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Abstract. We report a theoretical study of the low-frequency
impedance of a Josephson junction chain whose parameters vary in
space. Our goal is to find the optimal spatial profile which maximizes
the total inductance of the chain without shrinking the low-frequency
window where the chain behaves as an inductor. If the spatial modula-
tion is introduced by varying the junction areas, we find that the best
result is obtained for a spatially homogeneous chain, reported earlier
in the literature. An improvement over the homogeneous result can be
obtained by representing the junctions by SQUIDs with different loop
areas, so the inductances can be varied by applying a magnetic field.
Still, we find that this improvement becomes less important for longer
chains.

1 Introduction

Quantum engineering in superconducting nanocircuits is a rapidly developing field,
due to progress in sample fabrication techniques which has been occurring in the
past decade [1]. Complex circuits with many elements can be routinely fabricated
on a chip nowadays. Due to superconductivity, electromagnetic signals propagate in
such circuits with extremely low losses, and the circuit properties can be tuned by
applying an external magnetic field. Highly inductive elements are often needed in
such nanocircuits, to realize a large non-dissipative impedance. Applications of large
inductances include protection of fluxonium qubits from the charge noise [2], tunable
microwave impedance matching [3], or a potential implementation of the electrical
current standard in quantum metrology based on Bloch oscillations [4–6].
Because any geometrical inductor (a coil being the standard textbook example)

also necessarily possesses a parasitic self-capacitance which starts to dominate at
high frequencies, its non-dissipative impedance is limited by the vacuum impedance,
∼√μ0/ε0 = 4αRQ, where α ≈ 1/137 is the fine structure constant, and RQ ≈ 13 kΩ
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is the resistance quantum [7]. Indeed, the inductance of a geometrical inductor is due
to the magnetic field produced by the current, which acts on the current itself. The
relativistic nature of this effect is the intrinsic reason for its weakness. This limitation
can be overcome by using superconducting materials whose inductance is due to the
kinetic energy of the Cooper pair condensate [8], and thus is of non-relativistic origin.
The term “superinductance” is often used to denote such superconductivity-based
inductance.
Several structures, based on Josephson junctions (JJs), have been reported to

work as superinductors [9,10]. In the first one, a large inductance was obtained by
putting N Josephson junctions in series, which gave the total inductance NL (L is the
inductance of a single junction). In reference [10], magnetic-field-induced frustration
was used to increase the inductance, which then exhibited a strong nonlinearity. Here,
we focus on the linear case, and analyze structures analogous to that of reference [9].
A simple strategy to increase the total inductance of a JJ chain would then be

to make L and/or N as large as possible. However, in either case one faces some
limitations. In the first case, the JJ inductance L is inversely proportional to the
Josephson energy of the junction, EJ = (�/2e)

2(1/L). To work as an inductor, the
junction must be in the superconducting regime, EJ � EC , where the charging energy
EC = (2e)

2/(2C) is determined by the junction capacitance. This condition sets a
lower limit on EJ , or, equivalently, an upper limit L < Lmax, or a lower limit on the
junction area A, as both EJ , C ∝ A.
Limitations on the junction number N arise from the dependence of the chain

response on the frequency ω. The phase slip rate, although exponentially sup-
pressed for EJ � EC , grows with N , giving rise to a finite dc resistance, which
spoils the purely inductive response of the chain at low frequencies. From the
high-frequency side, the effective bandwidth of the inductive response is restricted
by electromagnetic modes supported by the chain, ω � ω1 (the lowest mode
frequency). Crucially, besides the capacitance C of the junction between neighboring
superconducting islands, each island has a small capacitance Cg to the ground. This
capacitance gives rise to screening of the Coulomb interaction between the islands
on a length scale λ =

√
C/Cg and produces an acoustic-like region of the mode

dispersion ω(q) = (LC)−1/2
√
ε2(q)/[ε2(q) + λ−2] of spatially homogeneous chains,

where ε(q) = 2 sin(q/2), and q is the wavenumber, 0 � q � π (Fig. 1). The first mode
corresponds to q = π/(N + 1), so for large N � πλ, the frequency of the lowest mode
ω1 ∝ 1/N , and the inductive response bandwidth shrinks with increasing N . This was
the main limitation for the device studied in reference [9], where a special effort was
made to decrease the parasitic ground capacitance Cg.
The above argumentation works for spatially homogeneous chains, whose total

inductance is determined by just two parameters, the single-junction inductance L
and their number N , if L is assumed to be the same for all junctions. This, however,
need not be the case, since an arbitrary spatial profile of junction sizes along the chain
can be produced during the sample fabrication. A spatial modulation of junction
parameters modifies the normal modes of the chain, and can manifest itself in various
situations. For example, Josephson energy renormalization by coupling to the normal
modes was shown to be affected by a modulation of the chain parameters [11]. Effect
of the normal mode structure on dephasing of the fluxonium qubit was discussed in
reference [12]. For the present problem, one can try to optimize the total inductance
and the operation bandwidth of the chain using many more degrees of freedom than
just L and N , because the parameters of each of the N junctions can be treated as
optimization variables. To study, whether one can take advantage of this large number
of variables and improve the homogeneous chain result of reference [9] by carefully
choosing the spatial profile of the junction parameters, is the purpose of the present
work.
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Fig. 1. Dispersion curve of a JJ chain with C/Cg = 25 (solid curve) and modes of a chain
with N = 100 junctions (filled circles). The mode frequency ω is measured in the units of
the junction plasma frequency 1/

√
LC.

In this paper, we consider two ways to introduce a spatial inhomogeneity into
the structure. One is to vary the area An of each junction n (assuming the island
area to be already optimized to minimize the ground capacitance as was done in
Ref. [2,9,13]). This leads to a simultaneous variation of the junction inductances Ln
and capacitances Cn, such that their product LnCn = const. Optimizing over all areas
{An}, we find that the best result is still achieved for a homogeneous configuration.
The second way to introduce a spatial variation of the junction parameters is

to represent each junction by a SQUID (superconducting quantum interference de-
vice). When subject to a magnetic field B, a SQUID behaves like an effective Joseph-
son junction with a field-dependent Josephson energy EJ (B) = EJ(0)| cos(πBS/Φ0)|,
where Φ0 = 2π�/(2e) is the superconducting flux quantum, and S is the SQUID loop
area which determines the magnetic flux BS through the SQUID (Fig. 2). Then, if
all SQUIDs have different areas Sn, the inductance of each junction of the chain,
Ln(B) = Ln(0)/| cos(πBSn/Φ0)|, varies in space, and this variation is independent of
the variation of the capacitance Cn (the latter is controlled by the junction area An,
independent of the loop area Sn). In this case, we show that one can indeed im-
prove over the homogeneous result, by placing SQUIDs with larger loop area (higher
inductance) near the ends of the chain. Still, the obtained improvement over the
homogeneous result turns out to decrease with the increasing chain length.
The paper is organized as follows. In the next section we specify the model and

formally pose the optimization problem. In Section 3 we analyze the case when only
the junction areas An vary in space. In Section 4 we study variation of the SQUID
loop areas Sn. In Section 5 we give our conclusions.

2 Formal setting of the optimization problem

We consider a chain of N + 1 superconducting islands. Each island is connected to its
nearest neighbors by Josephson junctions, so the chain has N junctions (Fig. 3). We
assume N � 1. When the junctions are in the superconducting regime, EJ � EC ,
the oscillations of the superconducting phase ϕn on each island are small. Then, the
Josephson current through the nth junction from island n to (n+ 1) can be written
as In = I

c
n sin(ϕn+1 − ϕn) ≈ Icn(ϕn+1 − ϕn) [8]. Here, Icn = �/(2eLn) = (2e/�)EJ,n

is the junction critical current. Thus, the voltage drop across the junction can be
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Fig. 2. A schematic representation of a SQUID (top view): two superconducting islands,
top and bottom, are connected by two junctions forming a loop. At zero magnetic
field, the SQUID inductance Ln(0) is determined by the total area of the junctions An,
shown by hatching. When a magnetic field B is applied, the inductance Ln(B) =
Ln(0)/| cos(πBSn/Φ0)| is determined by the magnetic flux BSn through the SQUID loop
area Sn, represented by the white circular region in the center.

determined by using the Josephson relation:

Vn+1(t)− Vn(t) = �
2e

(
dϕn+1

dt
− dϕn
dt

)
=
�

2eIcn

dIn

dt
. (1)

This expression shows that the junction behaves as a linear inductor, and the Joseph-
son kinetic inductance is given by Ln = �/(2eI

c
n). In addition, we assume that the

dissipation is very small and can be neglected. Then, an isolated chain is equivalent
to the electric circuit shown in Figure 3(b), where Cn is the capacitance formed by
the neighboring superconducting islands, and Cgn is the capacitance of each island to
ground. We define the complex impedance Z(ω) of the chain at frequency ω as the
ratio of the voltage Vωe

−iωt on an external ac voltage source, connected to the islands
n = 1 and n = N + 1, to the current Iωe

−iωt through this source (Fig. 3).
To determine the normal mode frequencies of this circuit, one can apply the

Kirchhoff’s law at each of the N + 1 nodes of this circuit. This gives the following
system of linear equations for the voltages Vn:

Y1(V1 − V2)− iωCg1V1 = Iω, (2a)

Yn(Vn − Vn+1) + Yn−1(Vn − Vn−1)− iωCgnVn = 0 (n = 2, . . . , N), (2b)

YN (VN+1 − VN )− iωCgN+1VN+1 = −Iω, (2c)

where the junction admittance is defined as

Yn(ω) = −iωCn − 1

iωLn
. (3)

System (2) can be written in the matrix form, Υ̂ (ω)V = I, in terms of the column
vectors VT = (V1, . . . , VN+1) and I

T = (Iω, 0, . . . , 0,−Iω), as well as the correspond-
ing matrix Υ̂ (ω). Then the chain impedance Z(ω) can be expressed in terms of the
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Fig. 3. (a) A schematic view of the Josephson junction chain and its impedance definition.
(b) Linear circuit, equivalent to the chain shown in (a), described by equations (2).

matrix elements of the inverse Υ̂−1(ω) as Z = (Υ̂−1)11 − (Υ̂−1)1,N+1 − (Υ̂−1)N+1,1 +
(Υ̂−1)N+1,N+1. At low frequencies, the admittances are dominated by the inductive
part, so the impedance is given by Z(ω → 0) = −iωLtot, where Ltot is the total in-
ductance of the chain,

Ltot =

N∑

n=1

Ln. (4)

The approximation Z(ω) ≈ −iωLtot is valid as long as ω � ω1, where ω1 is the lowest
normal mode frequency, for which det Υ̂ (ω) = 0.
As discussed in the introduction, ideally one would like to increase both Ltot and

ω1, but these two requirements are in conflict. Thus, one can try to maximize Ltot
at fixed ω1, or maximize ω1 while keeping Ltot fixed. We prefer the second option, as
the constraint expressed by equation (4) is much easier to resolve than the constraint
ω1 = const. Thus, our optimization problem is formulated as follows: find the spatial
profile of Ln, Cn, C

g
n which maximizes ω1 while keeping Ltot fixed.

To complete the formulation of the problem, we have to specify the independent
variables over which the optimization is performed.
The shape and size of the superconducting islands and of the junctions between

them can be well controlled in the fabrication process. It is easy to notice that while
the parameters Ln, Cn are mostly determined by the junction areas, the parasitic
ground capacitances Cgn are mostly determined by the island sizes. Thus, the first
obvious step is to minimize the island sizes as much as possible while keeping constant
the junction areas, as any part of the island area which does not participate in the
junctions, does not contribute to the inductance, but decreases ω1. This optimization
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was performed in references [2,9,13,14]. Then, the ground capacitance of the nth
island becomes a function of the areas of the junctions in which it particpates, n− 1
and n. This function was calculated numerically in reference [9], and the resulting
dependence resembles a weak power law or a logarithm. We will assume that this
first optimization step has been performed.
Then, our first setting corresponds to independent variation of all junction areas,

which are allowed to vary in a certain range. In the fabrication process, quite a wide
range of sizes can be achieved, and the restriction on the areas rather comes from phys-
ical considerations. One restriction is that for too small areas, the condition EJ � EC
is violated, and then the classical description of small phase oscillations is no longer
valid. Indeed, the amplitude of a quantum phase slip, ∝ e−(2/π)RQ/Zn [15] is expo-
nentially suppressed only for small junction impedances, Zn ≡

√
Ln/Cn � RQ (we

remind that RQ ≈ 13 kΩ denotes the resistance quantum), so too large impedances
are not allowed. The junction impedance is inversely proportional to its area, so the
area cannot be made too small. On the other hand, if the junction area is too large, the
junction can no longer be treated as a zero-dimensional object, because the frequency
of its own electromagnetic modes becomes too low.
Let us choose the smallest allowed junction area as the unit of area. Then the

largest allowed junction area Amax � 1 is an independent dimensionless parameter
of the problem. The junction inductance and capacitance at the smallest area, Lmax
and Cmin, can be chosen as the units of inductance and capacitance, respectively.
Thus, we have N dimensionless variables An, allowed to vary in the range

1 � An � Amax. (5a)

They determine the inductance and the capacitance of each junction as

Ln =
Lmax

An , Cn = CminAn, (5b)

and equation (4) thus imposes a constraint on the set {An}. In this case, the plasma
frequency of each junction is unchanged, 1/

√
LnCn = 1/

√
LmaxCmin ≡ ωp. Finally,

for the ground capacitances we use a simple form

Cgn = C
g
min g(An−1/2 +An/2), (5c)

where g(x) is some function, growing sublinearly with x (a power law or a logarithm).
All qualitative arguments given below are not sensitive to the specific dependence
g(x); in the numerical calculations, we set g(x) =

√
x, as mentioned in reference [14].

To define equation (5c) at the ends, we set A0 ≡ A1, AN+1 ≡ AN . Thus, the
first optimization problem is fully defined as maximization of ω1 determined from
equations (2), whose coefficients are expressed by equations (5b) and (5c) in terms of
the dimensionless areas An. The optmization variables are the areas An in the allowed
range (5a) and subject to constraint (4), as well as the number of the junctions N
itself. Note that constraint (4) and inequalities (5a) restrict the number of junctions
N to the interval

N0 ≡ Ltot
Lmax

� N � N0Amax. (6)

The second way of producing a spatial variation of the JJ chain parameters is to
replace each junction by a SQUID. Each SQUID is characterized by its loop area Sn,
independent of the junction area An (Fig. 2). By applying a magnetic field B, one
can change the SQUID inductance as

Ln(B) =
Ln(0)

| cos(πBSn/Φ0)| (7)
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where the zero-field inductance Ln(0) is determined by the junction areaAn. This way
of tuning the properties of the JJ by magnetic field is routinely used in experiments
(see, e.g., Ref. [16]). Here, it is crucial for us that the spatial variation of inductance is
independent of that of capacitance, which was not the case in the previous model, since
in equation (5b) the product LnCn remained fixed. Thus, instead of the optimization
problem defined by equations (5a)–(5c) via variables A1, . . . ,AN , we consider another
problem defined via variables F1, . . . ,FN :

1 � Fn � Fmax, (8a)

Ln =
Lmax

Fn , Cn = Cmin, C
g
n = C

g
min. (8b)

All junction areas are assumed to be the same, An = 1, so the plasma frequency of
each SQUID is modulated as 1/

√
LnCn = ωp

√Fn, and each variable Fn represents
the ratio

Fn = | cos(πBSn/Φ0)|
cos(πΦmax/Φ0)

,
1

Fmax ≡ cos
πΦmax
Φ0

, (9)

where Φmax is some maximal magnetic flux allowed to pierce the SQUID loops in
order for the device to remain in the superconducting regime EJ � EC . Clearly, {Fn}
are independent variables, because {Sn} are independent, and additional freedom
is introduced by the magnetic field. Just like before, the only constraint on Fn is
equation (4), and it restricts the chain length N to the interval

N0 ≡ Ltot
Lmax

� N � FmaxN0. (10)

The two optimization problems, defined by equations (5a)–(5c) and by
equations (8a)–(8b), will be studied in the next two sections, respectively.

3 Junction area modulations

Before we proceed with optimization for inhomogeneous JJ chains, it is useful to see
what can be achieved in the homogeneous case, for future reference. For the problem
(5a)–(5c), with all An = A, we have only two variables, A and N . Constraint (4) fixes
A = N/N0, Ln = LmaxN0/N , Cn = CminN/N0, Cgn = Cgmin g(N/N0). It is convenient
to denote the first mode frequency for this homogeneous chain by ΩN . It is given
by [9]

Ω2N =
1

LC

1− cos[π/(N + 1)]
1− cos[π/(N + 1)] + Cg/(2C)

≈ (LmaxCmin)
−1

1 + (Cgmin/Cmin)(N0/π)
2[x/g(x)]2

(11)

for N � 1. This is a decreasing function of x ≡ N/N0 for any g(x) growing slower
than linearly with x. Thus, ω1 is maximized by taking N = N0, all Ln = Lmax. We
denote the corresponding value of ω1 by ΩN0 .
To improve this result using an inhomogeneous chain, one should take some N >

N0 [a smaller one would be incompatible with the constraint (4)], and hope that
the gain in ω1 from the inhomogeneiety would overcome the loss due to the length
increase. A qualitative idea of the best spatial profile An can be obtained from the
perturbation theory for system (2), developed in reference [17]. Let us use the homo-
geneous chain of length N with all An = A = N/N0 and the first mode frequency ΩN
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as the zero approximation. If we now modify each junction area by a small amount
ΔAn, the first-order frequency shift is given by [17]

Δω1
ΩN

=
1

N + 1

(
1− Ω2NLmaxCmin

) N∑

n=1

αn
ΔAn
A , (12a)

αn = sin
2 πn

N + 1
+
2Ag′(A)
g(A)

(
cos

π

N + 1
sin2

πn

N + 1
− cos2 π/2

N + 1

)
. (12b)

The dependence of αn on n is quite simple (sin
2+ const), and αn is the largest for

n = (N + 1)/2, in the middle of the chain. The value at the maximum α(N+1)/2 > 0

as long as [2Ag′(A)/g(A)] sin2[π/(N + 1)] < 1, which is the case for any sublinear
g(x) and N > 4. Thus, the center of the chain contributes the most to the increase
of ω1.
Let us take N = N0 + 1. Then, the largest increase of the areas near the center,

allowed by constraint (4), is obtained by keeping N0 − 1 junctions with An = 1, and
two more junctions with An = 2, to be put in the center. (Note that it is impossible
to keep N0 junctions with An = 1, as the constraint would require the remaining
one to have An =∞.) As the area change for the central junctions is not small,
the perturbative equation (12a) is not sufficient to describe this situation. Still, ω1
for this structure can be found analytically. The result of this straightforward but
bulky calculation, given in Appendix, is that the resulting frequency is always smaller
than ΩN0 .
The full optimization of all junction areas {An}, subject to constraint (4), can

be performed numerically. For any N > N0, we maximize ω1 as a function of all
the areas, calculated numerically from the eigenvalue equation det Υ̂ (ω) = 0. The
resulting maximum ω1 is plotted versus N in Figure 4 for several values of Cmin/C

g
min

andAmax. The analytical result of Appendix shows that the curve starts to bend down
at N = N0 + 1, and the numerics shows that the same trend is followed for all N .
Thus the optimal ω1 at N > N0 is always below the best value for the homogeneous
chain, ΩN0 . In Figure 5 we show the optimal spatial profile {An}, corresponding to
one of the points in Figure 4. Indeed, the best ω1 for a fixed N is obtained by placing
the largest junctions in the middle of the chain. Still, the resulting gain in ω1 is smaller
than the loss due to the increase of the chain length from N0 to N .

4 SQUID loop area modulations

As in the previous section, we start by a straighforward study of the homogeneous
case. Constraint (4) fixes F = N/N0, so for the chain with Ln = LmaxN0/N , Cn =
Cmin, C

g
n = C

g
min, assuming N � 1, instead of equation (11) we have

Ω2N ≈
πλ

LtotCmin

N/(πλ)

1 +N2/(πλ)2
, (13)

where λ =
√
Cgmin/Cmin is the screening length, which does not depend on N and{Fn} for problem (8b)–(8a). Expression (13) reaches maximum at N = πλ, so we have

to consider three cases for the position of this value with respect to the interval (10).
(i) In the case πλ > FmaxN0, the frequency is maximized by taking the longest

possible chain, N = FmaxN0. This case corresponds to the regime when for all allowed
N the first mode is on the flat part of the mode dispersion curve (Fig. 1). This means
that we have demanded a value of Ltot which is too small; a larger inductance can be
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Fig. 4. The first mode frequency ω1 (in units of the plasma frequency ωp ≡ 1/
√
LmaxCmin)

obtained by full numerical optimization of all junction areas {An}, subject to constraint (4).
We take N0 = 25 for all curves, while λ

2 ≡ Cmin/Cgmin = 400 and 16 for panels (a) and
(b), respectively. Two values of Amax = 3 and 10 were chosen, shown by the blue and red
symbols (lower and upper curves), respectively, on each panel. The solid curve shows ΩN ,
the first mode frequency for the homogeneous chain with Ln = LmaxN0/N , Cn = CminN/N0,

Cgn = C
g
min

√
N/N0, and the dashed horizontal line shows the best homogeneous result ΩN0 .

obtained by simply increasing the length at almost no cost in ω1. So, this case has no
practical relevance.
(ii) When N0 � πλ � FmaxN0, the frequency is maximized at N = πλ. This cor-

responds to the first mode frequency roughly at the boundary between the flat part
of the mode dispersion curve and its acoustic part.
(iii) In the case πλ < N0, the frequency is maximized by taking the shortest pos-

sible chain. This regime corresponds to demanding such a large inductance Ltot that
the first mode necessarily belongs to the acoustic part of the dispersion curve. This
is the regime where the competition between Ltot and ω1 is the most severe; it is in
this regime that a gain in ω1 by introducing a spatial variation of Fn would be the
most interesting for practical purposes.



1508 The European Physical Journal Special Topics

Fig. 5. The optimal spatial profile {An}, giving the largest ω1 for N0 = 25, N = 50, Amax =
10, Cmin/C

g
min = 400.
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Fig. 6. Solution of equation (20) as a function of N1 for different values of F = 2, 4, 8, 16
(from the upper to the lower curve, respectively).

The perturbation theory in small modulations ΔFn with respect to a homogeneous
chain with N junctions gives a result, similar to equation (12a):

Δω1
ΩN

=
1

N + 1

N∑

n=1

ΔFn
F sin2

πn

N + 1
, (14)

which again tells us that inductance modulations in the center of the chain contribute
the most to the increase in ω1. As in the previous section, we now consider a chain
of length N = N0 + 1 with inductances of two junctions in the center smaller by a
factor F = 2. The explicit calculation is given in Appendix shows that this chain has
ω1 > ΩN0 , and thus one can indeed improve over the homogeneous result. However,
for long chains, N0 � πλ, the gain is quite small:

ω1 − ΩN0 ≈
1

2N0
√
LC

(
πλ

N0

)3
. (15)
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Fig. 7. The first mode frequency ω1, in the units of the plasma frequency ωp ≡
1/
√
LmaxCmin, obtained by full numerical optimization of all {Fn}, subject to constraint (4),

shown by symbols for Fmax = 2 and 10 (blue circles and red squares, respectively). The solid
curve shows the first mode frequency ΩN for the homogeneous chain with Ln = LmaxN0/N ,
Cn = Cmin, C

g
n = C

g
min. We take N0 = 25 for all curves, while λ = 20 and 4 for panels (a)

and (b), respectively. The dashed horizontal line shows the best homogeneous result.

Is it possible to gain more in ω1 by choosing a chain length N significantly exceed-
ing N0? As a trial spatial profile, let us consider a long chain with a central region
of length N − 2N1 � 1 where the inductances are smaller by a factor F than in the
surrounding (although this piecewise profile does not coincide with the true optimal
one, found numerically below, it allows for a simple analytical solution):

Ln =

⎧
⎨

⎩

Lmax, 1 � n � N1,
Lmax/F , N1 < n < N −N1,
Lmax, N −N1 � n � N.

(16)

Constraint (4) then fixes

N1 =
FN0 −N
2(F − 1) . (17)

For N − 2N1 � 1, we can study the problem in the continuum limit, replacing the
junction number n by a continuous variable x. In addition, let us focus on the most
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Fig. 8. The optimal spatial profile of the inductance, Ln/Lmax, giving the largest ω1 for
N = 46, Fmax = 2 (blue circles) and forN = 111, Fmax = 10 (red squares). Other parameters
are N0 = 25, λ = 20.

interesting case of long chains N0 � πλ, then one can approximate the mode disper-
sion by the acoustic one, ω(q) ≈ q/√LCg. Then, equations (2) are transformed into
the Helmholtz equation with von Neumann boundary conditions at the ends of the
chain, (

∂

∂x

1

L(x)

∂

∂x
+ ω2Cg

)
V (x) = 0,

∂V

∂x

∣∣∣
∣
x=0,N

= 0. (18)

For the piecewise function L(x), given by equation (16), and for a given frequency ω,
the wavenumbers in the outer regions and in the central region are given by q =
ω
√
LmaxC

g
min and by q/

√F , respectively. Thus, taking advantage of the symmetry
of L(x) with respect to x→ N − x, we seek V (x) in the form (the first mode is odd)

V (x) =

⎧
⎨

⎩

A cos qx, 0 < x < N1,

A′ sin[q(N/2− x)/√F ], N1 < x < N −N1,
−A cos(qN − qx), N −N1 < x < N.

(19)

The requirement of continuity of V and (1/L)(∂V/∂x) at x = N1, N −N1 yields the
following equation for q:

tan

[√
F q
(
N0

2
−N1

)]
=
√
F cot qN1. (20)

For all F > 1, upon increasing N1 from 0 to N0/2 (that is, upon decreasing N
from N0F to N0), the solution monotonically rises from q = π/(N0

√F) to q = π/N0
(Fig. 6), the highest frequency being achieved in the shortest homogeneous chain. This
means that in the limit N0 � πλ the gain in ω1 is so small that it is not captured by
the acoustic approximation.
To check these considerations numerically, we perform the full optimization of

all {Fn}, subject to constraint (4). As in the previous section, for any N > N0, we
maximize ω1 as a function of all the areas, calculated numerically from the eigenvalue
equation det Υ̂ (ω) = 0. The resulting maximum ω1 is plotted versus N in Figure 7
for several values of λ and Fmax. The optimal spatial profile of the inductance is
shown in Figure 8; as in the previous section, it corresponds to putting the small-
inductance junctions in the middle of the chain, and the large-inductance ones near
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Fig. 9. (a) The N0 dependence of the first mode frequency for the optimal inhomogeneous
chain having the optimal length (symbols) and for the shortest homogeneous chain with
N = N0 (solid curve). The frequencies are measured in the units of the plasma frequency
ωp ≡ 1/

√
LmaxCmin. (b) The N0 dependence of the chain length Nopt, at which the optimal

value of ω1 is obtained. On both panels the blue circles and the red squares correspond to
Fmax = 2 and 10, respectively, and we took λ = 20.

Fig. 10. A schematic representation of a JJ chain with two modified central junctions.

the ends. From the analytical arguments above, we do not expect the first mode
frequency for the optimal inhomogeneous chain of optimal length to be much larger
than for the shortest homogeneous chain. This is checked numerically in Figure 9a,
where we plot the two frequencies as a function of N0 (we remind that at fixed Fmax,
N0 parametrizes the desired total inductance). For long chains, the improvement due
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to spatial modulation is indeed negligible. The optimal length of the modulated chain
is close to N0 at large N0 (up to a constant offset), as shown in Figure 9b.

5 Conclusions

In this work, we explored the possibility to optimize the frequency range where a JJ
chain can work as a superinductor, by a careful choice of the spatial profile of the
junction parameters. In the case when junction areas are varied, the best result is
still obtained for a spatially homogeneous chain, as in reference [9]. Another way to
introduce a spatial variation is to represent the junctions by SQUIDs whose loop areas
are different. Then, by applying a magnetic field, one can vary the junction inductance
independently from its capacitance. We show that this strategy can indeed give an
improvement with respect to the homogeneous case, if the most inductive junctions
are placed near the ends of the chain, and the least inductive ones in the middle. Still,
we find that this improvement becomes less important for longer chains.
The qualitative difference between the cases of junction area and SQUID loop

area modulations stems from the fact that in the first case, the plasma frequency of
each junction, 1/

√
LnCn, remains fixed. In the second case, the junction inductance

can be decreased independently from the capacitance, which leads to an increase of
the local plasma frequency, and to a certain degree increases the overall frequency
scale.

We are grateful to W. Guichard and F. Hekking for stimulating discussions and critical read-
ing of the manuscript. We also acknowledge support from the European Research Council
(Grant No. 306731).

Appendix

Chain with two central junctions modified

Let us start by deriving the dispersion relation for a homogeneous chain of N junc-
tions with parameters L1, . . . , LN = L, C1, . . . , CN = C, C

g
1 , . . . , C

g
N+1 = C

g, and√
C/Cg ≡ λ. equation (2b) becomes

1− ω2LC
ω2LCg

(2Vn − Vn+1 − Vn−1)− Vn = 0. (A.1)

A plane wave, Vn = A±e±iqn, with any A± and q satisfies this equation, provided
that

1− ω2LC
ω2LCg

2(1− cos q)− 1 = 0, (A.2)

which gives the usual dispersion relation [9],

ω(q) =
1√
LC

√
1− cos q

1− cos q + 1/(2λ2) . (A.3)

For a given ω, we seek the solution in the form A+e
iqn +A−e−iqn, and substitute it

into equations (2a), (2c) at the ends of the chain, which play the role of the boundary
conditions.
These give, respectively,

A+e
iq(1− e−iq) +A−e−iq(1− eiq) = 0, (A.4a)

A+e
iq(N+1)(1− eiq) +A−e−iq(N+1)(1− e−iq) = 0. (A.4b)
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The first of these equations requires the solution to have the form

Vn = A cos[q(n− 1/2)], (A.5a)

while the second one imposes the form

Vn = B cos[q(n−N − 3/2)], (A.5b)

with some A and B. Matching these expressions in the bulk of the chain, we obtain
two possibilities, corresponding to even and odd modes with respect to reflection
n→ N + 2− n:

A = B, q(n− 1/2) = q(n−N − 3/2) + 2πk, (A.6a)

A = −B, q(n− 1/2) = q(n−N − 3/2) + 2πk + π, (A.6b)

where k is an integer. Thus, the even modes have q = 2kπ/(N + 1), and the odd ones
q = (2k + 1)π/(N + 1). Note that the first mode is odd.
Now, let us consider a chain with two central junctions modified. We assume

N = N0 + 1 to be even, N = 2N1, then we can again take advantage of the reflection
symmetry, n→ N + 2− n. In the homogeneous part of the chain we assume Ln = L,
Cn = C and C

g
n = C

g, while in the central region we set

LN1 = LN1+1 =
L

ξ
, (A.7a)

CN1 = CN1+1 = ζC, (A.7b)

CgN1 = C
g
N1+2

= ηCg, CgN1+1 = η
′Cg. (A.7c)

For the junction areas’ variation, considered in Section 3, we have to set ξ = ζ = 2,
η = g(3/2), η′ = g(2). For the loop areas’ variation (Sect. 4), we have ξ = 2, ζ = η =
η′ = 1. The reflection symmetry is preserved, so the modes can still be classified as
even or odd, and by continuity we know that the first mode is odd. Thus, similarly
to equations (A.5a), (A.5b), we can seek Vn in the form

Vn =

⎧
⎨

⎩

A cos[q(n− 1/2)], n � N1,
0, n = N1 + 1,
−A cos[q(n−N − 3/2)], n � N1 + 2,

(A.8)

with yet unknown q which will be determined by matching the solutions in the middle
of the chain. Note that as q is related to the frequency by the dispersion relation (A.3),
which is a monotonically increasing function, it is sufficient to check whether the
value of q, obtained by matching the solutions, is larger or smaller than the one
corresponding to the shortest homogeneous chain, q0 = π/(N0 + 1) = π/(2N1).
Vn in the form (A.8) automatically satisfy the Kirchhoff laws for the nodes

n = 1, . . . , N1 − 1, N1 + 1, N + 3, . . . , 2N1 + 1. The Kirchhoff laws for the remain-
ing n = N1, N1 + 2 are identical, so we have one independent equation which
determines q:

1− ω2LC
ω2LCg

[cos(qN1 − q/2)− cos(qN1 − 3q/2)]

+

(
ξ − ζω2LC
ω2LCg

− η
)
cos(qN1 − q/2) = 0, (A.9)
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where the frequency ω is related to q by equation (A.3). Note that η′ dropped out of
the equation as VN1+1 = 0. Equation (A.9) can be identically rewritten as

S(q) cos(qN1 − q/2)− cos(qN1 − 3/2) = 0,
S(q) ≡ 1 + ξ + [λ2(ξ − ζ)− η] 4 sin2 q

2
,

or, equivalently, as

cot qN1 =
2− ξ − [1− η + λ2(ξ − ζ)]4 sin2(q/2)
ξ + [1− η + λ2(ξ − ζ)]4 sin2(q/2) tan

q

2
. (A.10)

The left-hand side of this equation passes through zero precisely at q = π/(2N1) =
q0 � 1, with a large negative slope. Thus, to find out whether the solution q = q∗ is
larger or smaller than q0, we just need to check the sign of the right-hand side at
q = q0.
When only junction areas AN1 ,AN1+1, are varied, that is, ξ = ζ = 2 and η =

g(3/2) > 1, the large factor λ2 drops out, so the right-hand side of equation (A.10)
is necessarily positive, and thus q∗ < q0. For the variation of SQUID loop areas only,
we have ξ = 2, ζ = η = 1, which leads to q∗ > q0. Note, however, that the difference
q∗ − q0 is quite small:

q∗ − q0 ≈ π

2N20

(
πλ

N0

)2
. (A.11)
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