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Joseph Fourier, UMR5493, 25 Av. des Martyrs, BP 166, 38042 Grenoble Cedex 9, France

Received 14 October 2016 / Received in final form 23 November 2016
Published online 25 May 2017

Abstract. The possibility that a four component Fermi gas with attrac-
tive interaction can form a quartet condensate at low density is pointed
out. It is discussed that for quartets only the Bose-Einstein Conden-
satio (BEC) phase exists and that the analogue to the weak coupling
long coherence BCS phase of pairing is absent. Precurser phenomena
in finite nuclei are presented. For instance, the present understanding
of the structure of the Hoyle state in 12C being the gateway for Carbon
production in the universe is reviewed. It is pointed out that a crucial
test of any theory is the good reproduction of the experimental results
for the inelastic form factor from ground to the Hoyle state. The perfor-
mances of the so-called THSR wavwe function are outlined confirming
the α particle condensation hypothesis proposed 15 years back in [1].

1 Introduction

One of the most amazing phenomena in quantum many-particle systems is the forma-
tion of quantum condensates. At present, the formation of condensates is of particular
interest in strongly coupled fermion systems in which the crossover from Bardeen-
Cooper-Schrieffer (BCS) pairing to Bose-Einstein condensation (BEC) may be in-
vestigated. Among very different quantum systems, nuclear matter is especially well
suited for the study of correlation effects in a quantum liquid. In [2], the possibil-
ity of α particle (quartet) condensation in infinite matter was investigated. It was
found that quartetting is possible at low densities, below about a fifth of saturation
density. At higher densities, around the point where the chemical potential μ turns
from negative (binding) to positive, the condensation breaks down. This is contrary
to ordinary pairing which can exist for considerably positive μ values, depending only
on the range of the pairing force. The reason for this strong qualitative difference
between the two cases is explained in [3].
The question then arises whether in analogy to pairing, also for quartetting exist

nuclei where this phenomenon is born out. In [1], we found that such a possibility
very likely exists in lighter self-conjugate nuclei for excitation energies around the α
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disintegration threshold. In this contribution, we want to discuss the successes and
eventual failures of this idea which was proposed 15 years back. We will specially
deal with the Hoyle state which is the first 0+ state at 7.65MeV in 12C, since this
state is responsible for the massive Carbon production in the universe and, thus, for
the existence of life on earth. It was predicted on those grounds by the astrophysicist
Fred Hoyle in 1952 [4] and discovered by Fowler a couple of years later [5]. The Hoyle
state couples resonantly to the so-called triple α reaction present in stars and, thus,
accelerates very much the 12C synthesis.
The paper is organised as follows. In Section 2, we describe quartet condensation

in infinite nuclear matter. In Section 3, we discuss precurser phenomena of quartet
condensation in finite nuclei. For instance the fameous Hoyle state at 7.65MeV
in 12C will be discribed. In Section 4, we outline shortly the situation in 16O and in
Section 5, we present our conclusions and give further discussions.

2 Quartet BEC with applications to nuclear systems:
alpha condensation in infinite nuclear matter

The possibility of quartet, i.e., α particle condensation in nuclear systems has only
come to the forefront in recent years. First, this may be due to the fact that quartet
condensation, i.e., the one of four tightly correlated fermions, is a technically by far
more difficult problem than is pairing. Second, as we will see, the BEC-BCS transition
for quartets is very different from the pair case. As a matter of fact the weak coupling
BCS like, long coherence length regime does not exist for quartets. Rather, at higher
densities the quartets dissolve and go over into two Cooper pairs.
Quartets are of course present in nuclear systems. In other fields of physics they are

much rarer. One knows that two excitons in semiconducters can form a bound state
and the question has been asked in the past whether bi-excitons can condense [6]. In
future cold atom devices, one may trap four different species of fermions which, with
the help of Feshbach resonances, could form quartets (please note that four different
fermions are quite necessary to form quartets for Pauli principle and, thus, energetic
reasons). Theoretical models have already been treated and a quartet phase predicted
in [7].
Let us start the theoretical description. For this it is convenient to recapitulate

what is done in standard S-wave pairing. On the one hand, we have the equation for
the order parameter κ(p1,p2) = 〈cp1cp2〉 (we suppress the spin dependence; c+, c are
fermion creation and annihilation operators)

κ(p1,p2) =
1− n(p1)− n(p2)
ep1 + ep2 − 2μ

∑

p′1,p
′
2

〈p1p2|v|p′1p′2〉κ(p′1,p′2) (1)

with ek kinetic energy, eventually with a HF shift, and 〈p1p2|v|p′1p′2〉 = δ(K−
K′)v(q− q′) the matrix element of the force with K,q c.o.m. and relative momenta,
one recognises an atrophiated two particle Bethe-Salpeter equation at T = 0, taken
at the eigenvalue E = 2μ where μ is the chemical potential. Inserting the standard
BCS expression for the occupation numbers

n(p) =
1

2

(
1− ep − μ
2
√
(ep − μ)2 +Δ2

)
(2)

leads for pairs at rest, that is K = p1 + p2 = 0, to the gap equation (5) below. We
want to proceed in an analogous way with the quartets. In obvious short hand no-
tation, the in medium four fermion Bethe-Salpeter equation for the quartet order
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Fig. 1. Single particle mass operator in case of pairing (left) and quartetting (right).

parameter K(1234) = 〈c1c2c3c4〉 is given by [3]
(e1 + e2 + e3 + e4 − 4μ)K(1234) = (1− n1 − n2)

∑
1′2′〈12|v|1′2′〉K(1′2′34)

+permutations , (3)

We see that above equation is a rather straight forward extension of the pairing
case to the quartet one. The crux lies in the problem how to find the single particle
occupation numbers nk in the quartet case. Again, we will proceed in analogy to the
pairing case. Eliminating there the anomalous Green’s function from the 2× 2 set of
Gorkov equations [8] leads to a mass operator in the Dyson equation for the normal
Green’s function of the form

M1,1′ =
|Δ1|2

ω + e1 − 2μδ1,1′ (4)

with the gap defined by

Δ1 =
∑

2

〈11̄|v|22̄〉〈c2c2̄〉 (5)

where ′1̄′ is the time reversed state of ′1′. Its graphical representation is given in
Figure 1 (left). In the case of quartets, the derivation of a single particle mass operator
is more involved and we only want to give the final expression here (for detailed
derivation, see [3]):

Mquartet
1,1 (ω) =

∑

234

Δ1234[f̄2f̄3f̄4 + f2f3f4]Δ
∗
1234

ω + e234
, (6)

where f̄ = 1− f and fi = Θ(μ− ei) is the Fermi step at zero temperature and the
quartet gap matrix is given by

Δ1234 =
∑

1′2′
〈12|v|1′2′〉〈c1′c2′c3c4〉. (7)

This quartet mass operator is also depicted in Figure 1 (right).
Though, as mentioned, the derivation is slightly intricate, the final result looks

plausible. For instance it is seen that the three hole lines seen in Figure 1 give rise
to the Fermi occupation factors in the numerator of (1). This makes, as we will see,
a strong difference with pairing, since there with only a single fermion line f̄ + f =
1 and, thus, no phase space factor appears. Once we have the mass operator, the
occupation numbers can be calculated via the standard procedure and the system of
equations for the quartet order parameter is closed.
Numerically it is out of question that one solves this complicated nonlinear set of

four body equations brute force. Luckily, there exists a very efficient and simplifying
approximation. It is known in nuclear physics that, because of its strong binding, a
good approximation is to treat the α particle in mean field as long as it is projected
on good total momentum. We, therefore, make the ansatz

〈c1c2c3c4〉 → ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4)δ(k1 + k2 + k3 + k4), (8)
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Fig. 2. Single particle wave functions ϕ in momentum and position spaces (two left columns)
and s.p. occupation numbers ρ(k) (right column) [3].

where ϕ is a 0S single particle wave function in momentum space. With this ansatz
which is an eigenstate of the total momentum operator with eigenvalue K = 0, the
problem is still complicated but reduces to the selfconsistent determination of ϕ(k)
what is a tremendous simplification and renders the problem manageable. Below, we
will give an example where the high efficiency of the product ansatz is demonstrated.
Of course, with the mean field ansatz we cannot use the bare nucleon-nucleon force.
We took a separable one with two parameters (strength and range) which were ad-
justed to energy and radius of the free α particle. In Figure 2, we show the evolution
with increasing chemical potential μ (density) of the single particle wave function
in position and momentum space (two left columns). We see that at higher μ’s, i.e.,
densities, the wave function deviates more and more from a Gaussian. At slightly pos-
itive μ the system seems not to have a solution anymore and selfconsistency cannot
be achieved.
Very interesting is the evolution of the occupation numbers ρ(k) with μ (density)

also shown in Figure 2 (right column). It is seen that at slightly positive μ where the
system stops to find a solution, the occupation numbers are still far from saturation.
The highest occuation number one obtains lies at around nk=0 ∼ 0.35. This is still
very far from saturation as it can happen with the BEC-BCS cross-over in the case
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Fig. 3. Schematic (non-selfconsistent) view of BCS occupation numbers as the chemical
potential varies from positive to negative (binding) values.

Fig. 4. Critical temperatures for α particle (binding energy/nucleon ∼ 7.5MeV) and
deuteron (binding energy/nucleon ∼ = 1.1MeV) condensation as a function of μ (upper
panel) and as a function of density (lower panel) [10].

of pairing when occupation numbers increase steadly from negative to positive μ and
finally the occupation numbers saturate at one when μ goes well into the positive
region, see Figure 3. We, therefore, see that the system is still far from the weak
coupling large coherence length regime when it stops to have a solution. One also
sees from the extension of the wave functions that the size of the α particles has
barely increased. Before we give an explanation for this behavior, let us study the
critical temperature where this breakdown of the solution is seen more clearly.
In order to study the critical temperature for the onset of quartet condensation,

we have to linearise the equation for the order parameter (3) in replacing the corre-
lated occupation numbers by the free Fermi-Dirac distributions at finite temperature
n(p)→ f(p) = [1 + e(ep−μ)/T ]−1. Determining the temperature T where the equation
is fullfilled gives the critical temperature T = Tαc . This is the Thouless criterion for
the critical temperture of pairing [9] transposed to the quartet case. In Figure 4,
we show the evolution of Tαc as a function of the chemical potential (upper panel)
and of density (lower panel) [10]. This figure shows very explicitly the excellent per-
formance of our momentum projected mean field ansatz for the quartet order para-
meter. The crosses correspond to the full solution of equation (3) in the linearised
finite temperature regime with the rather realistic Malfliet-Tjohn nucleon-nucleon
potential [11] whereas the continuous line corresponds to the projected mean field
solution. Both results are litterally on top of one another (the full solution is only
available for negative chemical potentials). One clearly sees the breakdown of quartet-
ting at small positive μ (that the critical T breakdown occurs at a somewhat larger
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positive μ may be due to the fact that here we are at finite temperature contrary
to the full solution of (3) with (8) which was used at T = 0 in Figure 2) whereas
n-p (deuteron) pairing goes on momotoneously into the large μ region. It is worth
mentioning that in the isospin polarised case with more neutrons than protons, n-p
pairing is much more affected than quartetting (due to the much stronger binding
of the α particle) and finally loses against α condensation [12]. So, the fact is that,
contrary to the pairing case where there is a smooth cross over from BEC to BCS,
in the case of quartetting the transition to the dissolution of the α particles seems
to occur quite abruptly and we have to seek for an explanation of this somewhat
surprising difference between pairing and quartetting.
The explanation is in a sense rather trivial. It has to do with the different level

densities involved in the two systems. In the pairing case the single particle mass
operator only contains a single hole (fermion) line propagator and the level density
is given by

g1h(ω) = − 1
π
Im
∑

p

f̄(p) + f(p)

ω + ep + iη
=
∑

p

δ(ω + ep). (9)

In the case of three holes as is the case for quartetting, we have for the 3h level density
(see the equivalent 3p level density in [13])

g3h(ω) = − 1
π
ImTr

f̄(p1)f̄(p2)f̄(p3) + f(p1)f(p2)f(p3)

ω + e1 + e2 + e3 + iη

= Tr[f̄(p1)f̄(p2)f̄(p3) + f(p1)f(p2)f(p3)]δ(ω + e1 + e2 + e3) . (10)

In Figure 5, we give, for T = 0, the results for negative and positive μ. The in-
teresting case is μ > 0. We see that phase space constraint and energy conservation
cannot be fullilled simultaneously at the Fermi energy and level density is zero there.
This is just the point where quartetting should build up. With no level density, no
quartetting! In the case of pairing there is no phase space restriction and level den-
sity is finite at the Fermi energy. For negative μ, f(ek) = 0 at zero temperature and
exponentially small at finite T . Then there is no fundamental difference between 1h
and 3h level densities! This explains the striking difference between pairing and quar-
tetting in the weak coupling regime. The same reasoning holds in considering the in
medium four body equation (3). The relevant in medium four fermion level density
is also zero at 4μ for μ > 0. Actually the only case for in medium more fermion level
densities which remains finite at the Fermi energy is the two particle case when the
c.o.m. momentum is zero as one may verify straightforwardly. That is why pairing is
such a special case, different from condensation of all higher clusters.

3 Finite nuclei and the THSR approach. The Hoyle state in 12C

The Hoyle state is the first excited 0+ state in 12C at 7.65MeV. This state is one
of the most fameous states in nuclear physics because without its existence life on
earth would be absent in its present form. Indeed, since 8Be is unstable, the stellar
production of Carbon in the universe would be lower by a huge factor without the
existence of the Hoyle state. It is just at the right energy to allow for the so-called triple
α reaction α+ α+ α→8Be + α→12C∗ to become strongly accelerated. It should be
kept in mind that, as mentioned, 8Be is unstable. However, with a life time of ∼ 10−17
seconds it lives very long on nuclear scales but still decays very fast on absolute scales.
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Fig. 5. 3h level density for negative and two positive chemical potentials [3].

For the microscopic description of the Hoyle state several approaches have been
put forward in the past [14,16,17,19,21–23]. However, only the following, so-called
THSR wave function (according to the authors Tohsaki, Horiuchi, Schuck, Roepke)
which was proposed in [1] concentrates on the α particle condensation aspect (the
spin-isospin part is not written out)

ΨTHSR ∝ Aψ1ψ2ψ3 ≡ A|B〉 (11)

with

ψi = e
−((Ri−XG)2)/B2φαi (12)
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and

φαi = e
−∑k<l(ri,k−ri,l)2/(8b2). (13)

In (11) the Ri are the c.o.m. coordinates of α particle ‘i’ and XG is the total c.o.m.
coordinate of 12C. A is the antisymmetrizer of the twelve nucleon wave function with
φαi the intrinsic translational invariant wave function of the α-particle ‘i’. The whole
12 nucleon wave function in (11) is, therefore, translationally invariant. The special
Gaussian form given in equations (12), (13) was chosen in [1] to ease the variational
calculation. The condensate aspect lies in the fact that (11) is a (antisymmetrized)
product of three times the same α-particle wave function and is, thus, analogous to
a number projected BCS wave function in the case of pairing. This twelve nucleon
wave function has two variational parameters, b and B. It possesses the remarkable
property that for B = b it is a pure harmonic oscillator Slater determinant (this
aspect of (11) is explained in [24,25]) whereas for B � b the α’s are at low density
so far apart from one another that the antisymmetrizer can be dropped and, thus,
(11) becomes a simple product of three α particles, all in identical 0S states, that
is, a pure condensate state. The minimization of the energy with a Hamiltonian
containing a nucleon-nucleon force determined earlier independently [27] allows to
obtain a reasonable value for the ground state energy of 12C. Variation of energy
under the condition that (11) is orthogonal to the previously determined ground
state allows to calculate the first excited 0+ state, i.e., the Hoyle state. While the size
of the individual α particles remains very close to their free space value (b 	 1.37 fm),
the variationally determined B parameter takes on about three times this value. This
entails a quite enhanced value of the rms radius of 3.83 fm of the Hoyle state with
repect to the one of the ground state (2.4 fm). This gives a volume (density) of the
Hoyle state about a factor 3–4 larger (smaller) than for the ground state. In such
a large volume the α’s have space to develope themselves what is not the case in
the ground state where they overlap strongly. The situation for the Hoyle state is
then similar to the case of 8Be which is the only nucleus which has a pronounced
two α structure in its ground state (we ignore here that 8Be is, in fact unstable with
a width on the eV level; so on nuclear scales the 8Be nucleus can be considered as
stable). In Figure 6 we show the result of an exact Monte Carlo calculation based
on a realistic nucleon-nucleon force plus a phenomenological three body term [26]. It
should be pointed out that this α cluster structure in the ground state of a nucleus is
a singular feature among all nuclei which can be described in first approximation by
a dense Fermi gas (Slater determinant). However, expanding the nuclei to densities
similar to the one of 8Be, that is 3–4 times lower than average ground state densities
of ordinary nuclei, the α structure reappears in excited states.
Still the question may be asked: is the Hoyle state closer to a Slater determinant or

to an α condensate? A precise answer is obtained from the calculation of the bosonic
occupation numbers which have been obtained in three different works [23,28,29]
with very similar results. The ones of [29] are displayed in Figure 7. We see that
the distribution in the ground state is more or less equipartitioned and compatible
with the SU3 shell model theory whereas the distribution of the Hoyle state has an
overwhelming contribution of over 70% of the α’s being in the lowest 0S state, all
other contributions are down by a factor of at least ten. We, therefore, can say that
the three α particles in the Hoyle state occupy with their c.o.m. motion to a large
fraction the same 0S orbit meaning that, indeed, the Hoyle state can be considered
to within good approximation as a condensate of 3 α particles. However, the Pauli
principle is still active and antisymmetrisation (plus some residual α− α interaction)
scatters the α’s out of the condensate about 30% of the time. It can be mentioned
here that this number is very similar concerning good single particle states in odd
nuclei where the fermionic occupation numbers also are in the range of 70–80%.
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Fig. 6. Green’s function Monte Carlo results for 8Be. Left: laboratory frame; right: intrinsic
frame. From [26].

0

0.2

0.4

0.6

0.8

1.0

μλ

Ground state Hoyle state 
S1 D1 G1 S2 D2 G2 S3 D3 G3 S1 D1 G1 S2 D2 G2 S3 D3 G3

Fig. 7. α particle occupation numbers in the ground state (left) and in the Hoyle state
(right) [29].

We mentioned that the Hoyle state has an extended volume being by a factor
3–4 larger than the one of the ground state. How to prove this? It turns out that the
inelastic form factor, measured by inelastic electron scattering, is very sensitive to the
size of the Hoyle state [30]. Increasing artificially the size of the Hoyle state by about
20% reduces the form factor globally by a factor of two. The fact that the THSR the-
ory reproduces very precisely the experimental values of the inelastic form factor, see
Figure 8, without any adjustable parameter can be considered as a great achievement
and gives large credit to the picture that in the Hoyle state three α particles are well
born out moving almost independently in their proper mean field. In the same figure
we show recent Green’s function Monte Carlo (GFMC) results [31] which also repro-
duce the inelastic form factor very nicely. In the insert of the GFMC-panel, we see
that the rather precise experimental transition radius of 5.29 ± 0.14 fm2 given in [21]
is better reproduced than with the THSR approach which yields an about 20% too
large value. On the other hand, the GFMC approach gives the position of the Hoyle
state about 2.5MeV too high whereas with the THSR wave function the experimental
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Fig. 8. Inelastic form factors from GFMC [31], upper panel, and THSR [30], lower panel.
The THSR result cannot be distinguished from the one of [16] on the scale of the figure
meaning that also the approach of [16] implicitly contains the α condensation aspect (this,
by the way, is also the case with the approach in [17]).

value of 7.65MeV is quite well reproduced with no adjustable parameter. There also
exist other so-called ’ab-initio lattice Monte Carlo’ calculations for the Hoyle state
with good reproduction of its energy but the reproduction of the important inelastic
form factor is missing so far [32].

4 A brief account of the situation in 16O

The situation in 16O is quite a bit more complicated than in 12C. The fact is that
between the 4α threshold and the ground state, there are several 0+ states which can
be interpreted as α+12C cluster configurations. In Figure 9, we show the result of a
calculation with the so-called Orthogonal Condition Model (OCM) method [33].
We see that there is a very nice one to one correspondence between the first six

calculated 0+ states and experiment. In regard of the complexity of the situation
the agreement between both can be considered as very satisfactory. Only the highest
state was identified with the 4α condensate state. The four other excited 0+ states are
α+12C configurations. For example the 5-th 0+ state is interpreted as an α orbiting
in a higher nodal S-wave around the ground state of 12C. The 4-th 0+ state contains
an α orbiting in a P-wave around the first 1− state in 12C. In the 3-rd 0+ state the
α is in a D-wave coupled to the 2+1 state of

12C and in the 2-nd 0+ state the α is
in a 0S-wave and the 12C in its ground state. The single parameter THSR calcula-
tion can only reproduce correctly the ground state and the α condensate state (0+6 ).
By construction it cannot describe α + 12C configurations. So, the two intermedi-
ate states give some sort of average picture of the four α plus 12C configurations.
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Fig. 9. Spectrum of 0+ states in 16O from the OCM and THSR approaches [1,33].

One would have to employ a more general ansatz like in [34] to cope with the situa-
tion. Work in this direction is in progress. The 0+6 state is theoretically identified as
the α-condensate state from the overlap squared |〈0+6 |α+12C(0+2 )〉|2 [35].

5 Discussion and conclusions

In this contribution, we first discussed the case of quartet condensation in attractive
four component Fermi gases. A paradigmatic case of such a quartet is the α particle
in nuclear physics. We showed that α particle condensation occurs in low density
nuclear matter but only in the BEC phase. We explained why for quartets there does
not exist an analogue to the weak coupling, long coherence phase which exists for
pairing with the BCS description. This is a very important difference between the
quartetting and pairing cases. We pointed out that pairing is in fact a very singular
situation and that all bosonic clusters formed out of fermions involving more than two
fermions do not exhibit the analogue to a long coherence phase what prevails with
pairing. We then moved on and discussed the situation in finite nuclei where in some
lighter nuclei excited states around the α particle disintegration threshold can be
considered as precursers to quartet condensation in infinite matter. We concentrated
on the α particle condensation aspect of the Hoyle state in 12C introduced with the
THSR wave function 15 years back [1]. This, because the Hoyle state is extremely
important for the Carbon production in the universe and, thus, for the existence of life!
Our approach reproduces all known experimental results of the Hoyle state without
any adjustable parameter and, thus, gives credit to the condensation scenario. This,
despite of the fact that its direct experimental verification is difficult. Indeed, while
pairing induces clear signs of superfluidity in rotating nuclei, no analogous effects have
been detected so far from quartetting. However, several experiments are under way or
planned concerning the Hoyle state and analogous states in 16O or even heavier nuclei,
what may shed further light on the situation in the near future [36,37]. A major issue
in this respect is the understanding not only of the Hoyle state but of excited states
thereof. The 0+3 and 0

+
4 have been identified experimentally recently and have been

interpreted as α gas states with one α in a higher nodal S-state and a linear chain
state, respectively, see [34] and references therein for discussions. Also the structure
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of the second 2+ state is strongly debated. It is considered either as a member of a
rotational band with the Hoyle state as band head [38] or more as a nodal excitation
of one of the α’s into a D-wave [34]. Further experimental and theoretical studies
are necessary to elucidate the situation. With respect to the excited Hoyle states an
interesting paper has appeared recently [39] where the authors explain with a single
adjustable parameter very well the Hoyle spectrum on grounds that the Hoyle state
is a Bose condensate with broken U1 symmetry (particle number). However, also this
approach is not well tested and needs further work.

This work was greatly influenced about 20 years back by discussions and common publica-
tions with Philippe Nozières. I am very greatfull to him for those fruitful times at ILL. We
both knew Roger Maynard very well and had very friendly contact with him. This contri-
bution to this volume is in memory to him. The content of this paper is part of ongoing
reserch with several collegues concerning α cluster states in nuclei. I, for instance, want to
thank Y. Funaki, H. Horiuchi, G. Röpke, A. Tohsaki, and T. Yamada for their longstanding
collaboration.
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