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Abstract. We study Tan’s contact, i.e. the coefficient of the high-
momentum tails of the momentum distribution at leading order, for
an interacting one-dimensional Bose gas subjected to a harmonic
confinement. Using a strong-coupling systematic expansion of the
ground-state energy of the homogeneous system stemming from the
Bethe-Ansatz solution, together with the local-density approximation,
we obtain the strong-coupling expansion for Tan’s contact of the har-
monically trapped gas. Also, we use a very accurate conjecture for the
ground-state energy of the homogeneous system to obtain an approx-
imate expression for Tan’s contact for arbitrary interaction strength,
thus estimating the accuracy of the strong-coupling expansion.Our
results are relevant for ongoing experiments with ultracold atomic
gases.

1 Introduction

Continuous experimental progresses in trapping and cooling atomic gases have led to
the realization of one-dimensional (1D) geometries, the observation of the effect of
quantum fluctuations [1,2], and the reach of the strongly correlated, Tonks-Girardeau
regime [3,4], where many of the properties of bosons are the same as those of free
fermions [5]. Several physical properties have been experimentally studied, e.g. the
density profiles [3], the two- and three-body correlation functions [6,7], the collective
excitation spectrum [8,9], and transport of an impurity in a 1D gas [10] (see e.g. [11]
for a comprehensive review).
One of the most common experimental observables is the momentum distribution.

This quantity embeds the one-body properties of the gas, in particular it corresponds
to the Fourier transform of the one-body density matrix, yielding information on the
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first-order spatial coherence of the gas. At zero temperature, an interacting 1D Bose
gas is predicted to display quasi-off-diagonal long-range order, i.e. an algebraic decay
of the one-body density matrix at large distances [12]. High-precision measurements
of the momentum distribution are becoming available [13], calling for new theoretical
developments.
Recent experimental studies allow to access in particular the high-momentum

region of the momentum distribution [14,15]. The high-momentum tails of the
momentum distribution n(k) of a gas with contact interactions display a univer-
sal n(k) ∝ 1/k4 decay [16,17], which originates from the zero-range interaction
potential: bosons with contact interactions have a cusp in the many-body wavefunc-
tion whenever the relative distance of each pair of particles vanishes. This implies
a non-analyticity in the one-body density matrix at short distances, in the form
ρ1(x) ∼ |x|3, which leads to the high-momentum tails.
The weight of the momentum distribution tails, known as Tan’s contact, is an

important two-body quantity, related to various physical observables, such as the
interaction energy, the two-body correlation function at zero distance, the rf-
spectroscopy, through Tan’s relations [18–23]. For a homogeneous 1D Bose gas, Tan’s
contact at zero temperature can be obtained exactly using the Bethe Ansatz solution
for the ground-state energy [17,24,25]. In the experiments, ultracold atomic gases are
kept together by an external trap, which is in most cases a harmonic confinement.
Tan’s contact of an interacting one-dimensional Bose gas under harmonic confine-
ment has been first studied in reference [17], where a numerical solution based on
the local-density approximation (LDA) of the homogeneous-system result has been
provided. Analytically, again in the local-density approximation, a strong-coupling ex-
pansion has been derived to zeroth order [17], as well as corrections to first and second
order [26]. A comparison with matrix-product state simulations has shown that the
local-density approximation works surprisingly well [26], even for a small number of
particles.
The study of the equation of state of an interacting 1D Bose gas has received a

renewed attention [25,27]. In particular, in reference [25] we have derived a strong-
coupling expansion for the ground-state energy to an unprecedented accuracy as well
as a conjectural expression which is extremely close to the exact numerical solution
for a wide range of interaction strengths. Using the above results combined with the
local-density approximation, in this work we propose a method to obtain the strong-
coupling expansion for Tan’s contact of a 1D Bose gas under harmonic confinement
to arbitrary order. We also use the conjecture for the ground-state energy to obtain
Tan’s contact for all interaction regimes, from weak to strong coupling, as well as the
lowest-order term in the weak-coupling expansion.

2 Local-density approximation for Tan’s contact of a 1D Bose gas

We consider N bosonic atoms of mass m at zero temperature, confined by a tight
atomic waveguide to a one-dimensional geometry. The atoms interact via a contact
potential v(x− x′) = gδ(x− x′), where g is the one-dimensional interaction constant,
related to the three-dimensional scattering length of the atoms [28]. In the longitu-
dinal direction the atoms are further confined by an external harmonic confinement
Vext(x) = mω

2
0x
2/2, describing the optical or magnetic trapping present in the exper-

iments with ultracold atoms. The Hamiltonian of the system reads

H =

N∑

j=1

⎡

⎣−�2
2m

∂2

∂x2j
+ Vext(xj) + g

∑

�>j

δ(xj − x�)
⎤

⎦ . (1)
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In the homogeneous system, the interaction strength is measured in terms of the
dimensionless parameter γ = mg/(�2ρ), where ρ is the average linear density of the
homogeneous gas. In the case of harmonic confinement, introducing the harmonic-
oscillator length aho=

√
�/(mω0) and the one-dimensional scattering length a1D =

−2�2/(gm), the corresponding dimensionless parameter is α0 = 2aho/(|a1D|
√
N) [29].

According to Tan’s sweep relation, Tan’s contact in 1D is related to the ground-
state energy E of the gas according to [30]

C = −m
2

π�4
∂E

∂(1/g)
. (2)

In order to determine Tan’s contact of the harmonically-confined gas, we employ the
density-functional approach developed in [26]. In detail, we define a functional E[ρ]
of the density ρ(x) which, in the local-density approximation, reads

E[ρ] =

∫
dx [ε(ρ) + (Vext(x)− μ)ρ(x)] , (3)

where ε is the ground-state energy density of the homogeneous gas. The ground-state
density profile is obtained by minimizing the energy functional, i.e. setting δE/δρ=0.
This yields an implicit equation for the density profile,

3

2

�
2

m
ρ2e(γ)− gρ

2

∂e

∂γ
= μ− Vext(x) = μ

(
1− x2

R2TF

)
, (4)

where RTF =
√
2μ/(mω20) is the Thomas-Fermi radius in a harmonic trap, and the

dimensionless average ground-state energy per particle e is such that ε(ρ)= �
2

2mρ
3e(γ).

The chemical potential μ is fixed by imposing the normalization condition N =∫
dx ρ(x).
Combining equations (2) and (3), together with the inhomogeneous density pro-

file (4), we obtain Tan’s contact within the LDA:

CLDA = g
2 m

2

2π�4

∫
dx ρ2(x)

∂e

∂γ

∣∣∣∣
ρ=ρ(x)

. (5)

This expression readily generalizes the known result for the homogeneous system (see
e.g. Ref. [31]):

C = g2
m2

2π�4
Lρ2
∂e

∂γ
. (6)

In practice, since e(γ) is not known analytically for the Lieb-Liniger model, one needs
to rely on an approximation scheme to obtain Tan’s contact in the homogeneous case,
and in the trap within the LDA. We proceed by detailing procedures based on various
approximations that allow, in principle, to reach excellent accuracy over the whole
interaction range.

3 Scaling relations and methods

In this section, we combine the various relations obtained above to systematically
compute Tan’s contact with increasing accuracy. For the energy density ε(ρ), we take
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the solution stemming from the Lieb-Liniger Bethe Ansatz solution, and use various
schemes to estimate e(γ), i.e. a strong-coupling expansion

e(γ) =

+∞∑

k=0

ak

γk
, (7)

where {ak}k≥0 = {π2/3,−4π2/3, 4π2, . . . } is currently known up to order 20 [25], as
well as the conjecture

e(γ) =
γ2

3

+∞∑

k=0

π2k+2Pk(γ)

(2 + γ)3k+2
, (8)

where {Pk(X)}k≥0 = {1, 3215 ,− 9635X + 848315 , . . . } are polynomials explicitly known up
to order 6 [25]. Expression (8) is very close to the exact numerical Bethe Ansatz
solution for a wide range of interaction strengths. It is also a priori possible to rely
on a conjectural expansion in the weakly-interacting regime,

e(γ) =
+∞∑

k=0

a′kγ
1+k/2, (9)

where {a′k}k≥0 = {1,− 4
3π ,

1
6− 1

π2
, . . . } is analytically known up to second order at the

time being [32]. Higher-order terms were obtained numerically in a very recent work
and the exact value of a few of them has been guessed [33].

3.1 Strong-coupling expansion for Tan’s contact

We first derive the strong-coupling expansion of Tan’s contact for a harmonically
trapped gas, based on the strong-coupling expansion equation (7) for the ground
state-energy of the homogeneous system. Combining equation (4), the normalization

condition, and the relation g=�ω0aho
√
Nα0, the natural rescaled variables are ρ ≡

ρ aho/
√
N , μ ≡ μ/(N�ω0) and x ≡ x/RTF , whereupon we obtain the following set of

equations:

1

2

+∞∑

k=0

Ak

αk0
ρk+2(x, α0) = (1− x2)μ(α0), (10)

where Ak ≡ (k + 3)ak, and also

1=
√
2μ

∫ 1

−1
dx ρ(x). (11)

A straightforward approach to solve the above equations proceeds as follows. One
truncates the series in equation (10) to order n. Using the values for the coefficients
{ak}k≤n from equation (7), one can express ρ as the root of a (n+2)th–degree poly-
nomial as a function of μ and inject into equation (11) to find μ, and thus ρ explicitly,
consistently to order n by expanding the obtained solution in 1/α0. This approach,
when carried analytically, suffers from two major drawbacks. First, it is limited to
n = 2 since in general, polynomials of order strictly higher than 4 can not be solved
by radicals. Second, among the n possible solutions, one has to select the physical
one. Using Cardan’s method for n = 1 and Ferrari’s method for n = 2, putting the
roots of the polynomials in a trigonometric form for simplicity, we have used this
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approach to compute the strong-coupling expansion of Tan’s contact to second order
in 1/α0. This has also been useful to benchmark the more general method described
just below.
In order to obtain higher-order terms in the strong-coupling expansion, we have

developed a more efficient procedure, which allows to systematically compute the
expansion of Tan’s contact to arbitrary order. The latter relies on the following

expansions: μ =
∑+∞
k=0

ck
αk0
, and ρ(x) =

∑+∞
j=0

bj

αj0
fj(x), where {fj}j≥0 is a set of un-

known functions, injected into equations (10, 11). By analysis, we find that the con-

sistency condition at a given order converts into bjfj(x) =
∑j
m=0 bmj(1− x2)(m+1)/2,

where {bmj} are unkwown coefficients of an upper triangular matrix. Then, synthesis
yields:

1

2

+∞∑

k=0

Ak

αk0

⎛

⎝
+∞∑

j=0

1

αj0

j∑

m=0

bmj(1− x2)(m+1)/2
⎞

⎠
k+2

=
(
1− x2)

+∞∑

k=0

ck

αk0
(12)

and

1 = 32

+∞∑

k=0

ck

αk0

⎡

⎣
+∞∑

j=0

1

αj0

j∑

m=0

bmj2
mB

(
m+ 3

2
,
m+ 3

2

)⎤

⎦
2

, (13)

where B is the Euler Beta function. Equations (12) and (13) are the final set of equa-
tions. As can be seen, solving the system truncated to order n requires the solution
at all lower orders, thus the procedure becomes increasingly lengthy. Moreover, at
each step equation (12) splits into n+1 independent equations, obtained by equating

the coefficients of (1− x2)(1+m)/2m=0,...,n in the LHS and RHS. One thus needs to solve a

system of n+2 equations to obtain cn and {bmn}m=0,...,n, but fortunately, n of them,
giving bmj , m ≥ 1, are fully decoupled.
As a final step, using equation (5), we obtain Tan’s contact. In natural units

imposed by the scaling, i.e. taking CLDA = CLDAa
3
ho/N

5/2, we have

CLDA= − 1

π
√
2

√√√√
+∞∑

k′=0

ck′

αk
′
0

+∞∑

k=0

Bk

αk0

∫ 1

−1
dx

⎛

⎝
+∞∑

j=0

1

αj0

j∑

m=0

bmj(1− x2)(m+1)/2
⎞

⎠
k+4

, (14)

where Bk=(k+1)ak+1. Note that the value is positive because a1<0. At order n, the
condition k′ + k + j′ = n, where j′ is the power of α0 in the integrand, shows that
the coefficient of order n is a sum of

(
n+2
n

)
integrals. One of them involves an+1, so

one needs to know the function e(γ) to order n+1 in 1/γ to obtain the expansion of
the Tan’s contact to order n in 1/α0.

3.2 Tan’s contact at arbitrary interactions from the conjecture

To check the validity of the strong-coupling method, we have derived another
resolution scheme, from equation (8). After rescaling and straightforward algebra,
one obtains the mixed form

α20
6

+∞∑

k=0

π2k+2

(γ + 2)3k+3
[(γ + 2)Pk(γ)− γ(γ + 2)P ′k(γ) + 3k + 2] = μ(α0)(1− x2). (15)
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Once truncated at order n, it yields a polynomial in 1/(γ + 2) whose roots are found
numerically. We proceed as follows. We start from a guessing value of μ and from
equation (15) we obtain ρ(μ, x). We integrate the density and we use the difference
N − ∫ ρ dx as control parameter of the accuracy of the initial value for μ. A findroot
subroutine exploits this contol parameter to converge to the μ value that ensures the
density normalization to N bosons. Once the correct density is computed, we get
CLDA from equation (5).

3.3 Weak-coupling expansion for Tan’s contact

At weak iteractions, we derive an expression for Tan’s contact using the weak-coupling
expansion equation (9). Using the same notations as above, we obtain

+∞∑

k=0

a′k
4
(4− k)ρ 2−k2 (x, α0)α

k+2
2
0 =

(
1− x2)μ(α0). (16)

On the other hand, the normalization condition is given by equation (11) as before.
Here, it is not obvious to what order one should truncate the expressions to obtain
a consistent expansion at given order, nor to find the variable in which to expand,
as can be seen by evaluating the first orders. Considering only the k=0 term in the

sum, one easily finds ρ(x) = (9/32)
1/3
(1− x2)/α1/30 and μ(α0) = (9/32)

1/3
α
2/3
0 . The

expansion to next order is problematic. If one retains terms up to k=1, corresponding
to the Bogoliubov approximation, since the coefficient a′1 is negative, the equation of
state at sufficiently large density becomes negative [24]. Then it is not possible to
use it to perform the local-density approximation. One may also recall that the local-
density approximation breaks down at very weak interactions, where it is not accurate
to neglect the quantum tails in the density profile. In this regime, a different scaling
parameter becomes relevant [34,35].

4 Results for Tan’s contact

Following the approach presented in Section 3.1, the strong-coupling expansion reads:

CLDA =
128
√
2

45π3
+
1

α0

(
−8192
81π5

+
70

9π3

)
+

√
2

α20

(
131072

81π7
− 30656
189π5

− 4096
525π3

)

+
1

α30

(
−335544320
6561π9

+
4407296

729π7
+
872701

2025π5
− 112
3π3

)

+

√
2

α40

(
47982837760

59049π11
− 717291520
6561π9

− 108494512
10935π7

+
2112512

1701π5
+
65536

2205π3

)
.

(17)

This expression agrees with the zero order one obtained in [17] and with the one
derived for a κ-component balanced spinful Fermi gas in [26] to order 2: in fact one
may find the bosonic result by taking the limit of very large number of fermionic
components κ→∞ [36].
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Fig. 1. Scaled Tan’s contact for a 1D Bose gas (in units of N5/2/a3ho) as a function of the
dimensionless interaction strength α0/2 = aho/(|a1D|

√
N). Results from the strong-coupling

expansion (17): Tonks-Girardeau (horizontal long-dashed line, black), 1st order correction
(long dashed, cyan), 2nd order correction (short-dashed, purple), 3rd order correction (dot-
ted, light blue), 4th order correction (dot-dashed, dark blue). Results at arbitrary interac-
tions: conjecture (8) to order six (blue dots), exact equation of state (data from Ref. [17],
continuous, blue). We also show the weak-coupling expansion (18) (double dashed, green).

The weak-coupling expansion obtained from Section 3.3 reads:

CLDA =
1

5π

(
3

2

)2/3
α
5/3
0 , (18)

in agreement with [17].
Figure 1 summarizes our results for Tan’s contact. Notice that, although the con-

tact is scaled by the overall factor N5/2/a3ho, it still depends on the number of particles

through the factor α0/2 = aho/|a1D|
√
N . First, we notice that the results based on

the conjecture are extremely close to the ones obtained from the full solution of the
Bethe-Ansatz equation of state in reference [17]. Second, by comparing the strong-
coupling expansion with the results of the full calculation, we notice that the expan-
sion (17) is valid down to α0/2 	 3, and provides an useful analytical expression for
Tan’s contact in harmonic trap. In order to accurately describe the regime of lower
interactions one would need a considerable number of terms in the strong-coupling
expansion. The same is true for the series expansion for the ground-state energy of the
homogenenous gas [25]. The use of the conjecture (8) is then a valuable alternative
with respect to solving numerically the Bethe-Ansatz integral equations, the weak
coupling expansion being applicable only for very weak interactions α0/2 	 0.05.

5 Conclusions and outlook

In conclusion, in this work we have determined Tan’s contact for a harmonically-
trapped 1D Bose gas. In particular, using an asymptotic expansion of the ground-
state energy of the homogeneous system and the local-density approximation, we
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have developed a general method to obtain a strong-coupling expansion of Tan’s
contact to arbitrary order, and have provided the coefficients for the expansion up
to order four. We have tested it against a calculation of Tan’s contact based on a
conjecture of the ground-state energy at arbitrary interactions [25] as well as to the
full solution of the Bethe-Ansatz equations provided in reference [17]. The strong-
coupling expansion yields an accurate expression at large interactions, but requires a
considerable number of terms to obtain good accuracy at intermediate interactions. In
this parameter regime it is then useful to apply the method based on the conjecture
for the equation of state. In outlook, the method presented in this work could be
used to calculate higher-order terms of the strong coupling expansion with the aim
of resumming the terms as was done to obtain the conjectural expression for the
homogeneous gas. The local-density approximation could be tested by comparing with
ab-initio numerical simulations. It would be interesting to generalize this method to
the case of multicomponent 1D gases as well as to finite temperature, beyond the
infinitely repulsive Tonks-Girardeau limit of references [31,37].
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