation method still
depends on the values of tsep used. In actual lattice calcula-
tions the results is often dominated by the smallest source-
sink separations that enter the linear fit because the effective
statistics rapidly deteriorates with increasing tsep if the num-
ber of measurements is kept constant independent of tsep.
Since a similar issue arises with other methods, it may be
desirable to spend extra computational effort to keep effec-
tive statistics constant, i.e. scale the number of measurements
at different source-sink separations so as to achieve (approxi-
mately) constant statistical error. This has been done in some
recent lattice studies, see e.g. Refs. [44,80]. Note that even
for the ratio method it is not sufficient to check convergence
in the presence of exponential error growth by inspecting the
behavior of the observable as a function of tsep because the
signal is typically lost before the asymptotic value is reached.

4.2 Feynmann–Hellmann inspired approach

Another realization of the summation over the operator inser-
tion that appeared in the original paper for the summation
method [23] has been revisited and used a few times in the last
years [24,25,48,81,82]. Most recently it has been employed
in a dedicated calculation of the axial charge [26,83], lead-
ing to a precise estimate of gu−d

A = 1.271(13) in agreement
with the experimental result. The method is inspired by the
Feynman–Hellmann theorem that relates the energy shift due
to a perturbation in the action

S → S + λ

∫
d4xOΓ (x), (41)
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for a local bilinear operator O(x) with Dirac structure Γ and
some parameter λ to the matrix element of a state |k〉

∂

∂λ
Eλ
k

∣∣∣∣
λ=0

= 1

2Ek
〈k|OΓ |k〉 . (42)

Following the presentation in Refs. [24,83] the spectral
decomposition of the nucleon two-point function in Eq. (11)
at takes the following form

C2pt
λ ( p, t) =

∑

k

|〈k| χ |Ω〉λ|2 e−Eλ
k ( p)t , (43)

where we have again assumed the source to be at ti = 0 and
|Ω〉λ denotes the modified vacuum in the presence of the per-
turbation. The effective energy in Eq. (4) is then related to the
ground state matrix element 〈0|OΓ |0〉 by virtue of Eq. (42).
Considering the zero-momentum case as required for e.g. the
computation of gu−d

A one finds the following relation for the
effective mass

∂

∂λ
mλ

eff(t, τ )

∣∣∣∣
λ=0

= 1

τ

(
∂λC

2pt
λ (t)

C2pt(t)
− ∂λC

2pt
λ (t + τ)

C2pt(t + τ)

)∣∣∣∣∣
λ=0

= 1

2E0
〈0|OΓ |0〉 + O

(
e−Δ(t+τ) − e−Δt

τ

)
, (44)

where the leading excited state behavior from the smallest
energy gap Δ has been indicated by the second term in the last
line. The correlation function ∂λC

2pt
λ ( p, t) = ∂

∂λ
C2pt

λ ( p, t)
can be straightforwardly computed w.r.t. the original vacuum
at λ = 0 by replacing one of the propagators in a standard
two-point function by a so-called Feynman-Hellmann prop-
agator [24]

S(y, x) =
∑

z=(tz ,z)

S(y, z)Γ S(z, x), (45)

i.e. a sequential propagator that is summed over the insertion
time. Note that unlike in the previously discussed version of
the summation method, here the summation over the operator
insertion time is performed over the entire lattice, which is
also the result originally derived in Ref. [23].

An advantage of this approach over the sequential method
is that it requires only the computation of two-point func-
tions which depend on the source-sink separation t = tsep

but not on the insertion time. Therefore, it does not require
new inversions for each value of tsep, and the computation of
the usual sequential propagators for three-point functions is
treated for the computation of the sequential propagator in
Eq. (45). This mitigates some of the signal-to-noise problem

when performing a dedicated calculation for a single observ-
able. However, it allows only to compute results for a single
operator insertion and a single momentum transfer at a time,
which changes the cost comparison in favor of the standard
method when computing multiple observables or especially
for computing form factors at non-zero Q2.

In Fig. 12 a comparison of results for gu−d
A is shown for

the Feynmann-Hellmann inspired approach (left panel) used
in Ref. [26] and the sequential method (right panel) from an
analysis in Ref. [86] on a common ensemble, but using a
different action in the valence sector. In both cases the final
result has been obtained from a two-state fit to the data; see
also Sect. 5. While the results are compatible, the statistical
error in the left panel is smaller by roughly a factor of two.
In Refs. [26,83] it has been argued that a key advantage of
the Feynmann-Hellmann inspired approach is that the lead-
ing excited state contamination is not just of O (

e−Δtsep
)

as
for the commonly used version of the summation method but
that it is further suppressed by the difference between con-
tributions separated by τ as given in Eq. (44). This is used
to justify the inclusion of data at much smaller values of tsep

in these fits than for the sequential method, which causes
the final statistical errors to be smaller. In fact, the fit in the
left panel of Fig. 12 includes values of tsep � 0.3 fm, while
for the sequential method in the right panel only data for
tsep/a � 1.0 fm has been used; see also the discussion in the
2019 FLAG review in Ref. [87]. Note that in principle it is
possible to perform a similar fit for the summation method by
including the leading excited state contamination in Eq. 40,
which would allow to include of data at smaller values of tsep

as well; see the discussion in Sect. 5.1. However, the analysis
and the resulting error estimate for gu−d

A published in ref. [26]
has been subject to criticism in Ref. [88] by the PNDME col-
laboration (re-)analyzing an extended set of ensembles and
in Ref. [62] because the distribution of fit qualities fails the
Kolmogorov–Smirnov test, unlike the updated results from
the sequential method published in Ref. [88]. Note that there
has also been disagreement regarding the central value of
gu−d
A obtained in Ref. [26] and the result from the sequential

method in Refs. [86,88], which has been attributed to the
chiral and continuum extrapolation as discussed in Ref. [88]
leading to the claim that an overall error of ∼ 5% for gu−d

A is
realistic. A more detailed assessment of this claim is beyond
the scope of this review.

5 Multi-state fits

A widespread approach to deal with excited states in nucleon
structure calculations are fit models that explicitly include
the effects of some of the excited states in the determination
of the ground state NME. Since fits can be applied to the
same data as the ratio and the summation method they are
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Fig. 12 Comparison of results from the Feynmann-Hellmann inspired
approach (left panel) and the standard sequential method (right panel)
for the nucleon axial charge on a HISQ ensemble (Mπ ≈ 310 MeV,
a ≈ 0.09 fm) generated by MILC [84,85]. The data in the left panel
have been produced in the study published in Ref. [26] with a point (P)
and smeared (S) sink and the source always smeared. The blue and back
curves have been obtained from simultaneous two-state fits to SS and
SP two-point functions and correlation functions for gu−d

A and gu−d
V .

The vertical gray bands mark data excluded from the fit and the blue,
green and red bands highlight the values of tsep/a = 10, 12, 14 that
have been used for the data from the sequential method shown in the
right panel. The curves in the right panel correspond to a standard two-
state fit ansatz; for further details see the original analysis published
in Ref. [86]. In both plots the horizontal line indicates the result for
the ground state matrix element. The figure is reproduced with kind
permission of the authors of Ref. [83]

straightforward to implement and are currently used in most
nucleon structure calculations. Furthermore, fits are quite
flexible with respect to the actual fit ansatz, the choice of
fit ranges and priors as well as e.g. the choice of simulta-
neously fitted observables. Therefore, basically every major
lattice collaboration performing nucleon structure calcula-
tions has adopted their own favored method in the last years.
In this section several approaches will be discussed that have
been used in modern lattice calculations.

5.1 Two-state truncation

Fit models for excited state contamination in NME calcu-
lations are based on truncations of the spectral decompo-
sition of the individual two- and three-point functions in
Eqs. (11) and (12). A popular choice are the respective two-
state truncations that are given by

C2pt( p, t) = |A0( p)|2 e−E0( p)t + |A1( p)|2 e−E1( p)t + · · · ,

(46)

and

CX
μ1...μn

( p f , pi , tins, tsep)

= A f
0 Ai

0
∗ 〈

0, p f

∣∣OX
μ1...μn

∣∣0, pi
〉
e−E f

0 (tsep−tins)e−Ei
0tins

+ A f
0 Ai

1
∗ 〈

0, p f

∣∣OX
μ1...μn

∣∣1, pi
〉
e−E f

0 (tsep−tins)e−Ei
1tins

+ A f
1 Ai

0
∗ 〈

1, p f

∣∣OX
μ1...μn

∣∣0, pi
〉
e−E f

1 (tsep−tins)e−Ei
0tins

+ A f
1 Ai

1
∗ 〈

1, p f

∣∣OX
μ1...μn

∣∣1, pi
〉
e−E f

1 (tsep−tins)e−Ei
1tins

+ · · · , (47)

where the superscripts i and f indicate the dependence of
the overlap factors and energies on the initial and final state
momenta pi and p f , e.g. A f

k = Ak( p f ). In principle, all the
overlap factors, matrix elements and energies in this expres-
sion are free parameters that need to be determined by the fit.
Correlated fits are performed to the lattice data by minimizing

χ2
corr = χTCχ , (48)

where C denotes the covariance matrix and χ = Y −
f (X0, . . . , Xn) the difference between the vector of lattice
data Y entering the fit and the fit model f (X1, . . . , Xn)

depending on a set of fit parameters X1, . . . , Xn that are
to be determined by the fit. Although it is possible to
perform a direct, simultaneous fit to the model given by
Eqs. (46) and (47) in its most general form, see e.g. the
nucleon form factor calculations in Refs. [73,89], in prac-
tice it can be difficult to obtain reliable results in this way
considering the finite statistical precision of lattice data. The
reason for this are the fairly large number of parameters even
in case of the two-state truncation and possibly the size of
the covariance matrix. This is particularly true at non-zero
momentum transfer because the number of independent fit
parameter is larger than for the zero-momentum case while
the signal quality deteriorates with increasing Q2. Therefore,
additional assumptions and knowledge about parameters are
often used to stabilize fits.

A common way to increase stability of the fit are assump-
tions on the energy gaps between the first excited state and the
ground state. A rather basic ansatz has been explored several
years ago by the Mainz group for a calculation of isovector
electromagnetic form factors in Ref. [79]. Instead of fitting
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Fig. 13 Results for the energy gap Δ from a simultaneous fit to the
two-state truncation of the ratio in Eq. (33) for six observables as a
function of the lower bound of the fit range tfit in units of Mπ computed
on a CLS ensemble (D200) with Mπ ≈ 200 MeV, a = 0.06426 fm
and T × L3 = 128a × (64a)3. The blue, horizontal line marks the

gap ΔNπ between the ground state and the lowest (noninteracting) Nπ

state. Left panel: results without including the last term ∼ exp(−Δtsep).
Right panel: results for including all terms in Eq. (33). The data for both
figures has been generated in the study in Ref. [47]

two- and three-point functions separately, the correspond-
ing two-state truncations have been used to parametrize the
leading excited state contribution to the effective form factors
obtained from the ratio Eq. (13) as

Geff
E,M (Q2, tins, tsep) = GE,M (Q2) + c(1)

E,M (Q2)e−Mπ tins

+ c(2)
E,M (Q2)e−2Mπ (tsep−tins). (49)

In this expression the energy gaps have been fixed to Mπ

and 2Mπ assuming that multi-particle states are responsible
for the leading excited state contamination while neglecting
nucleon-pion interactions. The choice of Mπ for the first gap
is motivated by the initial state nucleon having momentum
pi allowing for a corresponding Nπ state with a moving
nucleon and a pion at rest. On the other hand the final state
nucleon is produced at rest, i.e. p f = 0 which implies that
the lowest state for the second gap is a Nππ state with two
pions in an S-wave, motivating the choice of 2Mπ for this
gap. While this approach helps to stabilize the fit to lattice
data, it comes at the price of introducing additional model
dependence.

In a more recent study of nucleon charges and moments
of twist-2 operators in Ref. [47] similar fits to ratio data have
been carried out, which amounts to fitting the expression in
Eq. (33). Although the number of fit parameters is reduced
for the analysis of data at Q2 = 0, this alone turned out insuf-
ficient to yield stable results when fitting the data for a single
observable. The same problem has been observed in another
calculation of nucleon charges in Ref. [90] that used single
observable fits to the two-state truncated ratio among other
methods. In order to remedy this issue, simultaneous fits to all
six observables, i.e. gu−d

A,S,T , 〈x〉u−d , 〈x〉Δu−Δd and 〈x〉δu−δd

have been introduced in Ref. [47]. This exploits correlations
in the data which was found to further stabilize the fits and
improve statistical precision without the need resorting to fur-

ther assumptions or priors. However, one must keep in mind
that the covariance matrix entering Eq. (48) can become a
limiting factor for such simultaneous fits, as it may be poorly
estimated for the available number of independent measure-
ments if too many observables (or timelices) are included.
Still, for the two-state truncation fitting several observables
was sufficient to track the convergence of the gap as a func-
tion of the lower value of the fit range

[
tfit, tsep/2

]
on plateau

data symmetric around tins = tsep/a. Results from this pro-
cedure are shown in Fig. 13 on an ensemble with a pion
mass of Mπ = 200 MeV. In the left panel the last term in
Eq. (33) has been neglected and clear convergence towards
the expected gap of Δ ≈ 2Mπ is observed for Mπ tfit � 0.4.
Unlike approaches that use information from e.g. fitting the
two-point function to fix the gap in the fit of the ratio or
two- and three-point functions, this gives additional confi-
dence that the fit model is applied in a regime for which
ground state dominance is reached and higher states beyond
the leading contamination become sufficiently suppressed.

The right panel of Fig. 13 shows results for Δ from a fit
including the excited-to-excited state contribution in the last
term of Eq. (33). This leads to significantly larger errors on
Δ and to larger values of Δ itself although at least the trend
towards 2Mπ remains visible1. The primary reason for this
is again related to the signal-to-noise problem, i.e. the addi-
tional parameter A11 in the fit is rather poorly constrained by
the lattice data due to the exponential error growth with tsep

and the limited number of different tsep values that can be
included in the fit. Similar to what has been discussed before
for the linear fits in the summation method that tend to be
dominated by data at the smallest values of tsep, the situation
could be improved by increasing the number of measurement
for every step in tsep such that the effective statistics remains

1 Note that the matrix elements of interest and their errors are less
affected than Δ by the additional term in the fit.
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Fig. 14 Unrenormalized gu−d
A from a fit to Eq. 50 as a function of the

minimal source-sink separation denoted by Tmin/a. Results have been
obtained on an N f = 2+1+1 2-HEX-smeared Wilson-clover ensemble
with Mπ = 137(2) MeV, a = 0.1163(4) fm and T × L3 = (48a)4.
The vertical lines indicate the usual statistical error from the fit, while
the end caps of the error bars represent the errors obtained when fixing
the gap Δ to its central value. The label “coarse” refers to the coarser
of the two ensembles used in Ref. [90]. The figure has been originally
published in Ref. [90] and is reproduced under the Creative Commons
Attribution 4.0 International license

approximately constant across the available values of tsep.
At any rate, going beyond zero-momentum transfer with this
method without additional assumptions would remain dif-
ficult due to the increasing number of parameters and less
precise data.

A different approach that employs a two-state trunca-
tion on the summation method [91] has been explored in
Refs. [90] to complement the usual ratio and summation
methods as well as the aforementioned (single observable)
two-state fits to the ratio. The method corresponds to an
extension of the usual summation method by supplement-
ing the linear behavior of the summed ratio in tsep as given
in Eq. (40) with the first excited state correction. This leads
to the following fit form

SX
μ1...μn

(tsep) = cX,0
μ1...μn

+ 〈0|OX
μ1...μn

|0〉 tsep

+ cX,1
μ1...μn

tsepe
−Δtsep + cX,2

μ1...μn
e−Δtsep , (50)

where the operator-dependent coefficients cX,i
μ1...μn

and the
operator-independent gap Δ are left as free parameters of the
fit. Exemplary results for the unrenormalized, axial charge as
a function of the minimal source-sink separation entering the
fit are shown in Fig. 14. Regarding the central value there is
no dependence observed on the minimal value of tsep within
the rapidly growing error. This kind of fit is similar to the ones
performed in the determination of gu−d

A using the Feynman-
Hellmann inspired approach as discussed in Sect. 4.2, i.e.
from a purely technical point of view the two calculations

mainly differ in how the summation over the operator inser-
tion has been implemented for the data entering the fit. How-
ever, the gauge ensembles used and most likely the resulting
computational cost are very different, which makes a con-
clusive comparison impossible, even if one were to ignore
the fact that in the sequential method multiple observables
and momenta are computed simultaneously. It is interest-
ing to note though that in both studies similarly small sta-
tistical errors are obtained for including data starting from
tsep � 0.3 fm. Still, the preferred value quoted in Ref. [90]
from this method has been chosen such that only data with
tsep � 0.58 fm have been included due to concerns regard-
ing the statistical quality of the fit including data at smaller
values of tsep. In a comprehensive study of results obtained
from different methods, this lead to a less favorable statistical
signal quality for this method compared to other approaches.
Since the gap Δ in Eq. (50) is independent of the observable
it might be worth investigating if a simultaneous fit across
multiple observables helps to improve stability and statisti-
cal precision of the fit as it was found for fits to the ratio in
Ref. [47].

Instead of explicitly fixing an energy gap using model
assumptions, or leaving it entirely as a free parameter as in
the previously discussed approaches used in calculations of
NMEs at zero-momentum transfer, it is possible to use infor-
mation on energies from a separate analysis of the nucleon
two-point function. This arguably leads to milder model
dependence than e.g. the explicit choice Δ = 2Mπ made
in Ref. [79] while still enabling two-state fits of NMEs at
non-zero momentum transfer. A very recent account of this
kind of approach is found in an analysis of the decompo-
sition of the proton spin and momentum fraction by the
Extended Twisted Mass Collaboration (ETMC) in Ref. [56].
In their favored approach the final state is always produced
at rest p f = 0 and the fit is split up in several steps, start-
ing with the two-point function at zero-momentum to extract
the nucleon mass E0(0) = MN . The mass is used to fix all
other ground state energies E0( p) from the dispersion rela-

tion E0( p) =
√
M2

N + p2 removing the parameter from the
fits of the two-state function at non-zero momentum. Since
MN can be computed with rather good precision the values
from the dispersion relation at higher momenta are much
more precise than actual lattice data at the same momenta,
thus one may assume that this helps to stabilize the fit, which
is likely the motivation for this choice. Subsequently, fits to
the two-point function at non-zero momentum are carried
out to determine the energy gap Δ( p) = E1( p)− E0( p) for
all required values of p, as well as the (ratio of) overlaps.
Finally, the remaining four parameters (i.e. the matrix ele-
ments) are extracted from a simultaneous fit to the ratio data
for several values of tsep. The fit ansatz is given by plugging
Eqs. (46) and (47) in Eq. (13) using the already known val-
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Fig. 15 Excited state study for the quark-connected contribution to
the isoscalar average quark momentum faction of the nucleon. In the
left panel data for the effective form factor from the ratio method is
shown for seven values of the source-sink separation ts with bands
from the final two-state fit excluding the two smallest values of ts .
The ground state result is indicated by the horizontal gray band in all
three panels. The central panel shows results from the ratio method
and the predicted time-dependence using the parameters from the final
fit with ts/a ≥ 12 as a Gray band. In the right panel results from

the summation method (green triangles) are compared to the two-
state fit (black squares) as a function of the lowest source sink sep-
aration t low

s for each analysis, together with the value of χ2
corr/d.o.f.

for each fit. Results have been obtained on an N f = 2 + 1 + 1
ETMC ensemble with Mπ = 0.1393(7) MeV, a = 0.0801(4) fm and
T × L3 = 128a × (64a)3. The figure has been originally published in
Ref. [56] and is reproduced under the Creative Commons Attribution
4.0 International license

ues of the remaining fit parameters to remove them from the
final fit. Note that in another variation of this method used in
e.g. a calculation of electromagnetic form factors in Ref. [44]
the final fit as been applied directly to the three-point func-
tion instead of the ratio. This is in principle equivalent, but
the ratio may be preferred as it is usually shown in figures
instead of the actual three-point functions.

Some results from the procedure in Ref. [56] for the
quark-connected contribution to the isoscalar average quark
momentum fraction are shown in Fig. 15 including a com-
parison with the summation method and the resulting values
of χ2

cor/d.o.f.. While the fit ranges in tins have been fixed
to tins ∈ [

tsep/2 − 5a, tsep/2 + 5a
]
, the lowest source-sink

separation entering the fit t low
s has been varied and for the

two-state fit a slight upwards trend is observed. The fit qual-
ities improve with increasing value of t low

s , indicating that at
small t low

s higher excited states likely are non-negligible. A
similar, but slightly downwards pointing trend is observed
for the summation method which yields higher values than
the two-state fit at t low

s � 1.4 fm. For the final choice of
t low
s = 0.96 fm in the two-state fit there appears to be some

tension between the predicted dependence on the source-sink
separation and data from the ratio method. Besides, the (cor-
related) errors of the summation method and the two-state fit
overlap only at the largest value of t low

s , which gives a hint
that results from the two methods may only converge at even
larger values of tsep. Since neither the fit range in tins has been
varied nor the resulting energy gaps are given in Ref. [56] it
is difficult to judge if the fit is performed in the regime where
contamination due to higher states are in fact already negli-
gible, or a larger result as favored by the summation method
and indicated by the trend in both methods would be more

trustworthy. At any rate, the example highlights the impor-
tance of carefully crosschecking results from multi-state fits
with other methods, apart from only demanding a good fit
quality.

Ideally, also the energy gaps should be compared against
theoretical expectations. In particular, the gap determined by
the fit should converge towards the lowest gap in the spec-
trum for sufficiently large Euclidean time separations of the
data in the fit. While corresponding results for the fitted gaps
are rarely included in the literature, results from an older
calculation of isovector nucleon charges by the PNDME col-
laboration in Ref. [86] give a strong hint that convergence
for the energy gap between ground and first excited state is
difficult to achieve for this kind of two-state fits that use infor-
mation on the energies from the two-point function. In this
study a similar fit ansatz for the two-state truncations of two-
and three-point functions has been used, albeit only at zero-
momentum transfer. Results for the energies of the first two
states from this approach are shown in Fig. 16. Clearly, the
results for the energy E1 of the first excited state lie systemat-
ically above the non-interacting Nππ energies. This is in line
with what has been reported in Ref. [90] for the leading gap
obtained from a two-state fit to the two-point function on two
ensembles at physical quark mass. Note that depending on
the box size a Nπ state might have even lower energy, how-
ever, for typical lattices the energies are usually close to each
other. The authors of Ref. [86] also performed some varia-
tions with respect to the fit ranges, i.e. the fit labeled “case 4”
starts at larger values of t and tins for the two- and three-point
functions, respectively. While this tends to increase the sta-
tistical errors as expected, there is only a minor shift (if any)
towards smaller values of E1 observed. Therefore, it must
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Fig. 16 Energies from a simultaneous two-state fit of two- and three-
point functions from a calculation of gu−d

A,S,T in Ref. [86] as a function
of (valence) Mπ . The filled and open symbols refer to the ground state
energy E0 and the energy of the first excited state E1, respectively.
Results are shown for two different fits “case 1” and “case 4” which
differ by the number of timeslices included when fitting two- and three-
point functions as defined in table V of Ref. [86]. Whenever two different
results have been quoted on the same ensemble in Ref. [86], i.e. from
using only high precision solves and the full AMA results, only the
result with full statistics has been included

be considered doubtful whether such two-state fits correctly
describe the contribution from the excited states that need to
be subtracted to identify the ground state.

5.2 Including additional states

All of the fits discussed in the previous subsection share as
a common feature that they only take into account the con-
tribution of the lowest excited state as they are based on the
two-state truncation in Eqs. (46) and (47). In principle, this
can be extended by including further states in the truncation.
This is the approach favored by the PNDME collaboration
which they have used in several recent NME calculations,
e.g. for isovector nucleon charges in Refs. [88,92], moments
of of twist-2 operator insertion in Ref. [93], as well as elec-
tromagnetic and axial form factors in Refs. [54,72,94].

As outlined in Refs. [72,88] the two-point function is gen-
erally fitted to the four-state truncation

C2pt( p, t) = |A0( p)|2 e−E0( p)t + |A1( p)|2 e−E1( p)t

+ |A2( p)|2 e−E2( p)t + |A3( p)|2 e−E3( p)t + · · · ,

(51)

In order to stabilize these fits beyond the two-state truncation
a (sequential) empirical Bayesian analysis with Gaussian pri-
ors [95,96] is carried out for the masses Ek≥1 and amplitudes
Ak≥1 as described in Ref. [72]. Although the results for Ek>1

and amplitudes Ak>1 remain sensitive on both the priors and
the lower bound tmin in the fit, the four-state truncation is
found to describe the data sufficiently well as can be seen

Fig. 17 Nucleon effective mass aMN in lattice units as a function of
t/a and results from fits of the four-state truncation in Eq. (51) for
some of the ensembles used in Ref. [88]. The black, horizontal lines
and gray bands indicate the ground state results and their errors, while
the colored, solid and dashed curves indicate the full results and errors
from the fit. The figure has been originally published in Ref. [88] and is
reproduced under the Creative Commons Attribution 4.0 International
license

in Fig. 17 for four ensembles covering several values of the
pion mass and two lattice spacings. However, as discussed in
Ref. [88] the resulting energy gaps E1(0) − E0(0) at zero-
momentum transfer are again found to be mostly incompati-
ble with the theoretical expectation of E1 − E0 ≈ 2Mπ as it
has been the case for the two-state truncation. This observa-
tion corroborates the conclusion that fits to a single two-point
function are unable to fully resolve the excited state spectrum.
Note that this behavior differs from what has been found in
the previously mentioned simultaneous, direct fits to the ratio
introduced in Ref. [47] for which convergence towards 2Mπ

is in fact observed. Therefore, while using masses and ampli-
tudes obtained from the four-state truncation of the two point
function in the fits of the three-point function can yield an
effective description of the data, this procedure should not
be expected to allow for a systematic elimination of the con-
tribution from the lowest excited states.

For the truncation of the three-point function several
ansätze have been used in recent calculations by PNDME
that are referred to as 2∗-, 2- and 3∗-fits. In their naming
scheme, the 2∗-fits include only the ground state contribution
∼ 〈

0, p f

∣∣OX
μ1...μn

∣∣0, pi
〉

and the 0 → 1 transition matrix
elements, while the 2-fit includes the full two-state trunca-
tion. Furthermore, the 3∗ fits incorporate all terms involv-
ing the 1 → 2 and 0 → 2 transition matrix elements. In a
recent calculation of electromagnetic form factors and radii
in Ref. [94] final results are mostly obtained from the 3∗ fits,
however, in other cases these fits turn out unstable and the
results from the two-state fit are preferred, see e.g. Ref. [88].
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In fact, any matrix elements beyond the ones in the 2∗-fits
are found to be poorly constrained by these fits.

Including further states in the truncations of two- and
three-point functions does still not guarantee the efficacy of
multi-state fits for removal of excited states, which remains
dependent on the observable, the available statistical preci-
sion and a careful choice of fit ranges and priors. In partic-
ular, for observables requiring non-zero momentum transfer
like ru−d

E,M and μu−d
N , the excited state contamination is Q2-

dependent For example, the result for the nucleon electric
radius ru−d

E = 0.769(27)(30) fm in Ref. [94] was found
to be 16% smaller than the experimental value. This may
be explained by the fact that the excited state correction in
Gu−d

E (Q2) increases with Q2 and its convergence is from
above. If the multi-state fit does not sufficiently remove
these effects for data at larger Q2 that enter the extrac-
tion of the radius, this may lead to an underestimation of
the radius. On the other hand for μu−d

M the excited state
contamination is large at small values of Q2 and conver-
gence is from below, which likely explains the low result of
μu−d
N = 3.939(86)(138) if the multi-state fits fails to fully

remove the contamination.
Anyhow, the underestimation of electromagnetic radii and

the magnetic moment is a common feature of several recent
lattice calculations, see e.g. Refs. [44,80,89,94], and it is
difficult to judge if deviations from experimental results are
dominated by residual excited state contamination alone. For
example, for the electric form factor also finite size correc-
tions are expected to be Q2-dependent and can thus be dif-
ficult to disentangle from excited state effects. Two studies
by the PACS collaboration in Refs. [70,97] give a hint that
finite size corrections may indeed play a role, as their results
obtained on two fairly large physical volumes (Mπ L ≈ 6
and Mπ L ≈ 7.2) are in better agreement with experimental
results, albeit with larger errors. Moreover, final results for
rE,M and μM may exhibit further dependence on the method
used to extract them from lattice data, see e.g. Ref. [49],
the available lattice momenta and the chiral, continuum and
finite size extrapolations.

Another interesting application of this kind of fit ansatz is
found in the recent study of axial form factors in Ref. [54]
that has already been mentioned in Sect. 3.2. In this case the
conventional multi-state fit strategy that uses information on
the energy gaps from the two-point function, labeled by S2pt

in the notation of Ref. [54], fails badly to achieve ground
state dominance. The reason for this is that the four-state fit
applied to the two-point function does not resolve Nπ states
which are responsible for a large excited state contamina-
tion in the pseudoscalar form factor as discussed at the end
of Sect. 3.2. In Ref. [54] an alternative fit strategy labeled
SA4 has been adopted that uses information on this addi-
tional, low-lying energy gaps through a fit to the three-point
function from an insertion of the temporal component of the

Fig. 18 Energy gaps in units of Mπ determined from the two fit strate-
gies S2pt and SA4 in Ref. [54]. The dotted lines represent estimates
for noninteracting Nπ states with back-to-back momentum (red line)
and with the nucleon at rest (blue line). The figure has been originally
published in Ref. [54] and is reproduced under the Creative Commons
Attribution 4.0 International license

axial vector current. The result for the relevant energy gaps
obtained from both procedures as a function of the momen-
tum transfer in integer units are shown in Fig. 18 together with
the noninteracting estimates for Nπ states with back-to-back
momentum and with the nucleon at rest. The noninteracting
estimates agree rather well with the behavior of the energy
gaps extracted using strategy SA4 . Using the fit strategy SA4

the lattice data for rPCAC and rPPD defined in Eqs. (38) (39),
respectively, are found to be compatible with unity as shown
in the left panel of Fig. 10.

A conceptually different approach that aims at modeling
Nπ state contributions in a many-state fit has been investi-
gated in Ref. [90] for the extraction of gu−d

A,S,T . It relies on
using the noninteracting energies for the first Nπ states

En =
√(

2πn
L

)2

+ M2
N +

√(
2πn
L

)2

+ M2
π , (52)

to fix the energy gaps Δn = En − MN for states with
relative momentum p = 2πn/L up to some cutoff value
|n|2 ≤ |nmax|2 ≡ n2

max. This approximation may be justified
by the observation in Ref. [63] that the deviation between
interacting and noninteracting energy levels is small com-
pared to Δn itself. The fit ansatz used in ref. [90] reads

RX
μ1...μn

(tins, tsep) = 〈0|OX
μ1...μn

|0〉
+ bXμ1...μn

∑

n �=0
|n|2≤|nmax|2

(
e−Δntins + e−Δn(tsep−tins)

)

+ cXμ1...μn

∑

n �=0
|n|2≤|nmax|2

e−Δntsep , (53)
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Fig. 19 Results from Ref. [90] for the unrenormalized isovector axial
charge obtained from the many-state fit model in Eq. (53) as a function of
the starting value of the insertion time in the fit denoted by τ0. The open
symbol indicates a p-value below 0.02 and the gray band represents the
final result from this study. The results are shown for the same ensemble
as in Fig. 14. The figure has been originally published in Ref. [90] and is
reproduced under the Creative Commons Attribution 4.0 International
license

assuming that all ground-to-excited state transitions enter
with the same coefficient and that off-diagonal transitions
between different excited states are negligible, while excited
state contamination in the two-point function is considered
important. In Fig. 19 results from this procedure are shown
for the unrenormalized axial charge. For small values of the
lower bound τ0 in the insertion time a strong dependence on
the choice of nmax is observed as expected in the presence of
a tower of Nπ states contributing to the signal. With increas-
ing values of τ0 the values appear to converge across different
nmax and the result is found to be consistent with other meth-
ods albeit with larger errors. However, in Ref. [90] it has
been concluded that the strong dependence on n2

max in mod-
eling the excited states at small τ0 likely make the approach
unreliable.

6 Variational techniques

A conceptually different approach to tame excited state con-
tamination is the variational method [98,99], which has
become a standard tool in spectroscopy calculations as it
allows to systematically remove the lowest excited state con-
tributions [100]. The method is based on the computation of
a matrix of correlations functions

C2pt
i j ( p, t) =

∑

x

ei px〈χi (x, t)χ†
j (0, 0)〉, (54)

for a basis of N operators χ = (χ1(t), . . . , χN (t))T with
suitable quantum numbers, and solving the generalized
eigenvalue problem (GEVP)

C2pt(t)vk(t, t0) = λk(t, t0)C2pt(t0)vk(t, t0), (55)

for t > t0 and k ∈ [0, . . . , N − 1]. Energy levels are obtained
at large t from the principal correlators λk(t, t0) ∼ e−Ek ( p)t ,
while the eigenvectors vk(t, t0) carry information on matrix
elements. Note that solving the GEVP generally results in an
unsorted set {sk(t, t0)|k ∈ [1, . . . , N ]} of states sk(t, t0) =
(λk(t, t0), vk(t, t0)) on each timeslice and performing the
state assignment going from timeslice t to t + 1 can be a
non-trivial task particularly in the presence of an exponen-
tially deteriorating signal-to-noise ratio; for a discussion of
methods to sort the states see Ref. [101]. The most important
feature of the variational approach is that ground state ener-
gies and matrix elements are improved with respect to the
leading excited state contamination which now depends on
the gap EN ( p)−E0( p) to the N th state in the spectrum [100]
instead of the smallest gap in the spectral decomposition of
a single two-point function E1( p) − E0( p). Therefore, con-
tamination from excited states is more strongly suppressed
which can be systematically improved by adding more (inde-
pendent) interpolating operators to the basis χ .

Beyond spectroscopy the variational approach can be
applied in calculations of hadronic matrix elements [81]. In
this case the generalized eigenvectors that diagonalize the
two-point correlation function matrix are used to construct
optimized interpolating operators

χ
opt
k = χ · vk, (56)

for the kth state, that are used in the computation of optimized
three-point functions. For nucleon structure calculations an
issue arises again from the dense spectrum of multiparti-
cle states, particularly towards physical quark masses and in
large volumes. In principle, each state to be removed in the
variational approach requires an additional operator, which
may require a very large basis. Furthermore, it is known from
spectroscopy calculations [102] using distillation [37] that
multiparticle operators must be included to systematically
resolve multiparticle states, which for NME calculations is
also supported by chiral perturbation theory [66]; see the dis-
cussion in Sect. 3.2. However, these are numerically expen-
sive to implement for the computation of nucleon three-point
functions. In fact, there has so far only been a single, pub-
lished study [38] using distillation in the context of NME
calculations2, which will be discussed in some more detail
in Sect. 6.3. Although nonlocal operators have been used
in this calculation, multiparticle operator have still not been
included.

2 A second study in Ref. [103] extending the work in Ref. [38] by com-
bining momentum smearing with distillation appeared while writing
this review.
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Fig. 20 Effective form factor of the isovector axial charge for three dif-
ferent smearing levels and a variationally improved interpolator. Results
from smeared interpolators are denoted by sm32, sm64 and sm128 cor-
responding to Nsmear = 32, 63, 128. For the variationally optimized
interpolator t0 and Δt refer to the sink times t = t0 and t = t0+Δ used in
the construction of the optimized two-point correlator, see Ref. [105] for
technical details. The figure has been originally published in Ref. [105]
and is reproduced under the Creative Commons Attribution 4.0 Inter-
national license

6.1 Smeared interpolators

Since building a basis that systematically accounts for the
lowest-lying excited states has not been attempted for NME
calculations due to the computational cost induced by the
need for multiparticle operators, all existing NME studies
using the variational method have aimed at constructing
an improved interpolator from a basis of computationally
affordable interpolators. A straightforward way is to use
differently smeared operators, which has been explored in
Refs. [104–106]. However, it remains an open question if
this approach is actually beneficial compared to the sequen-
tial method using a single interpolator with properly tuned
smearing in combination with other methods for controlling
excited states, e.g. two-state fits or the summation method.
This concerns the resulting suppression of excited states as
well as the computational cost required to achieve a given
target precision.

Figure 20 illustrates the first part of this issue for gu−d
A :

the choice of smearing steps Nsmear has a large impact on the
resulting excited state suppression for the single interpolator
approach and careful tuning of the smearing is required for a
meaningful comparison, because too small a value of Nsmear

leads to enhanced excited state contamination. Although
the excited state contamination appears to be slightly more
reduced for the variational method in this example from
Ref. [105], it is close to the one from the single interpo-
lator approach for the largest value of Nsmear and a further
increase of Nsmear might have resulted in a compatible value.

While in Refs. [105,107] some indication has been pre-
sented that the variational method is more robust with respect
to excited state contamination than the two-state fit and sum-
mation method, this has been challenged by the study in
Ref. [106]. In this study it has been concluded that the efficacy
of the variational method and a two-state fit applied to the
single interpolator approach for reducing excited state con-
tamination is similar. In particular, it has been stressed that
the comparison to the two-state method in Refs. [105,107]
did not use the optimal smearing size and that the resulting
statistical errors might be artificially large due to the choice
of the values of tsep in the fit. Furthermore, it has been pointed
out in Ref. [106] that the computational cost depends on the
setup and that lighter quark masses and larger temporal lat-
tice sizes T work in favor of a (properly tuned) two-state fit
approach. At any rate, it appears fair to conclude that no clear
advantage of the variational method using a basis of smeared
interpolators over other commonly used methods has been
found in existing studies.

6.2 Generalized pencil of function (GPOF)

Another, very cost-efficient approach to obtain a variational
basis is the so-called generalized pencil of function method,
that has been applied for NME calculations in Refs. [108–
111]. It offers an alternative way to analyze the data that are
computed using the sequential method for several source-
sink separations, as required for other methods such as two-
state fits or the summation method. In the GPOF method a
set of linearly independent interpolating operators

χδt (t) ≡ χ(t + δt) = eHδtχ(t)e−Hδt , (57)

is created by time-shifting an existing operator χ(t) and used
to build a (N + 1) × (N + 1) matrix of two-point functions

C2pt(t) =
⎛

⎝
〈χ0·δt (t f )χ†(ti )〉 ... 〈χ0·δt (t f )χ†

N ·δt (ti )〉
...

. . .
...

〈χN ·δt (t f )χ†(ti )〉 ... 〈χn·δt (t f )χ†
N ·δt (ti )〉

⎞

⎠

=
⎛

⎝
C2pt(t) ... C2pt(t+N ·δt)

...
. . .

...
C2pt(t+N ·δt) ... C2pt(t+2N ·δt)

⎞

⎠ , (58)

where any momentum dependence has been suppressed in
the notation. Typically, for NME calculations only a sin-
gle, original operator is used, e.g. the standard interpolator
in Eq. (10). For the case of a nucleon three-point function
a non-symmetric but otherwise similar correlation function
matrix is built by applying the same procedure to its respec-
tive source and sink operators
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Fig. 21 Example data for the nucleon effective mass from a 2×2 GPOF
in comparison to the single correlator approach. Results from GPOF are
horizontally displaced. Data have been generated on the same ensemble
as used in Fig. 2

C3pt(tins, tsep) =
⎛

⎝
C3pt(tins,tsep) ... C3pt(tins+Nδt,tsep+Nδt)

...
. . .

...
C3pt(tins,tsep+N ·δt) ... C3pt(tins+Nδt),tsep+2Nδt)

⎞

⎠ , (59)

where all further indices and parameters besides the time-
dependence have been suppressed. The matrix of eigenvec-
tors obtained from the GEVP applied to C2pt(t) is then used
to diagonalize the three-point function matrix

C3pt(tins, tsep) → vTC3pt(t f , t, ti )v

= diag(Λ0(tins, tsep), . . . , ΛN (tins, tsep)). (60)

The principal correlator Λ0(tins, tsep) for the ground state can
be treated in the same way as the standard three-point func-
tions in a subsequent analysis, e.g. the ratio method. Any-
how, NME calculations are just a particular application of the
GPOF method and it can in fact be applied to any problem
in hadron spectroscopy and structure calculations whenever
a variational basis is desired. Further details on GPOF based
approaches and the relation between several families of meth-
ods, i.e. the GEVP and GPOF, the Prony method [112–115]
and the Gardner method [116] have recently been discussed
in Ref. [101], where also a new combination of GEVP and
GPOF has been proposed.

In practice, the signal-to-noise problem and availability
of different values of tsep limits the application of the GPOF
in NME calculations to a single additional interpolator and
thus a 2 × 2 correlation function matrix. Figure 21 shows
corresponding results from a 2 × 2 GPOF with δt = 2a for
the nucleon effective mass on an ensemble at physical quark
mass. The excited state contamination is found to be drasti-
cally reduced in the GPOF principal correlator at small values
of t/a. However, the point errors for the GPOF ground state
are larger than from the single. As pointed out in Ref. [110]
this behavior is expected, because for a system with exactly
two-states with energies E0,1 the two- and three-point ground
state principal correlators read

λ0(t) = C2pt(t+2δt)−2e−E1δtC2pt(t+δt)+e−2E1δtC2pt(t),

(61)

and

Λ0(tins, tsep) = C3pt(tins + δt, tsep + 2δt)

− e−E1δt
(
C3pt(tins, tsep + δt) + C3pt(tins + δt, tsep + δt)

)

+ e−2E1δtC3pt(tins, tsep), (62)

respectively, implying that the statistical uncertainties are
dominated by the correlators at the largest value of tsep. This
strongly limits the statistical precision for the three-point case
due to the signal-to-noise problem, at least if effective statis-
tics are not kept constant for increasing values of tsep. Still,
for the nucleon mass this effect is compensated by the much
earlier onset of the plateau at ∼ 0.4 fm.

Furthermore it has been pointed out in Ref. [110], that the
GPOF might not be efficient for contamination from transi-
tion matrix elements. This is because they are more strongly
suppressed in the two-point function than the correspond-
ing contributions to the three-point functions by transition
to the ground state. However, within the statistical precision
of that study it has been concluded that GPOF and summa-
tion method lead to comparable results. This has also been
confirmed by a more recent study in Ref. [111] of moments
of twist-2 operator insertions, which are notorious for large
excited state contamination. In the context of NME calcula-
tions the main advantage of the GPOF is clearly its simple
implementation compared to e.g. multi-state fits and that it
can usually be applied on existing data without adding com-
putational cost. However, despite its simplicity the method
has not seen widespread use in recent NME calculations.
Still it might be worthwhile exploring the GPOF approach
for NME calculations further, particularly if the required data
are readily available from other methods such that it can e.g.
serve as a crosscheck.

6.3 Hybrid interpolators

The search for an affordable basis of interpolators has
recently been extended to so-called hybrid interpolators
that include an insertion of a chromomagnetic field Bi =
− 1

2εi jk Fjk and that can be implemented at similar computa-
tional cost compared as the standard approach. In Ref. [117]
the following basis of operators has been studied

χ1 = εabc

(
ũTa Cγ5P+d̃b

)
ũc, (63)

χ2 = εabc

(
(Bi ũ)Ta Cγ j P+d̃b − ũTa Cγ j P+(Bi d̃)b

)
γiγ j ũc,

(64)
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Fig. 22 Comparison of results for effective MN from a low-statistics
smearing scan using the interpolator χ1 defined in Eq. (63) (open, gray
circles), the variationally improved operator χopt from a second tuning
run and results for χ1 (filled, green circles) and χopt (blue diamonds)
from full statistics. The figure has been originally published in Ref. [117]
and is reproduced under the Creative Commons Attribution 4.0 Inter-
national license

χ3 = εabc

(
(Bi ũ)Ta Cγ j P+d̃b − ũTa Cγ j P+(Bi d̃)b

)
Pi j ũc,

(65)

where ũ, d̃ are smeared quark fields, Pi j = δi j −γiγ j/3, and
χ1 is the standard interpolator in Eq. (10) up to an addi-
tional (positive) parity projector P+ = (1 + γ0)/2. Two
tuning runs have been performed to optimize the smearing
for χ1 and construct a variationally improved interpolator
χopt for the ground state as introduced in Eq. (56). Some
results for the nucleon effective mass from Ref. [117] are
shown in Fig. 22. The variational basis is found to lead to
a reduction of excited state contamination compared to the
standard approach, albeit less than the reduction that is usu-
ally observed in the previously discussed GPOF approach.
Furthermore, these results once more demonstrate the impor-

tance of tuning the smearing for optimal results and a mean-
ingful comparison to other methods.

However, for the actual NME calculation the results found
in Ref. [117] were mixed, as can be seen from the results for
gu−d
A,T in Fig. 23. While the excited state contamination is sig-

nificantly reduced for gu−d
T using the variationally improved

interpolator χopt, it is actually increased for gu−d
A . The lat-

ter result might be explained by a partial (accidental) can-
cellation of excited states present in the single interpolator
approach, which is weakened or prevented in the variational
approach. Besides, the statistical errors for χopt are always
larger than for χ1. These findings corroborate the conclusion
that a small variational basis without multi-particle operators
does not allow for a systematic treatment of excited states in
nucleon structure calculations.

Similar results have been found previously in Ref. [38].
In addition to a standard, Jacobi smeared [118] interpolating
field and a single distilled operator 2SS

1
2
+

that resembles the
nucleon interpolator in Eq. (63), two bases of distilled oper-
ators B3, B7 have been constructed using covariant deriva-
tives to obtain variationally improved interpolators denoted
by P̂3 and P̂7, respectively. Basis B3 includes 2SS

1
2
+

and
two hybrid interpolators which have been found to have large
ground state overlap in Ref. [119], while basis B7 expands
B3 by four additional operators that probe the radial structure
of the nucleon. Note that B3 is similar to the basis used in
Ref. [117] to obtain the variationally improved interpolator.
Some results for gu−d

A are shown in the three panels of Fig. 24

for 2SS
1
2
+

and the variationally improved interpolators from
basesB3 andB7, respectively. For gu−d

A the variationally opti-

mized interpolator P̂3 shows enhanced excited state contam-
ination compared to the single interpolator approach, similar

Fig. 23 Effective form factors and results from summation method
for gu−d

A (left panel) and gu−d
T (right panel) from the interpolator χ1

defined in Eq. (63) (open symbols) and variationally optimized operator

χopt. The figures have been originally published in Ref. [117] and are
reproduced under the Creative Commons Attribution 4.0 International
license
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Fig. 24 Effective form factor for gu−d
A from a single distilled operator

(first panel), a variational improved operators from a basis of three (sec-
ond panel) and from a basis with seven distilled operators (third panel).
The horizontal gray band indicates the final result from a two-state fit

and the colored, curved bands represent the fit results at any given value
of tsep. The figures have been originally published in Ref. [38] and are
reproduced under the Creative Commons Attribution 4.0 International
license

to what is observed in Ref. [117]. A second observation is
that further increasing the basis indeed improves the situa-
tion as one should expect. Again, for gu−d

T (not shown here)
the excited state contamination has been found to be reduced
by including hybrid interpolators when compared to the sin-
gle interpolator approach. It should be further noted that the
standard, smeared interpolator has been found to give results
qualitatively consistent with using 2SS

1
2
+

as expected, albeit
with much larger errors. However, it is not clear if the smear-
ing has been tuned in Ref. [117]. Besides, it is not possi-
ble to directly compare computational cost in a meaningful
way to distillation. Still, the findings of the two studies in
Refs. [38,117] using hybrid interpolators qualitatively agree
in that a small variational basis without multiparticle opera-
tors is insufficient to reliably deal with excited state contam-
ination in NME calculations across multiple observables.

6.4 Parity-expanded variational analysis (PEVA)

Yet another way to build a variational basis has been devel-
oped and applied in a series of papers [120–122] for studies
of baryons at non-zero momentum. Originally introduced in
Ref. [120] at the level of nucleon two-point functions, the
method aims at resolving parity mixing between nucleon
states at non-zero momentum, hence its name “parity-
expanded variational analysis”. Unlike other approaches that
attempt to find a generally applicable variational basis to con-
struct improved operators, the PEVA approach is designed to
specifically deal with potential contamination caused by this
mixing with states of opposite parity.

The basic idea of this method is to start from a basis of
conventional interpolators denoted by {χi } and construct an
extended basis

χi,± p = Γ± pχi , (66)

χ ′
i,± p = Γ± pγ5χi , (67)

using a helicity projector

Γ± p = 1

4
(1 + γ0)

(
1 ± iγ5γk p̂k

)
. (68)

At zero-momentum the two operators transform as eigen-
states of parity, i.e. χi,± p → +χi,± p and χ ′

i,± p → −χ ′
i,± p,

respectively, while at non-zero momentum they do not have
definite parity. The authors of Refs. [120–122] always con-
sider an initial basis made up two interpolators

χ1 = εabc

(
ũTa Cd̃b

)
ũc, (69)

χ2 = εabc

(
ũTa Cγ5d̃b

)
γ5ũc, (70)

with four different levels of Gaussian smearing to generate
the smeared quark fields ũ, d̃ , effectively resulting in an 8×8
basis for the conventional variational approach and a 16×16
basis for the PEVA.

In Ref. [121] the method has been applied to the cal-
culation of electromagnetic form factors while the most
recent study using the PEVA approach in ref. [122] extends
this further to (elastic) form factors of the first two parity-
odd excitations of the nucleon and its lowest-lying parity-
even excitation. Here we shall focus on some of the results
from Ref. [121]. In this study the PEVA method has been
first applied for GE (Q2) for which no significant differ-
ence to results from the conventional approach has been
observed. However, for the magnetic form factor PEVA was
found to lead to additional reduction of the excited state
contamination. This is shown in Fig. 25 where the ratio
GConv.

M (Q2)/GPEVA
M (Q2) of the result from the conventional

over the PEVA approach is plotted for individual u- and
d-quark contributions including only quark-connected dia-
grams. Still, a significant difference is only observed on the
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Fig. 25 Ratios of plateau method results from the conventional
approach and PEVA for the quark-connected contribution to GM (Q2).
Results are shown separately for up- and down-quark contributions
and have been obtained on an ensemble with Mπ ≈ 156 MeV, a =
0.0933(13) fm and T × L3 = 64a × (32a)3. The figure has been orig-
inally published in Ref. [121] and is reproduced under the Creative
Commons Attribution 4.0 International license

Fig. 26 Comparison of results for the isovector magnetic moment from
the conventional approach (open symbols) and the PEVA method (filled
symbols) across several ensembles. The data have been finite-volume
corrected using the corrections in Ref. [123]. The values at physical
quark mass have been obtained from a chiral extrapolation. The figure
has been originally published in Ref. [121] and is reproduced under the
Creative Commons Attribution 4.0 International license

ensemble with the lightest quark mass in this study, which
can be inferred from Fig. 26 showing results for the isovec-
tor magnetic moment as a function of M2

π . Note that the data
in this figure have been corrected for finite volume effects
using chiral perturbation theory [123] which is found to give
a correction of ∼ 10% for the isovector magnetic moment.

Although it is not obvious why one would expect con-
tamination by opposite parity excited states for the magnetic
form factor particularly at lighter pion masses, the authors
of Ref. [121] give some possible explanation for this fea-

ture from an investigation of the negative-parity spectrum,
i.e. they infer an increasing role of multiparticle states in
the negative-parity spectrum at lighter pion mass. They fur-
ther speculate that this could lead to a change in the cou-
pling to the localized operators they use and thus affect the
opposite-parity contamination in the ground state matrix ele-
ment. However, if this explanation is correct, it is not a priori
clear that the PEVA method would still yield a significant
correction at light pion masses once multiparticle operators
are actually included and it might in fact be more relevant
for studies of parity-odd states as in the exploratory study in
Ref. [122].

7 Summary and outlook

In the last few years studies of nucleon structure at physical
quark mass have become feasible, thus systematic effects due
to the chiral extrapolation can be considered well under con-
trol. Furthermore, discretization effects are empirically found
to be rather small and continuum extrapolations are now part
of state-of-the-art calculations as well. The later also applies
to some extent to finite size extrapolations, although in this
case the picture may be less clear. On the other hand, excited
states remain arguably as the most important source of sys-
tematic uncertainty in current lattice simulations. One reason
for this is that they are strongly observable-dependent and
can be large, which in practice makes it difficult to come up
with a generally applicable approach to treat them. Moreover,
excited state contamination is intimately related to the signal-
to-noise problem, which is why there is usually a trade-off
between statistical precision and accuracy related to this sys-
tematic. This is problematic as it can easily lead to an under-
estimation of the overall error.

In this review an overview of approaches to mitigate
excited state contamination in contemporary lattice QCD
calculations of nucleon structure has been presented. These
methods can be roughly divided in three categories, i.e.
summed operator insertions, multi-state fits and applications
of the variational method. While direct, quantitative com-
parisons of different methods taking into account the com-
putational cost are rarely found in the literature and often
difficult or even impossible to perform, each of these meth-
ods has its individual advantages and shortcomings that can
be summarized as follows:

1. Methods based on the summation over the operator inser-
tion aim at increased suppression of excited states. At least
in the commonly used form this approach is simple to
implement, rather robust and less affected by human bias
than e.g. multi-state fits, because there are not many tun-
able parameters involved. However, statistical errors are
typically larger than for (naive) fits which might explain
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why the summation method has often been merely used
as a crosscheck for other methods. Moreover, there is no a
priori guarantee that the additional suppression of excited
states is indeed sufficient for a given observable and target
precision.

2. Multi-state fits have become rather sophisticated over the
last years and are by now predominantly used to obtain
final results. They aim at explicitly correcting lattice data
for the leading excited state contamination. Their main
advantages are flexibility with respect to the choice of
fit ansatz and – in principle – the possibility of track-
ing convergence of the resulting energy gaps. In practice,
most implementations use information from the two-point
functions to determine energy gaps and make heavy use of
priors if more than two states are included, making them
more prone to human bias. Moreover, fits naively rely-
ing on information on energies from two-point function
should be considered unreliable as the fitted energy gaps
notoriously fail to converge to the theoretically expected
lowest-lying state and it has been shown that these fits may
indeed miss the lowest-lying (multiparticle) states which
can lead to large residual excited state contamination as
observed for e.g. axial form factors.

3. The variational method is potentially the most powerful
approach as it allows to systematically extract states and
suppress excited state contamination in a given matrix ele-
ment. However, in current implementations the efficacy
of the method remains limited and strongly observable-
dependent as only fairly small bases of operators have
been used and multiparticle operators have not been
included at all. The last point causes an issue similar to the
one for multi-state fits using information on energy gaps
from two-point functions, i.e. a small basis particularly
without multiparticle may simply miss certain low-lying
excited states. Still, such states can yield significant resid-
ual contamination depending on the matrix element.

Since no approach is clearly favorable across multi-
ple observables, it remains crucial to crosscheck whatever
method is used to obtain final results and perform a care-
ful assessment of the residual excited state contamination.
In particular, it is insufficient to claim agreement between
two methods if one of them has much larger errors while the
result with the smaller statistical error is quoted as the final
estimate. Ideally, one should study correlated differences and
assign a systematic error due to residual excited state con-
tamination. If multi-state fits are used on a sufficient number
of ensembles, non-parametric criteria may be used to further
test the plausibility of results. Additional care is required
when using methods that are likely to be affected by human
bias due to a large number of free parameters or that make

model assumptions, such as using the spectrum from the two-
point functions to determine energy gaps of the three-point
function.

One way to systematically improve over existing analyses
of excited states would be the inclusion of multiparticle oper-
ators in a variational analysis. This should yield a more reli-
able resolution of the spectrum and thus lead to a more com-
prehensive and observable independent removal of excited
state contamination provided that a large enough basis is
used. However, such an extension would still be be demand-
ing from a computational as well as technical point of view.
Another possibility for future improvement would be a solu-
tion or mitigation of the exponential signal-to-noise problem
itself. This might be achieved by using multilevel methods
as introduced in Refs. [124,125] which have recently been
further explored in the context of the hadronic vacuum polar-
ization contribution to g − 2 [126].
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