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Abstract. Over the recent four decades, agent-based modeling and
maximum entropy modeling have provided some of the most notable
contributions applying concepts from complexity science to a broad
range of problems in economics. In this paper, we argue that these
two seemingly unrelated approaches can actually complement each
other, providing a powerful conceptual/empirical tool for the analy-
sis of complex economic problems. The maximum entropy approach is
particularly well suited for an analytically rigorous study of the qual-
itative properties of systems in quasi-equilibrium. Agent-based mod-
eling, unconstrained by either equilibrium or analytical tractability
considerations, can provide a richer picture of the system under study
by allowing for a wider choice of behavioral assumptions. In order to
demonstrate the complementarity of these approaches, we use here
two simple economic models based on maximum entropy principles –
a quantal response social interaction model and a market feedback
model –, for which we develop agent-based equivalent models. On
the one hand, this allows us to highlight the potential of maximum
entropy models for guiding the development of well-grounded, first-
approximation agent-based models. On the other hand, we are also
able to demonstrate the capabilities of agent-based models for track-
ing irreversible and out-of-equilibrium dynamics as well as for exploring
the consequences of agent heterogeneity, thus fundamentally improv-
ing on the original maximum entropy model and potentially guiding
its further extension.

1 Introduction

The past four decades have seen a growing number of contributions applying concepts
from complexity science to a broad range of problems in economics. Motivated in part
by dissatisfaction with conventional analytical approaches to economic problems,
these contributions have applied, among others, Information Theory, Agent-Based
Modeling, and Network Theory to offer a series of important methodological, theo-
retical, and empirical innovations. For example, the information-theoretic approach
has gained a great amount of attention in macroeconomics since Christopher Sims’
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Rational Inattention (RI) program, in which the notion of mutual information is uti-
lized in the macro model to predict the sluggish and erratic market responses [1,2].
Agent-based models have also been widely utilized in various economic questions and
have been recently included within the analytical toolbox of major policy institutions
[3].

The emergence of these new analytical approaches has highlighted the existence of
a series of methodological challenges within the standard economic theory. Notably,
the conventional notion of equilibrium as a fixed state of the system, such as a
market-clearing Walrasian equilibrium, has been called into question by these new
approaches’ understanding of equilibrium as an emergent property of the system
that comes with endogenously generated fluctuations. In a similar vein, these new
methods acknowledge the limitations of the rational choice theory in economics and
understand human behavior as fundamentally constrained by uncertainty. Among
many strands of complexity economics, information-theory-based approaches, espe-
cially Maximum Entropy (MaxEnt), and agent-based modeling have been promi-
nent in raising these methodological issues with standard economics. Agent-based
modeling is a simulation-based approach that traces the emergence of collective
phenomena in a complex system back to the actions and interactions of its con-
stituent agents. This method is highly flexible and can describe a wide range of
complex system phenomena, e.g., the emergence of equilibrium, endogenous bifurca-
tions, and transitions between multiple equilibria. Maximum entropy modeling is a
quasi-equilibrium approach that analytically derives the equilibrium state of the com-
plex system with a residual variation. Unlike the deterministic notion of equilibrium,
MaxEnt predicts the central tendency of the system along with its endogenous fluc-
tuation simultaneously.

This paper examines MaxEnt and agent-based modeling and argues that these
two seemingly unrelated approaches can actually complement each other, providing
a powerful conceptual/empirical tool for the analysis of complex economic problems.
This is primarily because the weaknesses of one method can be overcome by the
strengths of the other. For example, while agent-based models are highly flexible and
can capture rich aspects of the economy as a complex system, their very flexibility
leads to the issue of a high degree of freedom in model specification and thus makes
them less tractable than standard methods. In contrast, while MaxEnt provides a
disciplined approach for restricting the model space, leading to closed-form solutions
and thus helping us understand the qualitative properties of the model, it cannot
easily accommodate as wide a choice of behavioral and institutional assumptions as
agent-based models can. Benefiting from the strengths of each approach, we will show
that MaxEnt can provide a testable analytical solution to quasi-equilibrium problems,
from which an agent-based version can be implemented to provide a richer picture of
the model and guide its further extension. Especially, we will show that agent-based
modeling can enable us to examine the out-of-equilibrium and possibly irreversible
behavior (transitions between equilibria) of models based on MaxEnt considerations.

To demonstrate how MaxEnt and agent-based modeling can complement each
other in understanding a complex economic system, we will study two simple models:
a quantal response social interaction model and a market feedback model. In the
first example, a typical agent tries to mimic other agents’ decisions in deciding on
her own action with uncertainty. As [4] shows, the MaxEnt solution to this type of
problem in its simplest setting leads to two qualitatively different solutions: one with
two stable extreme equilibria and one unstable internal equilibrium and the other
one with a single stable equilibrium. We will show that an agent-based equivalent
model can reproduce the outcomes of this model and can track the out-of-equilibrium
dynamics of the system as well. The second example focuses on how the decisions
of an economic agent have an impact on the market and how this has, in turn,
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an effect over the decisions of other agents. In particular, we focus on how firms’
investment decisions impact the overall price/profit in the market. We will show
that the MaxEnt solution leads to a 4-parameter probability distribution [5], whose
general pattern can be reproduced and be further extended to a heterogeneous agent
case within the agent-based equivalent model.

The rest of the paper is organized as follows: in Section 2 we briefly describe Max-
Ent and agent-based modeling, focusing on their economic applications. In Sections 3
and 4, we compare both approaches by using two economic models based on MaxEnt
considerations and deriving agent-based equivalent models. In particular, we focus,
respectively, on a quantal response social interaction model and a quantal response
statistical equilibrium model. Section 5 draws some conclusions.

2 Entropy constrained modeling and agent-based modeling

MaxEnt: entropy constrained economic model

Shannon entropy H[p], defined as the negative expected value of the log-probability,
−
∑
x p[x] log[p[x]], is the correct form of the average information content of a system

composed of x states [6–9] with the convention 0 log(0) = 0. Information content,
I(p) = log[1/p], is monotonically decreasing in p, which implies that the more unlikely
the outcome, the more information content the outcome provides. In other words, the
occurrence of a highly likely event (high p) does not have a high degree of information
content while a highly unlikely event (low p) provides much information. This notion
of information content (or sometimes called “surprisal”) can directly translate to the
notion of uncertainty. When we are less certain about the system (low p), we expect
to get more information from observing the actual occurrence of a set of outcomes:
the higher the uncertainty, the more information content in the system. Therefore,
the Shannon entropy, which is the average information content of the probability
distribution, can be interpreted as a degree of uncertainty. The higher the entropy,
the more uncertain we are about the system, and the more information content we can
obtain from observing the actual occurrence of an outcome. For a detailed discussion
on the various aspects of entropy in physics and information theory, see [10].

There have been two different ways of using the concept of entropy in economic
applications [11]1. The first line of models maximizes the entropy of a target economic
variable – e.g., the returns on capital [5,13], firms’ growth [14], Tobin’s q [15] – subject
to constraints based on some relevant theory. The second line of models maximizes
the expected payoff of individual economic agents subject to the entropy constraint
[1,4]. In this section, we will illustrate the maximum entropy approach in the context
of the second line of entropy models, which are more akin to the standard economic
models. See [16] for a detailed discussion on the use of entropy in microeconomic
models.

Consider a mixed strategy problem in which the typical agent is a payoff max-
imizer and is subject to a quantal decision (a decision on two discrete choices),
a ∈ {0, 1}. The agent assigns a probability to each action, P (a), and tries to maxi-
mize the expected payoff given the payoff function U(a) [17],

max
∑

U(a)P (a), (1)

s. t.
∑

P (a) = 1.

1 We limit the scope of our discussion to the notion of entropy as an inferential tool
and thus only in the context of the maximum entropy principle. Therefore, the famous
Theil’s inequality indices [12], which are based on entropy as a dispersion measure, are not
considered.
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With no further constraint, the solution to this problem is the Dirac Delta function δ,

P ∗(a) = δ[a− â[u]], (2)

where â[u] is the payoff-maximizing behavior. This implies that the equilibrium is
either a = 0 or a = 1 depending on the payoff structure.

Now suppose that agents are exposed to a positive degree of uncertainty due to
the unobserved factors that prevent the agent’s choice of the first-best outcome. To
put it differently, agents are informationally constrained and have a limited capacity
to process market signals. Two notable strands of information-constrained models
are Sims’ Rational Inattention model [1] and Foley’s entropy constrained model [4].
First, Sims [1] proposed the Rational Inattention model, in which optimizing agents
make economic decisions by processing external random signals with a constraint
of finite channel capacity that determines the maximum information flow. Since the
channel capacity is defined as the maximum of the mutual information between the
action and signals, Sims’ model is a mutual information constrained model2. Second,
Scharfenaker and Foley [5] and Foley [4] proposed a more simplified version of an
entropy constrained behavioral model, in which payoff maximizing agents are directly
constrained by the Shannon entropy, not by the mutual information. The agent’s
optimal strategy in the entropy constrained model results in choosing probabilistically
in line with a logistic quantal response behavior, which is essentially equivalent to
Sims’ theory of rational inattention [4]3. The paper follows the second approach by
Scharfenaker and Foley [5]. For a more detailed comparison of these two approaches,
see [11].

Extending the simple mixed-strategy model to the entropy-constraint model, we
have the following optimization program with an additional minimum entropy con-
straint

max
∑

U(a)P (a), (3)

s. t.
∑

P (a) = 1, (4)

−
∑

P (a) log[P (a)] ≥ Hmin, (5)

where Hmin represents the minimum entropy of the typical agent. The standard
method to solve the constrained entropy program is to use the Lagrange duality

2 The mutual information of an input and an output I(X,Y ) is defined as the change in
information after observing the output Y given the prior information on X:

I(X;Y ) = H(X)−H(X|Y ) ≥ 0,

where H(X|Y ) is a conditional entropy defined as −
∑
p(x, y) log

[
p(x,y)
p(y)

]
.

3 When using the Shannon entropy, there exists a duality between the utility maximiza-
tion with a minimum entropy constraint and the entropy maximization with a minimum
utility constraint since both share the same Lagrangian function [5]. This type of duality is
well known in the entropy literature. For example, the entropy maximization problem with
linear constraints for the multinomial logit model has the same solution as the likelihood
maximization problem due to the same Kuhn–Tucker conditions in both problems [18]. This
makes the interpretation of the entropy-constrained model dual as well. The utility maxi-
mization with the minimum entropy constraint implies that the agents are assumed to be
exposed to uncertainty in their decision-making process (bounded rational model), while
the entropy maximization with the minimum utility constraint implies that researchers are
exposed to uncertainty in predicting the agent’s behavior according to their model (see
[19] for a detailed discussion on the relationship between the logistic regression and the
maximum entropy approach).
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[8,20] as

L(P (a), µ, T ) =
∑

U(a)P (a)−µ
(∑

P (a)− 1
)
−T

(
−
∑

P (a) log[P (a)]−Hmin

)
,

(6)
where µ and T are the Lagrange multiplier (dual variables) associated with the primal
problem. Note that the Lagrange multiplier T corresponds to temperature variables
in statistical mechanical models. Following [5], we call this agent’s behavior temper-
ature. Since the objective function is linear in the frequencies and the entropy is a
concave function, the first order conditions of the Lagrangian function are necessary
and sufficient conditions to attain the global maximum. Note that the inequality
constraint is treated in the same way as the equality constraints because the strong
duality holds for entropy maximization problems [21]. Taking the first derivative with
respect to P (a), µ, T and setting to zero, we get

∂L

∂P
= U(a)− µ+ T (1 + log[P (a)]) = 0, (7)

∂L

∂µ
=
∑

P (a)− 1 = 0, (8)

∂L

∂T
= −

∑
P (a) log[P (a)]−Hmin = 0, (9)

whose resulting frequencies of a due to the equality constraint (8) are

P (a) = Z(U, T, a)−1e−
U(a)
T , (10)

where Z(.) is the normalizing partition function,
∑
e
−U(a)
T . We call this resulting

decision probability a quantal response function, which has been extensively used in
the game theory literature [22,23]. One of the differences between our entropy con-
strained model and the standard game-theoretic approach is that the former derives
the quantal response function as an implication of the minimum entropy constraint,
while the latter derives it as a result of a fixed point theorem. This quantal response
function will be the basis of more complicated MaxEnt models in the following
sections.

We now introduce variables affecting the actions of the agents. Suppose that the
investor’s decision to invest in the market is affected by some social variable x, e.g.,
the average returns on capital or other investors’ investment strategy. This can be
represented by the conditional frequency distribution P (a|x), which we interpret that
the binary decision a = {0, 1} is dependent on some social variable x that is not under
the direct control of the agent. Note that the payoff function now includes the social
variable x as well since the agent’s payoff is determined by how much the agent
responds to the social variable. The optimization program is now written as

max
∑

U(a, x)P (a|x), (11)

s. t.
∑

P (a|x) = 1,

−
∑

P (a|x) log[P (a|x)] ≥ Hmin.

Program (11) has the same mathematical structure as the simple mixed-strategy
model to the entropy-constraint model and solving in the same fashion leads to the
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Fig. 1. A quantal response function with the linear payoff specification. The x-axis is the
social variable as the conditional variable of the quantal response function, while the y-axis
is the probability of action, a = 1, as a function of the social variable. Four different levels of
behavior temperature are displayed in different colors. As the behavior temperature becomes
larger, the quantal response function becomes more uniform. Except for T = 0, the quantal
response function is non-degenerate.

following solutions

P ∗(a = 0|x) =
e
U(a=0,x)

T

e
U(a=0,x)

T + e
U(a=1,x)

T

,

P ∗(a = 1|x) =
e
U(a=1,x)

T

e
U(a=0,x)

T + e
U(a=1,x)

T

,

where P ∗(a = 0|x) and P ∗(a = 1|x) are the maximum entropy probability of a binary
action given social variable x. For example, suppose the social variable is the returns
on capital (rate of profit) and the action variable is the binary entry-exit decision
in the market. The typical firm i has a hurdle rate of profit µx, which denotes its
desirable level of the rate of profit. If the observed rate of profit in the sector is greater
than the hurdle rate, x > µx, the firm is likely to enter the market. By the same token,
when x < µx, the firm is likely to exit the market. We suppose that the utility function
is a linear function of x with µx as a reference, U(a = 1, x) = x− µx. Therefore,
the quantal response function of entry is P (a) = 1/(1 + exp(−(x− µx)/T ), where
T represents the degree of uncertainty. Figure 1 visualizes this conditional quantal
response function for four different levels of the behavior temperature.

The x-axis is the social variable as the conditional variable of the quantal response
function, while the y-axis is the probability of action, a = 1. The higher T is the more
uncertain the quantal decision is and thus the action probability is more spread out.
When T is sufficiently large, the quantal response is almost uniform, implying that
the agent does not respond to the social variable. Except for the unattainable case
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when T = 0, the quantal response function is non-degenerate and assigns positive
probabilities to all possible states. This quantal response function provides a theo-
retical ground for the inverse-logit function that the ABM practitioners often use to
get the stochastic decision process [24–26].

The quantal response function we derive in this section will be the basis of the
two examples we will discuss in the following sections.

Agent-based modeling

Agent-based models are computer simulations consisting of a dynamic system of
autonomous, heterogeneous, interacting agents. These agents are autonomous in the
sense that each of them individually assesses its situation – its environment – and
makes decisions according to a predefined set of behavioral rules. Different levels of
heterogeneity are possible, from agents of the same type but different parameter val-
ues or (stochastic) histories to completely different types of agents altogether. The
interactions between these agents, which can be mediated by different network struc-
tures, determine how the state and actions of one agent affect the state and actions
of the others. In this way, cascades of individual changes of state are possible follow-
ing a change in the environment, leading, at a system level, to a nonlinear emergent
response. As opposed to traditional economic models, agent-based models are not
solved for equilibrium, but rather simulated. This amounts to instantiating the pop-
ulation of agents and letting them assess their environment, interact and make their
decisions for a number of time steps while monitoring all micro and macro variables
of interest. The main goal of this approach is thus to explore how complex, collective,
macro patterns in the economy emerge out of micro-level behaviors, interactions, and
structures.

Following [27], we can classify the uses of agent-based models into three broad
categories. The first refers to settings in which the question under study can be
completely formulated in terms of equations that are explicitly solvable, whether
analytically or numerically. While an agent-based model is hence not necessary in
these cases, it can be a useful tool for presenting the results of analytically solvable
systems and it will function as a certain type of Monte Carlo simulation for systems
that can be solved only numerically. The second category is formed by settings where
equations can be written down but not completely solved, in which case, agent-based
modeling can provide important insights about the general structure of the solution
as well as the dynamical properties of the system, including any out-of-equilibrium
behavior. Finally, the third kind of use of agent-based models is to explore problems
for which a mathematical formulation in terms of an explicit system of equations is
not even useful, the complexity of this formulation not allowing for any advance in
that way.

The contributions of this paper span across these three categories. In particular,
we first reproduce well-known analytical results of two simple economic models based
on maximum entropy theory. We then show how agent-based modeling can be used
to explore the dynamics of these models, for which no analytical solution exists.
Notably, for one of the models, this approach allows us to study the behavior of
the system out of equilibrium, as we are able to observe the transitions between its
equilibria, and thus build, for instance, statistics about the probability of observing a
crossing between these equilibria and how this probability depends on the parameters
of the model. Finally, we are able to expand on one of the models by introducing
heterogeneity in the form of two types of agents with different parameter values, an
extension which, due to its difficulty, has not yet been addressed within the available
maximum entropy formalism.
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Summary

Agent-based modeling is highly flexible and can describe a wide range of complex
system phenomena. For example, the emergence of equilibrium, endogenous bifurca-
tions, and transitions between multiple equilibria can be described even without a
well-specified objective function. However, this very flexibility leads to the issue of
a high degree of freedom in model specification and thus makes them less tractable
than standard methods. On the contrary, Maximum entropy modeling is a quasi-
equilibrium approach that analytically derives the equilibrium state of the complex
system based on the entropy as an objective function. Its methodological strength
lies in the fact that it predicts the central tendency of the system (equilibrium)
along with its endogenous fluctuation (residual variations) in a systematic manner.
However, the MaxEnt framework cannot easily accommodate as wide a choice of
behavioral and institutional assumptions as agent-based models can due to the dif-
ficulty of translating those assumptions to the moment constraints of the MaxEnt
program.

These two approaches can complement each other because the weaknesses of
one method can be overcome by the strengths of the other, leading to a powerful
conceptual/empirical tool for the analysis of complex economic problems. MaxEnt
can provide a testable analytical solution to quasi-equilibrium problems and thus
reduce the modeling space of the ABMs. Based on the MaxEnt results, the ABM
can be implemented to provide a richer picture of the model and guide its further
extension. The following two sections discuss this approach in more detail using two
simple economic models.

3 Example 1: Social interaction in the market

MaxEnt: Quantal response social interaction model

As a first example, let us study the case where the social variable x in the conditional
quantal response function is the average behavior of the other agents, ā. This is a
situation where bounded rational agents respond to other agents’ behavior (see [28]
for a general social interaction model). In the binary action case, a = {0, 1}, the
average behavior of the other agents is measured by the average frequency of action,
ā =

∑N
i=1 ai/N where N is the total number of agents. The entropy-constrained

optimization program given the average frequency of action is the following [4]

max
∑

U(a, ā)P (a|ā), (12)

s. t.
∑

P (a|ā) = 1,

−
∑

P (a|ā) log[P (a|ā)] ≥ Hmin,

whose solution for a = 1 is

P ∗(a = 1|ā) =
e
U(a=1,ā)

T

e
U(a=0,ā)

T + e
U(a=1,ā)

T

=
1

1 + e−
U(a=1,ā)−U(a=0,ā)

T

·

The social interaction type of behavior implies that the probability of the typical
agent’s action is positively related to the average frequency of the action in the
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Fig. 2. Social interaction with a quantal response. The x-axis is the average frequency of
the action while the y-axis is the individual action frequency given the average frequency.
The black line is the equilibrium line where the individual agent behavior and the average
behavior match. The red line is the quantal response function with a high behavior temper-
ature T , while the green line corresponds to a low behavior temperature. When T is high
there is a unique internal stable equilibrium. When T is low, there are two stable extreme
equilibria and one unstable internal equilibrium.

economy. For simplicity, suppose the payoff difference between the action and non-
action is modeled as a linear function of ā,

U(a = 1, ā)− U(a = 0, ā) = ā− µa, (13)

where µa is a reference probability of action, which can be set to 0.5 for convenience,
meaning that the agent is indifferent between the two binary decisions a = {0, 1}
when exactly a half of other agents decide to act, ā = 0.5. As a result, the conditional
quantal response function in the social interaction model becomes

P ∗(a = 1|ā) =
1

1 + e−
ā−0.5
T

· (14)

Figure 2 visualizes this derived conditional quantal response function. The
x-axis is the average frequency of the action while the y-axis is the individual action
frequency given the average frequency. The black line is the 45◦ line and represents
the equilibrium line where the individual agent behavior and the average behavior
match. When there is lower uncertainty (lower T ), as in the green line, there are
two stable extreme equilibria where the decision probability is close to either 0 or
1 and one unstable interior equilibrium where the decision probability is 0.5. When
the degree of uncertainty increases, as in the red line, there is a unique stable equi-
librium. Note that this particular application of the MaxEnt on a binary decision
with a social interaction (the second-order effect) is equivalent to Ising models (see
for instance [29–31]).
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Agent-based simulation

In order to complement the MaxEnt results presented in the previous subsection,
we develop here an agent-based model based on exactly the same rules of behavior
assumed for the MaxEnt model. As we will show, this agent-based equivalent model
will enable us to move beyond the MaxEnt analysis by allowing us to characterize
the time evolution of the system as well as its out-of-equilibrium behavior.

In particular, let the system be composed by N = 1000 investors, each of them
characterized by a binary variable ai = {0, 1} setting their entry (ai = 1) or exit
(ai = 0) from the market, and let āt =

∑N
i=1 ai/N be the average action or fraction

of agents investing in the given asset at time t. Agent-based models are dynamic,
and thus we need to specify the time evolution of the system. Furthermore, due to
their algorithmic character, it is useful to specify this time evolution as a procedure
in time, i.e., as a set of actions and updates that take place every time step. In order
to start the dynamics we need to set exogenously an initial average action or initial
fraction of agents investing, ā0, such that agents can use it to make their first time
step decisions. Then, using the same decision rule as in (14) with ā = ā0, as well as
the values of the parameters µ and T , each of the N investors can find its initial
probability of investing. Then a random number is uniformly drawn between 0 and 1
for each investor, who will decide to invest if this number is below the corresponding
probability. Once the new market positions are computed, an updated value of the
fraction of agents investing or average action can be found. Finally, this process can be
repeated for a number of time steps: new probabilities of investing can be computed
for the agents taking into account the previous average action, new random numbers
drawn and thus new market positions set, and finally a new average action found.

Figure 3 shows the time evolution of the average action for four different levels
of the behavior temperature T . As sketched by [4] and as described in the previous
subsection, a transition can be observed from two equilibria to a single equilibrium
as the temperature increases above a certain threshold or critical point, Tc ∼ 0.2495.
When the temperature is low (T < Tc), i.e., when agents have low levels of uncer-
tainty, as in the top two plots (T = 0.2 and T = 0.24), two different equilibrium
states can be clearly identified. For very low temperatures these equilibria are close
to 0 and 1, fluctuations around them are small and no crossing between them can be
observed within the plotted time window (see T = 0.2 in the upper left plot). As the
temperature increases, i.e., as the level of uncertainty of the agents increases, the two
equilibria move progressively away from 0 and 1 and closer to each other – and thus
also closer to ā = 0.5 –, fluctuations around them become larger and more and more
crossings can be observed between them (see T = 0.24 in the upper right plot). When
the temperature increases above its critical value (T > Tc), the two equilibria merge
into a single one – located at ā = 0.5 – and the system fluctuates around this unique
equilibrium, as shown in the bottom two plots (T = 0.25 and T = 0.3). As can be
observed by comparing these two plots, fluctuations around that single equilibrium
become smaller the higher the temperature is above its critical value.

The observed transition and the general behavior of the system can be explained in
terms of the competition between the two mechanisms included in the model: a copy
mechanism, by which agents copy what the majority of the other agents are doing,
and a noise mechanism, by which agents are allowed to do otherwise, i.e., to take the
minority action. While the copy mechanism tends to create large majorities of agents
taking the same action, whether investing or not, the noise mechanism tends to hinder
the emergence such majorities and to bring the system back to a random allocation
of market positions. The behavior temperature parameter T regulates the relative
strength of the noise mechanism over the copy mechanism, in such a way that a zero
temperature implies that there is only copy and an infinite temperature implies that
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Fig. 3. Average action or fraction of agents investing, ā, as a function of time, t, for
four different behavior temperatures, T : well below the critical point (T = 0.2, with two
colors identifying two different realizations of the process temporarily trapped in differ-
ent equilibria), a bit below the critical point (T = 0.24), slightly above the critical point
(T = 0.25), and well above the critical point (T = 0.3). Note that the critical point is at
Tc ∼ 0.2495.

there is only noise. For temperatures above the critical point (T > Tc), the strength
of the copy mechanism is not enough for stable majorities to emerge, and so the
system fluctuates around a single equilibrium characterized by a random allocation
of states, i.e., by half of the agents deciding to invest and the other half deciding to
not invest. In this case, the fluctuations being mainly driven by the copy mechanism
trying to create majorities and thus move the system away from its equilibrium,
their size decreases when the temperature increases (compare the lower left plot with
the lower right plot in Fig. 3). On the contrary, for temperatures below the critical
point (T < Tc), the strength of the copy mechanism is enough for stable majorities to
emerge, and so the system fluctuates around one of two possible equilibria: one with a
majority of investors and the other one with a majority of non-investors. In this case,
the fluctuations being mostly driven by the noise mechanism tending to destroy any
majority and thus move the system away from the prevailing majority and towards
a random distribution of states, their size increases when the temperature increases
(compare the upper left plot with the upper right plot in Fig. 3). Since it is precisely
these fluctuations which allow the system to cross from one equilibrium to the other
one, the likelihood of observing such crossings will also increase with temperature.
Note that, in the limit case of a zero temperature, there are no fluctuations and thus
no crossings between the equilibria: they become absorbing configurations and the
system becomes non-ergodic. Note that, while differing on the specific implementation
of the copy and noise mechanisms, other models based on these two mechanisms have
been introduced in the literature, leading to broadly similar behaviors [32,33,37,38].
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For example, the noisy voter model is characterised by a similar transition between a
mostly ordered regime dominated by copy and a mostly disordered regime dominated
by noise [34–36,39–41].

For the sake of studying these fluctuations and crossings in a more quantitative
manner, it is useful to define, for temperatures below the critical point (T < Tc),
the equilibrium the system is at at a given time step as the one corresponding to
the equilibrium line most recently crossed by the trajectory of the system4. To this
end, we need to find the position of both equilibrium lines, which we can achieve by
numerically solving (14) in the case in which the probability of investing is equal to
the actual fraction of investors,

1

1 + e−
ā−0.5
T

= ā. (15)

In this way, for example, we can identify 5 crossings between both equilibria5 in the
10 000 time steps shown in the top-right panel of Figure 3. For the sake of continuity
in the measures to be developed below, it is useful to consider, by extension, that
there is a crossing also each time the system crosses the single equilibrium line at
ā = 0.5 in the case of temperatures at or above the critical point (T ≥ Tc).

In order to quantify the fluctuations, as well as their dependence on the behavior
temperature, Figure 4 shows two different measures of the variance of the time series
of the average action as a function of this temperature. The plot on the left shows
the overall, unconditional variance of the fluctuations, i.e., treating the whole time
series as a single trajectory. As a consequence, both fluctuations around a given equi-
librium and fluctuations due to crossings between equilibria are aggregated under a
single variance measure. On the contrary, the plot on the right shows the weighted
average of two conditional variances: for temperatures below the critical point, these
variances are conditioned on the system being in each to the two possible equilibria;
for temperatures at or above the critical point, these variances are conditioned on
the system being above or below the single equilibrium line. By independently con-
sidering fluctuations around each of the equilibria and only then aggregating them,
this measure neglects the variance due to the system having two different equilibria,
though it includes the variance due to the excursions from one equilibrium to the
other.

Predictably, the unconditional variance (see plot on the left of Fig. 4) increases
as the behavior temperature becomes smaller due to the increasing distance between
the two equilibria, i.e., driven by crossings between these equilibria. As the behavior
temperature approaches zero, the unconditional variance converges to the expected
value for a time series composed of zeros and ones, 1

4 . For very high temperatures,
on the contrary, the unconditional variance tends, as expected, to the variance of a
binomial distribution with success probability 0.5 and N trials (divided by N2 since
we are dealing with an intensive variable), 1

4N . Note the somewhat counter-intuitive
implication of this: the higher the level of individual uncertainty (higher temper-
ature), the lower the level of system-wide uncertainty (lower variance); or, in the
opposite sense, the more the agents copy the average behavior (lower temperature),
the higher the uncertainty about the macroscopic state of the system (higher vari-
ance). Indeed, if each agent makes a random decision, then the system is very likely

4 Note that this definition forces us to disregard the initial time steps, before the system
crosses its first equilibrium line.

5 Since the proposed definition is arbitrary, alternative definitions are possible, such as
defining the equilibrium the system is at as the closest one to the current point in the trajec-
tory of the system. Note, however, that this alternative definition would lead to identifying
15 crossings in the top-right panel of Figure 3, instead of the 5 identified by our method.
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Fig. 4. Two measures of the variance of the time series of the average action as functions of
the behavior temperature T . The plot on the left shows the overall, unconditional variance
of the time series, σ2

uncond.(ā). The plot on the right shows the weighted average of two
conditional variances, σ2

cond.(ā). For T < Tc, these variances are conditioned on the system
being in each to the two possible equilibria; for T ≥ Tc, these variances are conditioned on
the system being above or below the single equilibrium line at ā = 0.5. Note that this second
variance measure neglects the variance due to the system having two different equilibria,
though it includes the variance due to the excursions from one equilibrium to the other.

to be split in more or less equal parts, while, if each agent tries to coordinate with
the other agents, then a majority will form for one or the other options, the specific
option being unpredictable.

Regarding our alternative, conditional measure of variance (see plot on the right
of Fig. 4), defined so as to neglect the variance due to the existence of multiple
equilibria, we first notice that it tends to zero as the temperature also tends to
zero, coherent with the smaller fluctuations around equilibria that we observed in
Figure 3 for decreasing temperatures below the critical point (compare upper plots
in that figure). Second, we can observe that this conditional variance has a maximum
right before the critical point: as temperature increases below the critical point, the
two equilibria move closer and closer, exerting a stronger and stronger pull on each
other and thus allowing for larger and larger excursions of the system between them.
Finally, for increasing temperatures above the critical point, the conditional variance
decreases towards a finite non-zero value, equivalent, again, to a time series drawn
from a binomial distribution with success probability 0.5 and N trials.

While any non-zero temperature below the critical point (0 < T < Tc) implies a
non-zero probability of crossings between the equilibria, these crossings have a cer-
tain degree of irreversibility, i.e., once the system makes a crossing, it is likely to stay
temporarily trapped around the new equilibrium. In any case, these crossings are
never strictly irreversible, as the system will always return to the previous equilib-
rium given a long enough time window6. In order to characterize these crossings, let
us define the probability per unit time of observing a crossing between the two equi-
libria of the system as the inverse of the average time the system spends in a given
equilibrium before crossing over and reaching the other one, i.e., the inverse of the
average time between two crossings, or, in other words, the frequency of crossings.
This probability is shown in Figure 5 as a function of the behavior temperature.
Note that, by extension, we also consider in this figure temperature values above
the critical point, for which the frequency of crossings simply refers to consecutive
crossings of the single equilibrium line at ā = 0.5. Given that this single equilibrium

6 Note that for T = 0 there are no crossings, and so the system stays forever trapped into
the first equilibrium it reaches. In this sense, the system becomes strictly irreversible.
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Fig. 5. Frequency of crossings as a function of the behavior temperature T . For T < Tc,
these crossings are between the two equilibria of the system; for T ≥ Tc, these are crossings
of the single equilibrium line at ā = 0.5. In both cases, this is a measure of the probability
of observing such a crossing per unit time.

line is in fact the result of the merger of the two equilibria characteristic of the low
temperature regime, this extension ensures continuity of the probability measure.

As shown in Figure 5, the probability of observing a transition between the two
equilibria of the system is a monotonically increasing function of the behavior temper-
ature. Interestingly, the slope of this increase is characterized by significant changes:
there is a first phase of exponential increase (note the logarithmic scale in the y-axis)
up to T ∼ 0.235, then a phase of sub-exponential increase (note the decreasing slope),
then an upwards bump around the critical point (Tc ∼ 0.2495), and finally another
phase of sub-exponential increase (note again the decreasing slope). Note that the
first phase of exponential behavior implies that, for low and decreasing temperatures,
the probability of observing a crossing vanishes exponentially for T → 0.

In this example, we have developed an agent-based model with the same behav-
ioral rules as a MaxEnt model in order to show how the former can complement and
expand on the results of the latter. In particular, we have focused on a system with
a transition between a phase with two equilibria and a phase with a single equilib-
rium. First, we have used the explicitly dynamic character of the agent-based model
to explore individual trajectories or temporal realizations of the process. Second, we
have characterized the fluctuations in these trajectories, as well as identified their
main drivers, by considering two different variance measures. Finally, we have shown
how agent-based modeling can be used to explore and characterize the behavior of the
system out of equilibrium, when it is performing a transition between its equilibria.
All of this is out of reach for the MaxEnt model.

4 Example 2: Actions and market feedback

MaxEnt: Quantal response statistical equilibrium

We study the case where the economic agent’s binary decision, a = {0, 1} impacts the
social variable x ∈ R, e.g., a firm’s investment decision impacts the overall price/profit
in the market. This model adds another conditional frequency distribution P (x|a)
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to the quantal response model in Section 3, which we interpret as the impact of the
agent’s decision a on the social variable x. Depending on the moment constraint on x
given a, we can express a wide range of market feedback mechanisms in the MaxEnt
setting. For a simple negative feedback case, which we will discuss in this section, the
constraint takes the following form [5]

E(x|a = 1)P (a = 1)− E(x|a = 0)P (a = 0) =
∫
P (a = 1, x)x dx

−
∫
P (a = 0, x)x dx = ξ. (16)

This constraint compares the expected values of the social variable x when the agent
decides to act (a = 1) and decides not to act (a = 0). For example, suppose that
the social variable x is the profit rate and the action variable a is the investment
decision on whether to invest or not. The above constraint compares the profit rates
of the market when the investor has invested and has not. A high ξ means that the
implicit market feedback mechanism is so weak that the profit rate after investors
have already entered the market is still higher than the hypothetical situation with
no investment. In contrast, when ξ is low, the implicit market feedback mechanism
is so strong that the initially high-profit rate that induces investment is exhausted
after the investors’ entry decision, leading to a very small difference in the resulting
profit rate between entry and exit.

The maximum entropy program with the quantal response action and the feed-
back effect can be written as

max −
∫ ∑

a

P (a, x) log[P (a, x)] dx, (17)

s. t.
∫ ∑

a

P (a, x) dx = 1,∫
P (x)x dx = ψ,∫
P (a = 1, x)x dx−

∫
P (a = 0, x)x dx = ξ,

P (a = 1|x) =
1

1 + e−
x−µ
T

,

where we have also added a mean constraint on the social variable, implying that
there is some reference level of the target social variable, e.g., the economy-wide rate
of profit7. The maximum entropy distribution P ∗(x) is [5]

P ∗(x) =
eHx,µ,T e−β Tanh[ x−µ2T ]xe−κx∑
x e

Hx,µ,T e−β Tanh[ x−µ2T ]xe−κx
, (18)

where

Hx,µ,T = H

(
1

e−
x−µ
T + 1

,
1

e
x−µ
T + 1

)
, (19)

being H(x, y) the joint entropy of x and y, defined as H(x, y) = −
∑
x

∑
y P (x, y)

log[P (x, y)], and where Tanh[α] is the hyperbolic tangent function and can be written

7 See [19] for a detailed discussion on various specifications of QRSE model.
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Fig. 6. QRSE distributions with different parameter values. µ, T , β, and κ parameters
determine the location, the tail behavior, the scale and the skewness, respectively.

as e2α−1
e2α+1 . β is the Lagrangian multiplier of the ξ constraint while κ is the Lagrangian

multiplier of the mean constraint. We call the resulting distribution in (18) the
Quantal Response Statistical Equilibrium distribution (QRSE). Figure 6 shows a
graphical characterization of the QRSE distribution, the marginal distributions of
the social variable x for different parameter values.

Note that µ and β determine the location and the scale, respectively, while T and
κ determine the tail behavior and skewness, respectively. Predictably, µ, as the hurdle
rate of the decision, shifts the distribution. T and β determine the dispersion of the
distribution. A lower T means a more peaked distribution and thus a more occurrence
of the extreme event. Note that the parameter β is inversely related with ξ. Therefore,
smaller β means a higher ξ and thus a weak market response, making the distribution
more dispersed. Finally, the higher κ, the more left-skewed the distribution.

Agent-based simulation

In order to complement the MaxEnt results presented in the previous subsection, let
us now develop an agent-based model based on the same rules of behavior assumed
in the MaxEnt model. In this case, the agent-based equivalent model will enable us
to move beyond the MaxEnt analysis in the sense of easily expanding the model to
take into account heterogeneous agents.

Similar to the previous agent-based example in Section 3, let us study a system
composed by N = 1000 firms, each of them characterized by a binary variable setting
their investment decision in a specific market or sector, ai = {0, 1}, and let āt =∑N
i=1 ai/N be the average action or fraction of firms investing at a given point in

time t. A quantal action with a market feedback mechanism can be easily modeled in
this agent-based setting; however, different models can be defined based on different
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Fig. 7. Distribution of the rate of profit for a fixed market feedback strength α and different
behavior temperatures T (on the left) and for fixed behavior temperature T and different
values of α (on the right).

specifications of the market feedback function. As an example, we will explore here
a feedback function in which the magnitude of the correction on the rate of profit xt
is proportional to the number of new firms entering the market,

xt+1 = xt − α (āt − āt−1)N, (20)

with α being a parameter setting the strength of the market feedback mechanism.
As in the previous agent-based example in Section 3, it is useful to specify the time
evolution of the system as a set of actions and updates to individual and aggregate
state variables taking place at every time step. In particular, let us start by assuming
an initial rate of profit x0. Using the same decision rule for individual firms as in the
MaxEnt example above,

P (ai = 1|xt) =
1

1 + e
µ−xt
T

, (21)

where µ is, as before, the hurdle rate of profit, and using the initial value of the rate
of profit x0, each of the N firms can find its initial probability of investing. Then a
random number is uniformly drawn between 0 and 1 for each firm, who will decide to
invest if this number is below the corresponding probability. Once the new individual
states are computed, an updated value of the rate of profit can be found using (20).
Finally, the following process can be repeated for a number of time steps: a firm
is chosen at random, its new probability of investing is computed, a new random
number is drawn, the firm’s market position is updated accordingly, and a new profit
rate is found8. Note that, since only one firm is updated per time step, the described
process constitutes an asynchronous update mechanism, chosen here in order to avoid
unreasonable profit rate fluctuations and overshootings. Figure 7 shows the resulting
distribution of the profit rate with different behavior temperatures T and different
market feedback strengths α.

8 Note that this is equivalent to a model with two simplified types of agents: fully copying
agents (zero temperature), who always act as the majority, and fully noisy agents (infinite
temperature), who always choose their market position at random. In this alternative setup,
one can always find a fraction of agents of each of these simplified types such that results are
equivalent to the model we study here, this specific fraction depending on our behavioral
temperature.
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Fig. 8. Distributions of different measures of the rate of profit for a fixed market feedback
strength α = 0.01, two types of agents with behavior temperatures T1 = 0.01 and T2 = 10,
and for an initial profit rate below the firms’ hurdle rate (x0 < µ, on the left) and above the
firms’ hurdle rate (x0 > µ, on the right). The dotted line represents the distribution of the
aggregate market profit rate, while the solid and the dashed lines represent the distributions
for the average profit rate for the low (T1) and high-temperature (T2) agents respectively.

The left-hand side plot in Figure 7 shows different distributions of the profit
rate with varying behavior temperature T and constant market feedback strength
α = 0.001, while the right-hand side plot shows the distributions with varying α and
constant T = 1.00. The agent-based model replicates the impact of the temperature
T on the profit distribution that we obtained in the previous subsection with the
MaxEnt model: the higher the behavioral temperature T the more dispersed the
distribution. Curiously enough, the market feedback effect has quite the opposite
impact in the agent-based model. In the MaxEnt, the higher the market feedback
(low ξ and high β), the more peaked the distribution. In the agent-based model,
higher market feedback (high α) leads to a more dispersed distribution. The main
reason behind this difference is that, while the implicit market feedback effect ξ in
the MaxEnt determines the degree of convergence of the profit rate to the central
tendency, the feedback effect α in the agent-based model determines the size of the
market response to the action. Therefore, a higher feedback effect in the agent-based
model can lead to overshooting, and thus to more volatile fluctuations around the
mean and a higher dispersion of the resulting distribution.

As explained above, one of the most significant advantages of agent-based models
is their flexibility and the ease with which they can be extended to take into account
different kinds of heterogeneity. As an illustration, we have extended the previously
described model so as to include two types of agents with different behavior temper-
atures. In particular, we consider a system composed of N/2 agents of type 1, with
behavior temperature T1 = 0.01, and N/2 agents of type 2, with behavior tempera-
ture T2 = 10. In order to understand the effects of this heterogeneity, it is useful to
define the average profit rate of agents of type k at time step t as x̄t,k = āt,k ·xt, where
āt,k is simply the average action of agents of type k at time t. Figure 8 shows the result-
ing distribution of the average profit rate for each type of agent, P (x̄t,1) and P (x̄t,2),
along with the distribution of the profit rate for the whole system of firms, P (xt).

Given that both types of agents have exactly the same probability of investing
when the market rate coincides with the firms’ hurdle rate, xt = µ, and very similar
probabilities around that point, it is more interesting to study the case where both
rates are significantly different. To this end, we initialize the system with two differ-
ent values for the initial rate of profit9, one below the firms’ hurdle rate (left-hand

9 Note that, due to the definition of the market feedback mechanism in (20), the market
rate fluctuates around its initial value.
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side panel in Fig. 8) and the other one above it (right-hand side panel in Fig. 8).
When market rates are below the firms’ hurdle rate, as is the case in the left-hand
side panel, the lower temperature agents rarely invest and therefore they have a very
peaked distribution around zero average profit rate. In contrast, the higher temper-
ature agents randomly invest even when the profit rate is below their hurdle rate
and therefore their average profit rate distribution is centered around a negative
value. When the market profit rate is persistently above the firm’s hurdle rate, the
low-temperature agents almost always invest and exploit the higher profit rate more
often than the higher temperature agents, who invest more randomly. Consequently,
the profit rate distribution of the low-temperature agents has a higher mode. By com-
bining the insights from both plots, we can say that low-temperature agents make
less losses than high-temperature agents when the profit rate is significantly below
the hurdle rate (as in the left-hand side plot), while they make higher profits when
the rate is significantly above the hurdle rate (as in the right-hand side plot). This
is consistent with the fact that low-temperature agents are subject to less informa-
tional uncertainty than low-temperature agents, and thus can make better informed
decisions.

The MaxEnt model of market feedback with heterogeneous agents has not been
explored yet partly due to mathematical difficulty. In this regard, the results of the
agent-based equivalent model presented here can provide important insights for a
potential MaxEnt model extension. First, it is noticeable that the unimodal pattern
of the aggregate distribution stays the same even when two different types of agents
operate in the market and have a completely different realization of their own profit
rate. Heterogeneous levels of behavior temperature determine how often each type
of agent enters the market but does not change the underlying market feedback
mechanism that predominantly determines the unimodal shape of the distribution.
Second, even when a given type of agent has a high behavior temperature, its own
realization of the profit rate can have a narrow dispersion. The second plot in Figure 8
shows that the high temperature agents have a narrower distribution of the realized
profit rate when the market has a persistently positive profit rate. This is due to the
fact that the high-temperature agents do not always respond to a very high expected
profit rate and thus fail to form enough mass on the right tail.

5 Conclusions

This paper examines MaxEnt and agent-based modeling with the aim to show how
these two different analytical tools can complement each other and can provide a
powerful conceptual/empirical tool for the analysis of complex economic problems.
We argued that the MaxEnt approach is particularly useful in understanding the
qualitative properties of systems in quasi-equilibrium due to its closed-form solutions,
which could serve as guidance to developing first-approximation agent-based models.
In contrast, agent-based modeling is highly flexible and can easily accommodate a
wide choice of behavioral and institutional assumptions due to its simulation-based
approach. In this regard, an agent-based model can be implemented based on a
MaxEnt model and provide a richer picture of the latter model, potentially guiding
further extensions.

We have demonstrated the complementarity of MaxEnt and agent-based model-
ing using two simple economic models: a quantal response social interaction model
and a market feedback model. In illustrating each of them, we have first derived
the statistical equilibrium using the MaxEnt approach, after which an agent-based
version of the model has been implemented. In particular, we have highlighted the
capabilities of agent-based modeling for tracking irreversible and out-of-equilibrium
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dynamic processes, using the social interaction case as an example, as well as for
exploring the consequences of agent heterogeneity, using the market feedback model
as an example.

One limitation of this paper is that we do not show how MaxEnt and ABM,
when combined together, can enable us to better understand empirical data. This
is particularly important, since methodological strengths become more meaningful
when they provide useful insights into data. However, a detailed exposure of the
empirical aspects of this complementarity is beyond the scope of this paper, and we
will thus leave it for future research.
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