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Abstract. We explore sequential escape behaviour of coupled bistable
systems under the influence of stochastic perturbations. We consider
transient escapes from a marginally stable “quiescent” equilibrium to
a more stable “active” equilibrium. The presence of coupling intro-
duces dependence between the escape processes: for diffusive coupling
there is a strongly coupled limit (fast domino regime) where the escapes
are strongly synchronised while for intermediate coupling (slow domino
regime) without partially escaped stable states, there is still a delayed
effect. These regimes can be associated with bifurcations of equilibria
in the low-noise limit. In this paper, we consider a localized form of
non-diffusive (i.e. pulse-like) coupling and find similar changes in the
distribution of escape times with coupling strength. However, we find
transition to a slow domino regime that is not associated with any bifur-
cations of equilibria. We show that this transition can be understood
as a codimension-one saddle connection bifurcation for the low-noise
limit. At transition, the most likely escape path from one attractor hits
the escape saddle from the basin of another partially escaped attractor.
After this bifurcation, we find increasing coefficient of variation of the
subsequent escape times.

1 Introduction: sequential escapes on networks

Stochastic dynamical systems are often used to describe the behaviour of physical sys-
tems where detailed fast chaotic (e.g. thermal) processes are replaced by an idealised
stochastic term. The stochastic perturbations (noise) can lead to escape of the system
from a state that is stable at a distribution of times that depends on the deterministic
dynamics and the amplitude and nature of the noise. This approach was pioneered
in the theromodynamics of chemical reactions by Eyring and Kramers [1] and has
since found applications in a wide range of physical, biological, medical, chemical
and engineering applications: see for example references in [2–4]. In particular, the
powerful theory of escape times of Friedlin and Wentzell [5] quantifies asymptotical
properties of these escapes using large deviations of stochastic processes in the limit
of low noise, see also [6,7].
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If we focus on problems where the escape is a transient, rather than a recurrent
process (such as for cell-line differentiation in developmental biology [8]), we can
think of the escape process as irreversible and ignore returns. This is the case for
stochastically perturbed bistable systems in the case where we start in a “shallow”
(we call quiescent) attractor and escape to a “deep” (we call active) attractor where
the potential barrier to escape from the quiescent state is much less than for the
active state (in fact, the barrier height differences can be quite small and still lead
to vast differences in mean escape time for the low noise limit). We will work in this
regime where return escape rates are extremely slow and can be ignored.

An extensive literature has considered stochastic resonance [7] between the escape
timescales and other timescales within e.g. forcing of the system. Many authors have
looked at the problem of coupled escapes, for example [9–13] and in particular in the
case of local non-diffusive (i.e. pulse-like) coupling [14–16]. Pulse-coupled systems
are characterised by exchanging localised in phase space pulse-like signals. Such sys-
tems have found wide applications in biology, e.g. populations of synaptically coupled
neurones, flashing fireflies, claps of applauding audiences [17–19] as well as engi-
neering, e.g. wireless sensor networks, impulsive control, swarm robotics and smart
materials [20–23]. Their importance has motivated numerous studies predominantly
focussing on understanding the basic synchronisation properties of networks of pulse-
coupled oscillators [17–22,24]. Here, we consider a state-triggered interaction between
bistable units, that is essentially a form of pulse-like coupling, in the presence of noise
(stochastic perturbations) and study the escape times dynamics of the nodes in such
networks.

Consider a number of identical and uncoupled systems in quiescent state per-
turbed by independent and identically distributed (i.i.d.) low noise processes. In this
case, we expect the escapes to occur independently and in random order: the sequence
of escapes is a random variable assigning the same probability to each sequence, and
the distributions of times of first, second, and nth escape will clearly be independent
of the sequence. We expect the escapes to occur via visits to partially escaped states
of the full system until all have escaped.

In a recent paper [2], we highlighted three qualitative regimes that appear for
diffusively coupled asymmetric bistable systems as the coupling strength β > 0 is
increased: we analyse these effects in detail for a model of epileptic seizure generation
in [25]. The regimes can be thought of as emergent phenomena of the noise-perturbed
system. For small β there is a weak coupling regime where there is continuation of
all partially escaped states, and the system is well described by a random sequence
that does not necessarily assign the same probability to all sequences – there can be
preferred sequences of escape, and the distribution of times of escape may depend on
this sequence. For large β there is a fast domino regime of synchronised escapes: the
most likely escape path is synchronised and there are no longer any partially escaped
attractors. The most interesting, intermediate, range of β is the slow domino regime
where some or all of the partially escaped attractors are destroyed but the most likely
escape path is not synchronised – this can lead to large but deterministic delays as a
domino is deterministically committed to escape but slowly “topples”.

As in [2] we consider a network of asymmetric bistable systems that evolve
according to the Itô stochastic differential equation

dxi =

f(xi, ν) + β
∑
j∈Ni

h(xi, xj)

 dt+ αdwi (1)

where Ni are the neighbours that provide inputs to node i, β the coupling strength,
α the strength of the additive noise and wi are the standard independent Wiener



Advances in Nonlinear Dynamics of Complex Networks 1093

processes. The individual systems for x ∈ R are of the form

ẋ = f(x, ν) := −(x− 1)(x2 − ν) (2)

so that f = −V ′(x) and V (x) := 1
4x

4 − 1
3x

3 + ν(x − 1
2x

2). For 0 < ν � 1 there
is an attractor at x = xQ := −

√
ν (the “quiescent” attractor) and an attractor at

x = xA := 1 (the “active” attractor) separated by an unstable equilibrium at x =
xS :=

√
ν, such that the potential has a global minimum xA and a local minimum at

xQ.
The case studied in [2] corresponds to choosing a diffusive coupling function

h(xi, xj) = (xj − xi) (3)

where the coupling effect is assumed to be linear with difference in state. In this
paper, we examine a similar scenario for coupled transient escapes as in [2] but with
a non-diffusive coupling that is localised in phase space. Specifically, we examine the
influence of a non-diffusive coupling of Gaussian form

h(xi, xj) = H(xj) :=
1

σ
√
π

exp

[
− (xj − xc)2

σ2

]
, (4)

which gives a localised coupling from xj independent of xi, and acts primarily when
xj is within σ of the location of the maximum xc. For this coupling we find no
bifurcations of equilibria on increasing β to moderate values but still apparently there
is a transition from weak coupling to slow domino regime. Section 2 discusses a simple
example of two coupled systems of this form and highlights the change in distribution
of escape times on increasing β. In Section 3, we show that this can be explained in
terms of a global saddle connection bifurcation. This shows that destruction of the
partially escaped attractors is sufficient, but not necessary, for onset of a slow domino
regime. In Section 4, we discuss the effect of symmetry breaking on sequential escape
using a simple example of 3 units in a unidirectionally coupled chain. We finish with
a discussion in Section 5.

2 Local non-diffusive coupling of two bistable systems

Consider the special case of (1) for N = 2 and coupling (4), namely

dx1 =
[
f(x1, ν) + βH(x2)

]
dt+ αdw1

dx2 =
[
f(x2, ν) + βH(x1)

]
dt+ αdw2. (5)

For α = β = 0 the system (5) has stable equilibria at xQQ = (xQ, xQ) and xAA =
(xA, xA) as well as partially escaped stable states at xQA and xAQ. Finally there
are saddles at xSQ, xSA, xQS , xAS and a source at xSS . Note, in the limit σ → 0,
the bidirectional coupling affects only a small neighbourhood of the lines {(x, xc)} ∪
{(xc, x)} in this case, for N = 2. If we choose default parameters

ν = 0.01, xc = 0.5, σ = 0.1 (6)



1094 The European Physical Journal Special Topics

Fig. 1. Behaviour of the system for varying β and ν = 0.01. Stable equilibria are denoted •
(xQQ, xQA, xAQ, xAA), saddles N (xQS , xSQ, xAS , xSA) and repellor � (xSS). The red lines
are the unstable manifolds of saddles. Contours show V (x1) + V (x2): this is a potential for
the uncoupled and noise-free case, and a Lyapunov function for the more general noise- free
case β > 0. In each case, two realisations are shown (yellow and green) for α = 0.02 that
escape from xQQ (bottom left) to xAA (top right). In the bottom, left case β = 0.02 close
to the saddle connection, note that one trajectory gets trapped in a partially escaped state
while the other avoids it.

and vary β we find very little change in the bifurcation diagram even for extremely
large β > 0: this is because the coupling terms evaluate to

max
{
H(xQ), H(xA), H(xS)

}
< 10−6

which means β must be of order 106 to find a local bifurcation of these states. However,
there is a saddle connection from xQS to xSA for β = βsc ≈ 0.024 as can be seen in
Figure 1. This figure illustrates the dynamics for this system, starting at (xQ, xQ) for
varying values of β with noise α = 0.01. For the noise-free case the unstable manifolds
of xQS and xSQ can be seen to lie in the basin of xQA and xAQ for β < βsc but in
the basin of xAA for β > βsc.
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Fig. 2. Histograms showing changing distributions of first and second escapes on varying
β. The distribution of τ1|0 does not change much with increasing β; note the scale on the
y-axis increases with β. The distribution of τ2|1 changes as β increases and for β = 0.03 the
second escape time for most simulations is in the smallest bin.

The sequential escape problem involves global dynamics: as in [2,25] we consider
the initial state where xi = xQ for all i and pick a threshold h such that xS < h < xA.
We define the escape time of the ith system to be

τ (i) = inf
{
t > 0 : xi(t) ≥ h

}
.

This is a random variable that depends on system parameters, noise level, network
structure and noise realisation. Note that with probability one there is a random
permutation (sequence) s such that τ (i) < τ (i+1) for i = 1, . . . , N − 1. We use this to
define the time of kth escape

τk = τ (s(k))

and τk|l = τk − τ l > 0 for any 0 ≤ l ≤ k ≤ N : we define τ0 = 0. Figure 2 shows the
distributions of the first τ1|0 and second τ2|1 escape times in the two node system. The
histograms are calculated from 1000 realisations of (5) with parameters (6) using the
stochastic Heun method with timestep 0.001, with α = 0.02 and escape threshhold
h = 0.8. Figure 2 shows a clear change in the distribution of second escape time on
varying β, even though the first escape time is unaffected.
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Fig. 3. Changing mean escape times E(τk|l) and CV(τk|l) on varying β. For β < 0.015

the second mean escape times E(τ2|1) ≈ 2E(τ1|0), with similar CV values, consistent with

uncoupled or weakly coupled behaviour. The mean second escape time E(τ2|1) drops quickly

and CV(τ2|1) increases exponentially as β increases. The first and second mean escape times
cross very close to the moment of the saddle connection (black line).

As in [2] we define E(τk|l) to be the mean of τk|l, SD(τk|l) the standard deviation
and

CV
(
τk|l
)

= SD
(
τk|l
)/

E
(
τk|l
)

the coefficient of variation. In the case of an exponential (memoryless) distribution
of τ > 0 note that CV(τ) ≈ 1.

We numerically calculate E(τk|l) and CV(τk|l) from 1000 realisations using the
stochastic Heun method as before. Figure 3 shows a clear change in the second escape
E(τ2|1) and CV(τ2|1) on varying β, and note again that the mean first escape time
E(τ1|0) and CV(τ1|0) are unaffected.

One can understand the emergent properties of the sequential escape probabilities
in terms of random Kramers escape from basins of attraction, with corresponding
asymptotic exponential escape rates [5,7]. This description breaks down for larger
coupling in that some escape processes can become predominantly deterministic
(corresponding to a small coefficient of variation), or a mixture between processes.

Friedlin–Wenztell theory [5] characterises that the most likely escape paths from
a given stable equilibrium to the next, correspond to trajectories that minimise an
action integral between one equilibrium and the next: this can be used to define a
quasipotential within the basin of the first equilibrium. These trajectories typically
first have a diffusion dominated phase where they remain most of the time within
the first basin until they find a gate [6], i.e. a saddle on the basin boundary with the
lowest quasipotential. After crossing the gate the trajectory is in a drift dominated
phase and will follow a branch of the unstable manifold of the saddle with a rapid
motion into the basin of the next equilibrium. Note that in the case of a saddle
connection, the action minimising path corresponding to escape from xQQ limits to
a gate whilst remaining in a drift dominated phase. On either side of this the usual
scenario applies for the escape from xQQ to xAA, however the estimates of escape
times will not be uniformly valid on varying β through such a connection.

Note that this description is asymptotic for α→ 0. As discussed in [2] the coupling
can change the basin of attraction and new gates may bifurcate. In the case of finite
α and several possible saddles, the trajectory may escape via a gate with a higher
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quasipotential on occasion and this can result in a different sequence of escapes. For
finite α > 0 near the bifurcation this will result in an escape time distribution that
is a combination of those for the various possible escape routes.

3 Saddle connections and onset of weak domino regime

On varying the coupling strength β for (1) with coupling (4) and parameters (6) we
illustrate the noise-free phase portraits in Figure 1. Note that, even though there
are no apparent changes in the location or stability of the equilibria (or indeed the
dynamics associated with the first escape) there is a qualitative change in the unsta-
ble manifolds of the equilibria xSQ and xQS . Numerically, one can verify that such
a saddle connection in the system appears at β = βsc ∈ (0.024, 0.025), verified by
computations similar to those shown in Figure 1.

We can find the critical coupling strength βsc for (1) with coupling (4) for the case
of the limiting width of interaction σ → 0: note that this corresponds to infinitesimally
narrow pulse-like interaction between the units. More precisely, consider a small d > 0
and suppose that a trajectory passes from x2 = xc−d to x2 = xc +d at a point where
ẋ2 = µ > 0 at time t = 0. In this region, we have approximately x2 = xc +µt+O(t2).
Hence, the main contribution to the change in x1 will come from coupling and be

∆x1 ≈
∫ ∞
−∞

β H(xc + µt) dt =
β

µ
.

Hence, there will be a saddle connection from xQS to xSA if ∆x1 ≈ 2
√
ν, i.e. if

βsc ≈ 2µ
√
ν

in the limit σ → 0. Putting in the default parameters (6) we have µ = f(xc, ν) = 0.120
and so asymptotically βsc ≈ 0.024. Comparing to the numerical value approximation,
this is in close agreement, even for the moderate value σ = 0.1.

The distribution of second escape times τ = τ2|1 deviates significantly from memo-
ryless in the case of larger β: see Figure 3. This is due to there being two very different
routes for the second escape. In particular for β comparable or larger than βsc there
will be a probability 0 < P < 1 of trajectory after first escape entering the basin of
attraction of the partially escaped state xQA or xAQ. If it enters this basin, it will
escape according to the usual Kramers asymptotics for weak noise. Let τ0 denote the
escape times where it is not captured, and τ1 the escape times where it is captured.
One can compute the mean of the second escape as E(τ) = (1 − P )E(τ0) + PE(τ1)

and its standard deviation SD(τ) =
√

(1− P )E(τ20 ) + PE(τ21 ), but note that the
coefficient of variation CV(τ) = SD(τ)/E(τ) has nonlinear dependence on P .

4 Three systems with localised non-diffusive unidirectional
coupling

The system of two bi-directionally coupled bistable units (5) cannot show emergence
of different sequential behaviours of escape, because of permutation symmetry. As
a simple example where nontrival sequential behaviour does appear, we briefly con-
sider an analogous system to one considered in [2] namely sequential escapes in a
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Fig. 4. Distributions of sequential escapes for the unidirectional chain of three coupled
systems (7) with non-diffusive coupling (4). Computed using 1000 realisations; other details
as for the two node case. Observe the distribution of the escape times of the nodes (top
left) progressively becomes longer for higher β. The sequential escape time distributions
(bottom) are shown as “violin plots” where the red vertical bar indicates mean and the red
horizontal bar shows ± one standard deviation. The probability of seeing certain sequences
(top right) shows that for larger coupling, β = 0.03 > βc, the sequences (3, 1, 2) and (2, 3, 1)
become much less frequent owing to saddle connection bifurcations in the noise-free system.

unidirectional coupled chain of three units:

dx1 =
[
f(x1, ν) + βH(x2)

]
dt+ αdw1

dx2 =
[
f(x2, ν) + βH(x3)

]
dt+ αdw2 (7)

dx3 =
[
f(x3, ν)

]
dt+ αdw3

with xi ∈ R, f as in (2), H as in (4) and default parameters (6). The coupling
parameter β > 0 creates unidirectional forcing on the chain while α modulates the
noise level of the standard Wiener processes wi. Note that the system considered in
[2] had diffusive coupling. In other words, tipping of the third unit affects the second,
which in turn affects the first. For the non-diffusive coupling (4) we find changes in
the relative frequencies of sequences that are quite marked: see Figure 4.

The diagram in Figure 5 illustrates for β > βc the appearance of fast sequences
of escapes due to the coupling creating saddle-connections that bypass metastable
attractors. Note that since the systems are effectively uncoupled except when one
is undergoing a transition, the saddle connections occur at βc ≈ 0.024 for (7) with
standard parameters (6). The red arrows on this figure show the fast transitions
visible in the sequential escape times shown in Figure 4. These rapid escapes greatly
reduce the probability of taking one of the routes (3, 1, 2) and (2, 3, 1).
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Fig. 5. Schematic diagram showing possible sequences of escapes for the unidirectional
chain of three coupled systems (7) coupled with 3 7→ 2 7→ 1 and non-diffusive coupling. For
the case β = 0.03 > βc there are fast sequence of escapes (shown by red arrows) that greatly
reduce the chance of seeing the sequences (3, 1, 2) and (2, 3, 1) (see Fig. 4).

5 Discussion

Varying other coupling parameters we will find other regimes, in particular if σ is
large or xc close to one of the equilibrium values xQ,S,A the coupling can lead to
bifurcation of equilibria for moderate values of β, not just saddle connections. In
other words, the transition is associated with the most likely escape path from one
attractor (corresponding to the unstable manifold of a separating saddle/gate) hitting
the gate for a partially escaped attractor. For example, taking a coupling that mixes
both diffusive and localised coupling, we expect that the saddle-node and pitchfork
bifurcations, noted in [2] as organizing the transition from weak coupling to slow and
fast domino regimes, may interact with the saddle connection in a complex manner.
It will be interesting to understand the distributions of escape times that appear in
such cases of competition between different escape routes.

Note that we do not rule out the possibility of a transition to slow domino via
a saddle connection, even for linear diffusive coupling. Although we do not find this
for the system (1,2) with linear coupling (3), it may well occur at β smaller than
that needed for the first bifurcation of equilibria in systems that have more complex
potentials V (x), or with more general types of coupling.

As noted previously, sequential escape problems are of relevance to modelling a
wide range of problems ranging from epileptogenesis [25] to cell differentiation [8].
In this paper, we describe a novel type of emergent behaviour in sequential escapes
of coupled systems, associated with a global saddle connection bifurcation. We find
changes in the probabilities of seeing certain sequences realised, and changes in the
distributions of escape times. It would be good to get a better quantitative under-
standing of how properties of the escape time distributions (such as coefficient of
variation) change on passing through this bifurcation. More specifically, in [2] we
associated the onset of slow domino regime with the emergence of deterministic
escapes and a reduction in CV of the second escape. For the case studied here,
the CV apparently increases owing to the mixing of the trapped and non-trapped
distributions.

For higher dimensional systems, separating saddles/gates with one-dimensional
unstable manifolds should remain of critical importance for understanding the regimes
of sequential escape behaviour in the case of varying one coupling parameter. This is
because they divide the phase space into basins of attraction from which noise can
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induce escape. Qualitative regimes of escape from bistable systems with more complex
separating invariant sets will also appear at saddle connections between these more
complex sets.
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