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Abstract. The impact of surface reflection upon transmission through
and energy distributions within random media has generally been
described in terms of the boundary extrapolation lengths zb, z

′
b at the

input and output end of an open sample, which are the distance beyond
the sample surfaces at which the energy density within the sample
extrapolates to zero [1–4]. The importance of reflection at the sample
boundaries plays a key role in the scaling of transmission [5,6]. Here we
consider the impact of surface reflection on the propagation of diffusive
waves [7,8] in terms of the modification of the distribution of transmis-
sion eigenvalues (DTE) [9–16]. We review our finding of a transition
in the analytical form of the DTE at the point that the sample length
equals |zb − z′b|. The highest transmission eigenvalue for stronger asym-
metry in boundary reflection is strictly smaller than unity. The average
transmission and profiles of energy density inside the sample can still be
described in terms of the sample length, L, and the boundary extrap-
olation lengths on both sides of the sample, zb, z

′
b. For localized waves,

we find the energy density profile within the sample is a segment of the
distribution that would be found in a longer sample with length L+
zb + z

′
b. These results suggest new ways of controlling wave interference

in both diffusive and localized systems by varying boundary reflectivity.

1 Introduction

The transmission matrix provides a powerful approach to calculating the statistics
of electrical conductance and optical transmission [9–16]. The nature of transport
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depends upon the strength of localization effects [17], which is determined by the
probability of return of a coherence volume in the sample [18–23]. This is given in
terms of the dimensionless conductance, g, which is the average electrical conduc-
tance in units of the quantum of conductance, e2/h, and is equivalent to the optical
transmittance T , g = 〈T 〉, where 〈. . .〉 represents the average over an ensemble of
statistically equivalent samples [17,24–26]. The transmittance in a single random
configuration is the sum of transmission eigenvalues over all independent incident
channels, T =

∑
n τn. The methods of random matrix theory apply equally to dif-

fusive and localized waves and have yielded the statistics of transmission in terms
of the transmission eigenvalues [13,14,16,27]. For example, the probability distri-
bution of conductance is determined by the correlation between the transmission
eigenvalues, which leads to a Gaussian distribution with constant variance for diffu-
sive waves [10,28,29]. The probability distribution of T for localized waves becomes
log-normal since T is essentially equal to the largest transmission eigenchannel, τ1,
whose distribution is log-normal once its average value is substantially smaller than
unity [16,25,27]. In the crossover to localization, the distribution is found to be a
truncated log-normal distribution [27,30–32]. Recently, control of individual incident
channels has been demonstrated for light [33–36], acoustic waves [37] and microwave
radiations [38]. This has spurred interest in the fundamental statistics of the eigen-
values and their use to control transmission and reflection as well as energy density
profiles inside random media [8,13,33,35,39–42].
Random matrix theory has generally neglected the impact of boundary reflectivity.

In the absence of boundary reflection, the scaling of average electrical and optical
transport in disordered system is characterized by a single parameter, g [17,24]. But
boundary reflection is more the rule than the exception; it occurs at the junction
between the leads with an electronic device of different material composition and
between free space or a medium with uniform index and a medium with higher index
of refraction. Boundary reflection can significantly change transmission, reflection, the
temporal profile of a transmitted pulse, the probability distributions and correlation
functions of transport quantities [2–4,7,8].
We compare the DTE, ρ(T ), in the presence of boundary reflection to the bimodal

distribution ρ0(T ) = ξ
2L

1
T
√
1−T [9,10,43], with ξ and L the localization and sample

lengths respectively, obtained in multichannel diffusive media when there is no reflec-
tion at the boundary. We briefly review first-principles supersymmetry theory, which
allows us to systematically study the impact of surface reflection on key observables
characterizing wave transport through random media [44,45]. We also present new
results on the impact of reflection on the average energy density distribution of local-
ized waves within random media.

2 Supersymmetry field theory for wave transport
in open random media

2.1 General structure

We launch a scalar wave of circular frequency ω at the input of a multichannel
random medium of length L, local dimension d and cross-sectional area A. The
propagation of waves is described by the retarded (advanced) Green’s function,

defined as
(
ω2±ε(r) +∇2

)
GR,Aω2 (r, r

′) = δ(r− r′). Here ω± = ω ± iδ with δ a posi-
tive infinitesimal. The dielectric function is ε(r) = 1 + δε(r): the first term is the air
background value, while the second term δε(r) represents spatial fluctuations follow-
ing Gaussian distributions with no spatial correlations. Dielectric layers are abutted
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against the left and right open sample boundaries with dielectric constants εL,R.
We set the wave group velocity in air to be unity.
A generic observable, O, can be microscopically expressed in terms of the disorder

average of the product of Green’s functions. Then supersymmetry field theory is able
to cast this expression into a functional integral over the supersymmetric field Q(x),

where Q ≡ {Qλλ′αα′} is a 4× 4 supermatrix, with λ, λ′ = 1, 2 denoting the advanced-
retarded (“ar”) sectors representing the different analytic structures of GR,A and
α, α′ = f,b the fermionic-bosonic (“fb”) sectors. This field obeys the nonlinear con-
straint, Q2 = 1. For waves in open media, the functional integral has the following
general structure (see [45] for a review),

O =

∫

D[Q]o[Q]e−S[Q],

S[Q] =
πνAD0

4

∫ L

0

dxstr(∂xQ)
2 + Ssurface,

(1)

where ν(ω) is the density of states per unit volume, D0 = /d the Boltzmann diffusion
constant, “str” the supertrace, and Ssurface the surface action. This expression is valid
for both diffusive and localized samples. It shows that the observable is the average
over an “auxiliary microscopic variable”, o[Q], with respect to the weight e−S[Q]. The
explicit form of o[Q] is observable-dependent. The first term in the action S[Q] governs
spatial fluctuations of Q and accounts for localization in an infinite multichannel
random medium; the second term Ssurface accounts for the difference between the
supersymmetry field theory of infinite [44] and open [46] media. The explicit form of
Ssurface depends on the variable O. We will give its form for different Os below.

2.2 Transmission eigenvalue statistics

The study of transmission eigenvalues was pioneered by Dorokhov [9] and Mello,
Pereyra and Kumar [11]. These and later studies did not address the impact of surface
reflection, which are of fundamental and practical importance. The impact of surface
reflection has been found recently by using supersymmetry field theory [7,8]. Here we
review this formalism.
In the basis of empty waveguide modes, φa,b(y), where the indices a, b

label the left and right boundaries and y denotes the transverse coordi-
nate, the matrix elements of the transmission matrix, tba, are given by
tba = i

√
vbva

∫
dy
∫
dy′φb(y)φ

∗
a(y
′)GAω2(r, r

′), where va is the group velocity of the

empty waveguide mode a. With the parametrization T ≡ cosh−2 φ2 , φ > 0, the DTE,
ρ(T ) ≡ 〈

∑
n δ(T − τn)〉, can be expressed as

ρ(T ) = 1
2π
[F (φ+ iπ) + F ∗(φ+ iπ)]

dφ

dT . (2)

The function F (φ) is the “observable” associated with the DTE

F (φ) = −∂ζ2

〈
det(1− γ1γ2ĵδLGAω2 ĵδRGRω2)
det(1− ζ1ζ2ĵδLGAω2 ĵδRGRω2)

〉∣
∣
∣
∣
∣
θ=iφ

, (3)

where γ1 =
1
2 sin θ, γ2 = tan

θ
2 (0 < θ < π), ζ1 =

i
2 sinhφ and ζ2 = i tanh

φ
2 . Here, ĵ is

the energy flux operator in the longitudinal direction and δL(R) restricts the spatial
integral on the left (right) surface.
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With the help of equation (3), we can express F (φ) as a functional integral over
the supermatrix Q

F (φ) = − iξ
2

∫

D[Q](Q∂xQ)
21
bbe

− ξ8
∫
L
0
dxstr(∂xQ)

2−Ssurface
∣
∣
x=0,θ=iφ

, (4)

with the localization length ξ = 2πνAD0. Note that this conforms to the general
structure (1). For large channel number, ωd−1A� 1, the surface action is

Ssurface = SLsurface + S
R
surface,

SLsurface = −
Ñdω

d−1A

2

1−R(εL)
1 +R(εL)

str(ΛQ(0)), (5)

SRsurface = −
Ñdω

d−1A

2

1−R(εR)
1 +R(εR)

str(ΓQ(L)).

Here, Ñd = ((4π)
d−1
2
d−1
2 Γ(

d−1
2 ))

−1, and Γ(x) is the Gamma function. εi (i = L,R)

determine R(εL(R)) via

1−R(εi)
1 +R(εi)

≡
〈
1−Rk⊥(εi)
1 +Rk⊥(ε

i)

〉

k⊥
, (6)

Rk⊥(ε
i) =

∣
∣
∣
∣
∣

cos θ0 −
√
εi − sin2 θ0

cos θ0 +
√
εi − sin2 θ0

∣
∣
∣
∣
∣

2

, θ0 ≡ arcsin
|k⊥|
ω

, (7)

with k⊥ the label for the empty waveguide modes and 〈· · · 〉k⊥ the average over all
modes for which |k⊥| ≤ ω. Note that equation (7) is the Fresnel formula for the
reflection coefficient. Finally

Λ =

(
1fb 0
0 −1fb

)ar
, Γ =

(
cos θ −i sin θ
i sin θ − cos θ

)ar
⊕
(
coshφ sinhφ
− sinhφ − coshφ

)ar
, (8)

are constant supermatrices. This field theory for the DTE is valid for both diffusive
(L
 ξ) and localized (L� ξ) samples.

2.3 Energy density profiles inside random media

The transmission eigenvalue statistics fully determine transmission properties, but
does not give the energy distribution in the interior of random media. This has
been extensively investigated using the supersymmetry field theory [46–48] (see also
Ref. [45] for a review). Specically, we consider the spatial correlation function of
energy density, Y(r, r′), at positions r, r′, Y(r, r′) ≡

〈
GAω2(r, r

′)GRω2(r
′, r)
〉
. This can

be expressed as

Y(r, r′) =
(πν

ω

)2 ∫

D[Q]Q12bb(x)Q
21
bb(x

′)e−
ξ
8

∫
L
0
dxstr(∂xQ)

2−Ssurface . (9)

This quantity does not depend on the transverse coordinate in the present multichan-
nel sample. Thus, from now on, we denote it as Y(x, x′). Again, it conforms to the
general structure (1). It differs from equation (4) in the pre-exponential factor. In the
surface action, the constant supermatrix Γ in SRsurface [cf. Eq. (6)] is replaced by Λ i.e.

SRsurface = −
Ñdω

d−1A

2

1−R(εR)
1 +R(εR)

str(ΛQ(L)). (10)
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Fig. 1. Main panel: the phase diagram of the DTE. Inset: surface reflection at the input
(output) end introduces an surface resistance ζ′ (ζ) (rescaled by the bulk resistance) in series
with the bulk resistance. This figure is from [8].

3 Transmission eigenvalue statistics

In this section we focus on diffusive samples and review the analytical results for
ρ(T ) obtained from supersymmetry field theory [7,8]. The basic idea is to apply
semiclassical analysis to the field theory. Specifically, from equations (4) and (6)
we find the saddle point equation, ∂x(Q∂xQ) = 0, where Q satisfies the boundary
conditions

(2z′bQ∂xQ+ [Q,Λ])|x=0 = 0, (2zbQ∂xQ− [Q,Γ])|x=L = 0, (11)

at the left and right surfaces. From equation (11), we see that two new scales, z′b and
zb, appear

z′b ≡
√
π
Γ
(
d+1
2

)

Γ
(
d
2

)


d

1 +R(εL)

1−R(εL) , zb ≡
√
π
Γ
(
d+1
2

)

Γ
(
d
2

)


d

1 +R(εR)

1−R(εR) . (12)

These scales are not additional parameters in the field theory. Instead, they emerge
automatically from the general theory (4) and (6). As will be seen below, as far as the
average conductance (of diffusive samples) is concerned, these two scales are the same
as the extrapolation lengths and the effective sample length is L+ z′b + zb [2–4,16].
By solving the saddle point equation with boundary conditions (11) and substi-

tuting the solution into equations (2) and (4), we obtain ρ(T ), which is governed
by two dimensionless parameters, ζ ′ ≡ z′b(εL)/L and ζ ≡ zb(εR)/L, with ζ = ζ ′ = 0
corresponding to the origin in Figure 1.

Away from the origin, ρ(T ) deviates from ρ0(T ) by a factor f(T ) ≡ ρ(T )
ρ0(T ) . This

is given by

f = (Cφ+iπ − Cφ−iπ)/(2iπ) ≡ ΔCφ/(2iπ), (13)

where the Cφ±iπ satisfy two closed equations

2C
2

φ +ΔC
2
φ/2 =

sinh2 ψ+
a coshψ+ + b

+
sinh2 ψ−

a coshψ− + b
, (14)
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Fig. 2. (a) Analytic results (solid lines) and simulations show that a single phase transition
occurs as the reflection of the output surface increases in diffusive waveguides in which the
input surface is perfectly transparent. The dielectric constants on the right surfaces for the
curves are εR = 1.8, 2, 2.1, 2.2, 2.5 from top to bottom. This figure is from [7]. (b) Double
phase transitions occur when the input end is sufficiently reflecting, εL = 2.1, and reflectiv-
ity on the output increases with dielectric constants of εR = 1, 1.9, 2.1, 2.3, 2.4 from top to
bottom near T → 0. This figure is from [8].

2CφΔCφ =
sinh2 ψ+

a coshψ+ + b
− sinh2 ψ−
a coshψ− + b

, (15)

with Cφ ≡ (Cφ+iπ + Cφ−iπ)/2, ψ± ≡ Cφ±iπ − (φ± iπ), a = 2ζζ ′, and b = ζ2 + ζ ′2.
By solving equations (14) and (15), we obtain a family of curves f(T ). Typical

results in samples in which surface reflection appears only at a single end of the sample
are represented by the solid lines in Figure 2a. Results for surface in which reflection
appears at both ends are shown in Figure 2b. We see that simulations are consistent
with these results. Figure 1 is the phase diagram in the variables ζ, ζ ′. It is symmetric
with respect to the diagonal line ζ = ζ ′ and has three phase regimes characterized
by distinct asymptotic behavior of ρ(T ) at T → 1. The phase boundaries correspond
to the threshold, |ζ − ζ ′| = 1, corresponding to |zb − z′b| = L, in the asymmetry of
reflection at the two surfaces. Below this threshold, ρ(T ) has the same singularity as
ρ0(T ), with ρ(T → 1) ∼ (1− T )−

1
2 . This implies that perfect transmission is possible

and gives the O-phase regime. Above the threshold, ρ(T > Tmax) = 0 and the C-phase
regimes follow. At the threshold, the singularity changes to ρ(T → 1) ∼ (1− T )− 13
and perfect transmission can be achieved. This defines the critical phase.
In Figure 1, line I shows that when reflection at the input surface is small enough

that ζ ′ < 1, increasing the reflection at the output (i.e., ζ) leads to a single transition.
Tracing along this line, we pass through the critical phase once. Line II shows that
when ζ ′ > 1, increasing ζ leads to a double transition in which the critical phase is
passed twice. These results are confirmed by numerical experiments [7,8].
To better understand the physical meaning of ζ, ζ ′, we calculate the average trans-

mittance (rescaled by ξ/L), g ≡ 1
2

∫ 1
0
dT T ρ(T ) = 1

2

∫ 1
0
dT f(T )√

1−T , where f(T ) is ob-
tained from equations (13)–(15). Integrating T over ρ(T ) we obtain g = 1/(1 + ζ + ζ ′)
[8]. Accordingly, ζ, ζ ′ are surface resistances (rescaled by the bulk resistance L/ξ).
These two resistances and the bulk resistance form a series circuit, as shown in the
inset of Figure 1. In other words, the conductance is the same as in a sample without
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surface reflection but with an effective length of L+ z′b + zb. This is consistent with
the interpretation of zb, z

′
b as boundary extrapolation lengths in studies of the scaling

of transmission in diffusive samples [2–4,16].

4 Energy profiles inside random media

4.1 Local diffusion of localized waves in open media: transparent surfaces

Supersymmetry field theory for the energy profiles inside open media was first devel-
oped in [46]. The perturbative treatments of this theory was performed in [46] and the
nonperturbative treatment in [47]. These results were extended to absorbing media
in [48]. In this work, surface reflection was assumed to vanish so that equation (9)
simplifies to

Y(x, x′) =
(πν

ω

)2 ∫

b

D[Q]Q12bb(x)Q
21
bb(x

′)e−
ξ
8

∫
L
0
dxstr(∂xQ)

2

. (16)

From this, it was predicted analytically and confirmed numerically that, in open 1D
media, Y(x, x′) for localized waves satisfies a generalized diffusion equation [45–48]

− ∂xD(x)∂xY(x, x′) = δ(x− x′), (17)

with the boundary conditions, Y(x, x′)|x=0 = Y(x, x′)|x=L = 0. Equation (16) dif-
fers from the normal diffusion equation in that the diffusion coefficient is position-
dependent, as first proposed in [49]. For deeply localized waves, equation (16)

gives D(x) ∼ e−
x(L−x)
Lξ . In the 1D limit, this result has a simple form as D(x) =

D(0)e−
x(L−x)
Lξ .

It was found in [47] that the function D(x) exhibits novel scaling behavior: it

depends on position x via some scaling factor λ(x), i.e., D(x)
D0
= D∞(λ(x)), where

D∞(λ) is the scaling function. λ(x) is essentially the probability density for a diffusive
wave to return to a cross section at depth x in an open random medium. D∞(λ) is
a perturbative expansion of λ for λ
 1, which corresponds to weak localization of
waves in open random media, and

D∞(λ) ∼ e−λ, forλ� 1, (18)

corresponds to strong localization. Substituting λ(x) = x(L−x)
Lξ

into equation (18), we

recover D(x) given above. It was found in [48] that this universal scaling holds even
for absorbing media except that λ(x) has a more complicated form.

4.2 Local diffusion of localized waves in open media: reflecting surfaces

In the presence of surface reflection, perturbative analysis shows that the surface
action has no effect on macroscopic diffusion. However, the explicit form of D(x)
does change. We find that D(x) obeys the universal scaling behavior except that the

scaling factor changes to λ(x) =
(x+z′b)(L+zb−x)
ξ(L+z′b+zb)

. In the localized regime, we obtain

D(x)/D0 ∝ e
− (x+z

′
b)(L+zb−x)

ξ(L+zb+z′b) . (19)
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This result is valid for arbitrary zb, z
′
b. In addition, we find that the boundary condi-

tions change to

(z′b∂x − 1)Y(x, x′)|x=0 = (zb∂x + 1)Y(x, x′)|x=L = 0. (20)

To obtain some insights into the physical meanings of zb, z
′
b for localized samples,

we solve equation (17) with the boundary conditions (20) and the local diffusion

coefficient (19). We introduce the coordinate transformation, x→ z(x), dz = D(x)
D0

dx.

This transforms equation (17) to

−D0∂2zY(z, z′) = δ(z − z′), (21)

and equation (20) to

(z′∗b ∂z − 1)Y(z, z′)|z=z(0) = (z∗b∂z + 1)Y(z, z′)|z=z(L) = 0, (22)

where z′∗b = z
′
bD0/D(0) ≥ z′b and z∗b = zbD0/D(L) ≥ zb. This is the normal diffusion

equation in z-space with mixed boundary conditions, whose solution is

Y(z, z′) = 1

D0

(z′∗b + z<)(L
∗ + z∗b − z>)

L∗ + z∗b + z
′∗
b

, (23)

with z<(>) = min(max){z, z′} and L∗ =
∫ L
0
D(x)
D0

dx. When flux is injected at x′ cor-

responding to z′ in the virtual z-space, the intensity drops linearly in the virtual
space to zero at a distance of z′∗b (z

∗
b ) beyond. When localization effects are ignored,

D(x) = D0 so that z
′∗
b = z

′
b, z

∗
b = zb and z(x) = x. Equation (23) is reduced to the

solution to the normal diffusion equation and z′b, zb acquire the canonical physical
meaning of extrapolation lengths [1–4].
Further insights into the physical meanings of zb, z

′
b are provided by considering the

average conductance g, which is
(∫ L
0

dx
D(x)

)−1
[47,49] in the deeply localized regime

(ξ 
 L). For simplicity, we take zb, z
′
b to be much smaller than L but it may be larger

or smaller than ξ. The expression (19) for D(x) is then, g ∼ e− L
4ξ (1+ζ+ζ

′).
We carried out 1D simulations using the scattering matrix method to explore the

impact of surface reflection on the energy density profiles of localized waves inside
random media. The sample is composed with binary layers of refractive indices of
n1 = 1 and n2 = 1.6. The average thickness of each layer is 1. The thickness of the
material with high refractive index n2 is fixed and the thickness of the n1 layers varies
randomly between 0.5 and 1.5. Waves are launched from the left and the incident
wavelength is between 1.712 and 1.760. A layer with refractive index nr = 25, 50, 75
and thickness 2 is placed over the output of the sample. The average for 500 configu-
rations of energy density profiles for different boundary reflectors of the same sample
length of 200 layers are shown in Figure 3a. We see that by varying the boundary
reflectivity, the intensity profiles are no longer symmetric with respect to the center
of the sample. Instead, they are a truncated profile of a longer sample. To obtain the
value of zb, we fix the refractive index of the reflector at the output to be nr = 50
and obtain the profile of energy density in samples of length 100, 150, 200, 250 layers.
We find that the value of zb at the output surface has the same value of 120 layers for
all sample lengths. The simulation results are in excellent agreement with analytical
predictions given by equation (19), with z′b set to zero, as shown in Figure 3b. These
results indicate that intensity profiles within localized samples can be viewed as a
segment of the profile of a longer sample with effective sample length of L∗ in virtual
z-space. Correspondingly, z′∗b = z

′
bD0/D(0) and z

∗
b = zbD0/D(0) are the extrapola-

tion lengths at the input and output. Notice that this picture does not apply in real
position space.
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Fig. 3. (a) The average energy density 〈W (x)〉 for fixed sample length of L = 200 layers
without boundary reflection at the input for no reflector at the output and the refractive
indices of the reflector at the output boundary of nr = 25, 50, 75. (b) 〈W (x)〉 for sample
lengths of 100, 150, 200 and 250 layers and refractive index of the boundary reflector at the
output of nr = 50. The solid black lines are predictions from equation (19). The parameter
zb is 120 layers for all the samples.

5 Conclusion

We have reviewed the change of the distribution of transmission eigenvalues for diffu-
sive samples when the effects of boundary reflectivities are included. A phase transi-
tion occurs at the point that the difference between the boundary reflectivities on the
two ends of the sample |zb − z′b| equals L at which the singularity in ρ(T ) as T → 1
changes from (1− T )− 12 to (1− T )− 13 . For stronger asymmetry, perfect transmission
cannot be achieved. However, the average conductance still obeys Ohm’s law when
boundary resistance terms are included. For diffusive systems, the average intensity
profile decays linearly towards the output with the extrapolation length correspond-
ing to the distance beyond the sample at which intensity extrapolates to zero. For
localized waves, propagation can be described using a position-dependent diffusion
coefficient given by equation (19) with z′∗b and z

∗
b the extrapolation lengths in virtual

z-space related to position space via dz = D(x)
D0

dx. These results show that in addition
to wavefront shaping, boundary reflectivity provides an additional degree of freedom
to control the transmission and the energy distributions in the interior of disordered
samples.
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