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Abstract. Time reversal (TR) focusing of ultrasound in granular pack-
ings is experimentally investigated. Pulsed elastic waves transmitted
from a compressional or shear transducer source are measured by a
TR mirror, reversed in time and back-propagated. We find that TR
of ballistic coherent waves onto the source position is very robust
regardless driving amplitude but provides poor spatial resolution. By
contrast, the multiply scattered coda waves offer a finer TR focus-
ing at small amplitude by a lens effect. However, at large amplitude,
these TR focusing signals decrease significantly due to the vibration-
induced rearrangement of the contact networks, leading to the break-
down of TR invariance. Our observations reveal that granular acoustics
is in between particle motion and wave propagation in terms of sen-
sitivity to perturbations. These laboratory experiments are supported
by numerical simulations of elastic wave propagation in disordered 2D
percolation networks of masses and springs, and should be helpful for
source location problems in natural processes.

1 Introduction

In a non-dissipative medium, the wave equation is symmetric in time. Therefore,
for every wave diverging from a pulsed source, there exists in theory a wave, the
time-reversed wave, that precisely retraces all its original paths in a reverse order
and converges in synchrony at the original source as if time were going backwards.
This time-symmetry exists even in a strongly heterogeneous medium where waves are
strongly reflected, refracted, or scattered. In the early nineties, an original method for
generating such a time-reversed wave was proposed in acoustics [1]: a pulsed wave is
sent from a source, propagates in an unknown media and is captured at a transducer
array termed a “Time Reversal Mirror (TRM)”. Then the waveforms received at each
transducer are reversed in time and sent back, resulting in a wave converging at the
original source regardless of the complexity of the propagation medium. TRMs have
now been implemented in a variety of physical scenarios from hundreds of Hz in ocean
acoustics [2] and MHz Ultrasonics [3] to GHz Microwaves [4]. Common to this broad
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range of scales is a remarkable robustness exemplified by observations that the more
scattering the medium, the sharper the focus [2–7].
For the last decade the time reversal focusing concept has also been a very active

research in seismology, especially for seismic source imaging and source location of
seismic events that exhibit no compressional (P-) and shear (S-) wave arrivals, such as
tremor, glacial earthquakes and Earth hum [8,9]. In that case the real Earth, i.e., the
medium where the wave field is generated and propagates, and the virtual Earth, i.e.,
the velocity model in which the time-reversed wave is numerically back-propagated,
are however different.
As a model system for athermal amorphous media or seismic fault gouges, the

granular medium constitutes a particular case among strongly scattering systems
[10–12]. Dry granular media are collections of macroscopic grains that interact
through repulsive and frictional contact forces. For given values of macroscopic control
parameters, such as packing density and confining pressure, granular media exhibit
many microstates characterized by highly heterogeneous contact force networks that
can rearrange under driving. These media whose features range from the microscopic
scale (grain) to the mesoscopic scale (force-chain) and the macroscopic scale (bulk),
may be modelled either as particulate or continuum materials [13].
Elastic waves that propagate from grain to grain provide a unique probe of

the contact force networks. Generally speaking, one distinguishes between the long-
wavelength coherent (P- and S-) waves and the short-wavelength scattered waves
scattered by the heterogeneous force chains [11], often referred to as coda waves. The
study of the TR focusing of elastic waves in a granular medium raises two challenging
issues. First, no wave equation is available at the scale of the force chains. This issue is
related to a fundamental question: at what scale is the continuum elasticity applica-
ble in a contact network [14–17]? Secondly, one may wonder whether time-reversal
invariance still holds in a fragile granular medium, beyond a certain wave amplitude
where the wave itself not only acts as a probe but also as a pump, leading to the
acoustic fluidization of the jammed media via the rearrangement of the contact net-
work [18–20]. This situation is fundamentally different from those previously reported
where a perturbation was introduced in the continuous medium between the forward
and backward propagation steps [6,7].
In this work, we address the above issues by experimentally investigating time-

reversal focusing of ultrasonic waves in glass bead packings under external load. The
robustness of TR invariance is tested with a specifically developed TRM as a function
of the source amplitude. A particular attention is paid to the spatial extent of the
rearrangement caused by the large-amplitude driving.

2 Experiments

A sketch of the experimental setup is shown in Figure 1a. Our granular materials
consists of dry monodisperse glass beads of diameter d = 1.5 or 3mm, confined in a
cylindrical container of diameterD = 150mm with rigid walls (i.e., an oedometer cell)
which is filled to a height of H ≈ 55mm with a packing density of about φ ≈ 0.62.
A static uniaxial stress P ≈ 85 kPa is applied to the granular packing. To perform
the time-reversal experiment, a compressional or shear transducer is placed in contact
with the granular packing at the top of the cell and used as a source excited by a
3-cycle tone burst centered at f = 100 kHz. We have developed a specific time-reversal
mirror (TRM) with sixteen identical transducers, compressional or shear. Six other
transducers surrounding the source (with a pitch of 20mm between neighbouring
transducers) are used to measure the extension of the time-reversed focal spot. The
diameters of these transducers are a = 12mm, which are sufficiently larger than the
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Fig. 1. (a) Experimental setup: glass beads are placed between the source S1 and the
16-element TRM. Detectors S2 to S7 allow for measurements of the spatial focusing.
(b) A typical ultrasonic waveform transmitted through a packing of glass beads with a
diameter of d = 1.5mm detected at bottom by D1. It consists of a low-frequency coherent
wave followed by high-frequency scattered waves. Inset: an injected pulse inside the bead
packings (zoomed), detected at a distance H ≈ 4mm close to the source.

Fig. 2. Recompression signals recorded at the source location S1 and at the closest
neighbouring detectors S2 and S3 after time-reversal and back-propagation of (a) the
low-frequency coherent wave and (b) the high-frequency multiply scattered waves in bead
packings (d = 1.5mm).

bead size to ensure an efficient detection of transmitted elastic waves. To investigate
nonlinear effects, we vary the source amplitude from 5 to 300V, corresponding to a
vibration displacement u0 ≈ 1–60 nm [19,20].
TR in the linear regime. Figure 1b depicts a typical waveform transmitted through

a packing of 1.5mm-diam glass beads, excited by a longitudinal transducer at small
amplitude (u0 < 5 nm) and measured by one of four transducers located at the cen-
tre of the TRM. We clearly identify the early arrival of low-frequency coherent
ballistic P wave (fLF ∼ 15 kHz), followed by high-frequency waves (fHF ∼ 80 kHz)
resulting from the scattering by the heterogeneous force chains, i.e., coda waves. The
compressional wave velocity can be measured by the time-of-flight of P-wave pulse as
VP ≈ 500m/s, which gives a wavelength λ of about 33mm and 6mm (∼4d) for the
long-wavelength coherent and short-wavelength coda waves, respectively. The obser-
vation of a dominant low-frequency P-wave (Fig. 1b) stems from the large number of
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beads which are in contact with the ultrasonic detector (a/d ∼ 8); the spatial aver-
aging thus enhances the coherent wave detection and partly cancels scattered waves,
i.e., the acoustic speckle [11].
In a first TR experiment, only the coherent wave received by the TRM (16

transducers) is time-reversed and back-propagated. As shown in Figure 2a, the
time-reversed signal is focused at the source location around the focal time t ≈ 0
(arbitrary) but with a spot much larger than the source size. In a second series of
experiments, only the coda waves are selected, time-reversed and back-propagated.
The TR focal spot is found to be finer with the scattered coda waves (Fig. 2b) than
with the coherent wave (Fig. 2a), providing a higher resolution of the source location.
In a homogeneous medium, diffraction theory predicts a focal spot of size around
λH/D where D is the aperture of the TRM and H the focusing distance. To as-
certain that the fine TR focusing provided by coda waves is not simply associated
with its higher frequency content, we have performed the same TR focusing exper-
iment with a single-transducer TRM. In that case no focusing is expected for the
low-frequency coherent wave but we found that time-reversed coda waves are still
focused. Such observation is in agreement with previous TR experiments performed
in strongly multiple scattering media [3,7] or chaotic cavity [5]: multiple scattering al-
lows for redirection of the source angular spectrum towards the TRM, which amounts
to creating a virtual aperture larger than the actual TRM aperture - a kind of lens
effect [3,5]. Notice that TR of the long-wavelength coherent wave is very robust to ex-
ternal perturbations, e.g. by a gentle tapping between the forward and the backward
propagation steps, whereas the short-wavelength coda waves are not. Relatively small
amplitude of high-frequency components observed in the TR recompression signals
(Fig. 2) compared to the injected pulse (inset of Fig. 1b) is due to the spatial filtering
by TRM elements mentioned above.
TR in the nonlinear regime. In the following, we concentrate on the source local-

ization by the TR focusing with multiply scattered waves. To this end, we conduct
TR experiments in packings of 3mm-diam glass beads where the elastic wave trans-
mission is dominated by scattered coda waves with λ/d ∼ 2 (Fig. 3a), thanks to a
small number of beads in contact with the detector (a/d ∼ 4). The transport mean
free path is about l� ∼ λ [12]. To measure the fidelity of the wave reconstruction,
we follow the pulse recompression at the source location as a function of the driving
amplitude either a compressional or shear source. The quality of this reconstruc-
tion can be evaluated through the signal-to-noise ratio (SNR), defined as the peak
amplitude of the TR recompression signal at the focal time (centered at ≈ 100 kHz
as the injected pulse) divided by the standard deviation (RMS) of the symmetrically
surrounding side-lobes calculated in a time-window of arbitrary length (rectangular
boxes in Fig. 3b). Here it is important to point out that these side-lobe signals are
not due to the electronic noises but to the imperfections of the TR focusing [3,5], and
therefore the SNR is a clear indicator of the wave fidelity.
We have verified that both the TR signals at the focal time and their side-lobes

increase with the source amplitude v0 in the linear regime when v0 < 50mV (or u0 <
5 nm) (data not shown), giving rise to a constant SNR (taken as 1 in Fig. 3c). However,
in the nonlinear regime (u0 > 6 nm), the peak amplitude starts to increase in a slower
way (and tends to saturation) than the side-lobes amplitude, resulting in a decrease of
SNR with increasing the source amplitude. Such effect is even more pronounced with a
shear source transducer as seen in Figure 3c. The loss in the fidelity of the TR focusing
process is likely associated with the breakdown of the TR invariance between the
forward and backward propagation steps, caused by the rearrangement of the contact
network (without visible grain motion) induced by the large source amplitude [19,20].
This scenario is also consistent with the difference observed between transmitted coda
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Fig. 3. The (longitudinal) source amplitude is gradually increased in bead packings
(d = 3mm). (a) Typical waveforms received at the TRM excited by various source am-
plitudes v0 (corresponding to u0 ≈ 6, 30, 54 nm). (b) TR signals measured at the source
positions where (red) boxes denote the range of side lobes for the RMS estimation.
(c) Ratio of the TR signal at the focal time to RMS versus v0 both for a compression
and shear acoustic source.

signals excited at small and large source amplitudes, respectively, during the forward
propagation step (Fig. 3a).
In order to evaluate the spatial extent of the network rearrangement caused by

the strong source vibration, we examine the local change of the contact networks by
using correlation of the configuration-sensitive multiply scattered waves, i.e., acoustic
speckles [11,21]. More precisely, we measure the normalized correlation function Γ
that quantifies the degree of similarity of two successive, small-amplitude multiply
scattered waves (used as nondestructive acoustic probe) recorded before and after
the large-amplitude driving [19,20]; these waves are transmitted through the different
zones of the granular packing surrounding the source S1 (Fig. 4a). We observe that
the multiply scattered waves crossing the source location zone, from transducers S2
to S3 or from S1 to D1, exhibit an important decorrelation Γ < 0.4 (Fig. 4b). On the
other hand, the scattered waves primarily through the zones away from the source,
e.g. from S2 to S6 on the source side or from D2 to D1 on the TRM side, remain
highly correlated Γ > 0.9 (Fig. 4c). These results clearly indicate that the vibration-
induced rearrangement of the contact networks in the nonlinear regime takes place
primarily in the vicinity of the source and the fidelity loss of the TR focusing is mainly
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Fig. 4. Comparison of small-amplitude multiply scattered coda signals recorded before
and after the large source driving. (a) These coda waves travel through different zones
surrounding the source transducer. The degree of similarity Γ inferred from correlation of
coda waves shows that there are (b) the important vibration-induced structural change
(Γ ≈ 0.42) around the source from S2 to S3, (c) but almost not (Γ ≈ 0.93) away from the
source from S2 to S6 (see text).

due to the structural change of granular packings between the forward and backward
propagation steps.

3 Numerical simulations

The range of frequency used in this study lies well below the first resonances of a 3mm-
diam glass bead (the shear-like spheroidal mode arises at fres = VSglass/d ∼ 1MHz).
Thus the granular network can be modelled as an effective random network of point
masses (beads) and springs [22], which exhibits spatial fluctuations of both density
and elastic modulus. However, in the regime of multiple wave scattering, the elastic
wave equations deduced from first principles calculation [23] are not available for
such amorphous-like granular media. Various numerical simulations using molecular
dynamics (MD) or discrete element method (DEM) based on the frictional Hertzian
interaction have thus been used out to model the wave propagation through granular
packings [24–26].
Description of the model. Here, for simplicity, we investigate the TR focusing

based on a toy model: a 2D percolation network of point masses connected by springs
in which the structural disorder is obtained by randomly placing the masses m on
the simple square lattice sites with a fraction p of the sites occupied. Using a uniform
spring constant k, such a percolation network in 3D was previously used to simu-
late the heat diffusion (phonon transport) in amorphous solids where the amount of
disorder can be controlled through p (as the number density) [27]. To account for
the heterogeneous network of the contact force (and stiffness) in a granular pack-
ing [13–17], we add disorder in the distribution of spring constants which are ran-
domly chosen from a uniform distribution between 0 and 2k0. Figure 5a and 5b depict
sketches of a 2D percolation network where a given mass interacts in general with
eight neighbours via different k; if we fill the lattice sites with monodisperse beads
(disks) of diameter d (equal to the lattice constant a0) using a p ≈ 0.91, the surface
fraction of disks is about φ = 0.72 (φrcp = 0.82 for the random close packing in 2D).
Unlike previous simulations [22,27], we consider here the full elastic wave propa-

gation (longitudinal and transverse modes) through a percolating network of L× L
(L = 70 in Fig. 5b) with the displacement field ri(t) of a given bead at the
site i in the plane (x, y). To ensure the linear response to a transverse or shear
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Fig. 5. (a) Sketch of the 2D percolating network of masses and springs with lattice constant
a0. (b) One realization of a 70× 70 network with a number density p ≈ 0.91 where the
lattice sites are occupied by disks of diameter d = a0, giving a the surface fraction of disks
around 0.72. (c) Snapshot of a typical transmitted wave field ux(r, t) at t = 46t0 where the
coherent wave (near x ≈ 60d) is very weak due to strong multiple scattering. (d) Temporal
signal ux(r, t) recorded at position (x = 66d, y = 10d) which lasts about 1000t0 for a source
duration of 5t0.

displacement, the network is stretched by a static strain of ε = 0.2 via the four walls
and the new positions of the beads define the initial stressed state r0i . The displace-
ment ri(t) satisfies the equation,

m
d2ri
dt2

=
∑

i′
Kii′ (rii′ − a0) rii′

rii′
+
∑

i′
β

(
dri′

dt
− dri
dt

)
(1)

where ri(t) = ui(t) + r
0
i with ui(t) the dynamic displacement (||ui|| < 0.5||r0i ||), rii′

is the distance vector between the bead i and the nearest neighbour i′, a0 the spring
length at rest (lattice constant),Kii′ the fluctuating spring constants and β a damping
constant.
Figure 5c shows a typical wave transmission field excited by a source consisting

of three beads near the left wall (x = 4d), oscillating along the x-axis uxS(r0, t) with

one-cycle of sine at frequency f = 0.2f0 with f0 =
√
k0/m (one takes m = 1 and

k0 = 1). This snapshot of the dynamic displacement u
x(r, t) at t = 46t0 (t0 = 1/f0)

(β = 5 · 10−3 m/t0) reveals a wave field composed of a weak coherent longitudinal
wave (near x = 60 d) followed by an irregular interference pattern likely due to mul-
tiply scattered waves; this observation is consistent with the temporal response uxi (t)
detected at one site i (Fig. 5d). For the frequency used here, the longitudinal wave-
length is λ = VP /f ≈ 6d with attenuation length le ≈ 10d dominated by scattering
(data not shown), which indicates a weak multiple scattering regime (le < 0.15L).
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Fig. 6. Linear regime: (a) snapshot of a typical TR wave field ux(r, t) at the focal time t = T
where the waves add up coherently near the source location but incoherently elsewhere. (b)
Recompressed signal by TR at the source r0. Nonlinear regime: (c) snapshot of a TR wave
field ux(r, t) at t ≈ T in the presence of rearrangements. TR focusing around the source
location is less efficient than in the case without rearrangement shown in (a); (d) fidelity R
decreases as the driving amplitude increases. Inset: comparison of recompressed signals by
TR focusing with (in red) and without (in blue) rearrangements.

TR focusing in the linear regime. To test the TR focusing process, we take seventy
beads near the right wall (at x = 66 d) as receivers (i.e., TRM). We then time-reverse
the displacement signals uD(r, t) detected by each TRM element and back-propagate
uD(r, T − t) with T the signal duration. Figure 6a shows a snapshot of the ux field
near the focal time t = T (see the whole movie in the supplementary material). We
observe that waves add up coherently near the source location but incoherently else-
where, indicating that time-reversed waves do converge back to the source. We also
check in Figure 6b the recompressed displacement signal Ψ(t) = uxS(r0, t) at the source
location; the sharp peak at t ≈ T confirms the TR focusing of elastic waves at the
source.
TR focusing in the nonlinear regime. We now seek to model the irreversible sound-

matter interaction effect, i.e., rearrangements of the contact network observed in TR
experiments. This phenomenon is presumably related to the contact sliding between
grains by the large source driving which modify partly the initial contact network
without visible motion of grains [19,20]. To simulate the modified contacts during the
forward propagation step, we compare the maximum dynamic displacement ||umaxi ||
at each bead to its static stretching ||r0i || and apply a local yield criterion ||umaxi || ≥
0.02||r0i ||. The larger the source amplitude, the larger the number of modified contact
and the rearranged zone (data not shown). We ascribe to each modified contact a new
value k randomly chosen from the uniform distribution of stiffness and build up a new
configuration of the network. Hence, we time-reverse the forward propagating signals
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through the initial network for a given source amplitude and back-propagate them in
the accordingly rearranged network (note that in experiments the initial network is
modified during the forward propagation step).
Figure 6c shows a snapshot of the displacement field ux after the TR process at

the focal time in the presence of rearrangements (see the whole movie in the sup-
plementary material). Compared to the case without rearrangement at small source
driving (Fig. 6a), we observe that the focusing spot around the source is less intense
and that the wave field manifests some leakage of energy from the source location
to elsewhere (see also films related to the TR focusing process in the supplementary
material). Moreover, an amplitude decrease is found in the recompressed signal Ψ∗(t)
on the source at t ≈ T (inset of Fig. 6d). Figure 6d shows the ratio R of Ψ∗max to Ψmax
obtained without rearrangement, calculated as a function of the source amplitude.
The decrease of R which may quantify the loss of fidelity in the TR process [6,28]
supports well the experimental observations when the source driving is increased
(Fig. 3c and Fig. 4).

4 Discussions and conclusion

As mentioned in the introduction, the acoustic TR invariance holds in a multiple
scattering medium on the shortest wavelength [1–7]. Consider a scalar displacement
u(r, t) that satisfies the wave equation (dissipationless),

ρ(r)
∂2u

∂t2
−∇ ·K(r)∇u = 0 (2)

with ρ(r) the density and K(r) the elastic modulus of the heterogeneous medium.
A source located at r0 transmits a short pulse uS(r0, t) (= δ(t), dirac-like) into the
medium, the multiply scattered signals uD(rj , t) = hj(t) are detected by receivers no.
j (TRMs) at rj where hj(t) would denote the impulse response in linear acoustics.
They are time-reversed uD(rj , T − t) with T the signal duration and retransmitted
into the medium. Taking into account the reciprocity principle, interchanging the
source and the receiver does not alter the resulting wave field. The signal recreated
at the source location can thus be written as s(t) =

∑
j hj(T − t)⊗ hj(t), which is

maximum at time t = T indicating to a TR focusing in time at r0. In this study,
we have shown by experiments (and simulations) in granular packings that the TR
process using multiply scattered waves (λ ≈ 2− 4d) applies correctly in the linear
regime. These observations hence suggest that the elastic modulus K and elastic wave
velocity V =

√
K/ρ defined in equation 2 within the continuum elasticity still holds

on the local scale of a few grain size. This appears consistent with recent wave velocity
measurements in stressed granular layers with thickness ∼ 5d where the fluctuation
of VP remains less than 10% [29].
However, this TR invariance breaks down in the nonlinear regime with large

source driving where the sound-matter interaction becomes irreversible (Fig. 3) due
to the contact slipping associated with the nonaffine deformation in granular pack-
ings [14–17,19,20] particularly under shear (see Fig. 3c). Therefore, the propagation
medium is different between the forward and backward steps, leading to a modified
TR recompression signal s′(t) =

∑
j hj(T − t)⊗ gj(t) at the source location where we

denote by gj(t) the impulse response of the rearranged granular network (the
backward propagation is indeed performed in the linear regime). The decrease of
TR focusing, or loss of fidelity, shown in Figure 3c is related to the nonlinear
sound-induced structure change, being very different from those observed in other
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TR experiments where the medium is stationary (as in an ordinary elastic material)
and before reaching the shock formation: if the whole harmonics generated during
forward propagation are recorded, time-reversed and retransmitted, the initial wave
can be reconstructed [30].
Time-reversal has also been used as a diagnostic tool to test and compare the

sensitivity of particle motion and wave propagation to perturbations in the initial
conditions or in the propagation medium [6,28]. In a multiple scattering system,
particles and waves exhibit fundamentally different behaviours: particle motion is
chaotic, incapable of returning to the source, while wave propagation is much more
stable, despite TR invariance in both Newton’s law and the wave equation (Eq. (2)).
The physical reason for this can be explained through the concept of ray splitting
as follows. A particle follows a well defined trajectory whereas waves travel along
all ray directions (a huge number of trajectories) visiting scatterers in all positions
within the scale of the wavelength. While a small perturbation can make the particle
miss one obstacle or scatterer and completely change its future trajectory, the wave
amplitude is much more stable due to coarse graining on the wavelength scale. Granu-
lar acoustics described here appears in between particle motion and wave propagation
in terms of the sensitivity to perturbations, closely related to the discrete nature of
the contact network with a finite coordination number Z ≈ 6 in 3D bead packings (via
Eq. 1) in which waves propagate along preferred paths. Further studies are needed to
investigate the loss of fidelity as a function of the arrival time of multiply scattered
waves [6].
Finally, we think that our study may be useful to those who are using time-

reversal to seismic source locations or defect detections in fractured materials. In the
context of seismic imaging, the application of TR process requires that the difference
between the real Earth (forward propagation) and the Earth model (backward prop-
agation) can be neglected at the used wavelength [8,9]. In laboratory experiments,
an unknown source may be localized without the use of a numerical model when the
reversed wave field is accessible by measurements. This is precisely the case for de-
tecting fissures near the surface of a solid by TR process where harmonics generated
by the nonlinear scatters, i.e., defects are selected and time-reversed to the source
location [31]. However, our TR experiments in granular materials have shown that
an important rearrangement of the medium by a large source driving may decrease
the accuracy of the TR focusing and the source location (Fig. 6) in fractured earth
materials.
In conclusion, we believe that our time-reversal investigation in granular media

may help to get a better understanding of the instability of wave scattering in
nonlinear disordered media [32] and of the imprint of classical chaos on wave
(quantum) systems [6,28]. It should also be useful for studying the source locations
of seismic events and rupture in heterogeneous materials. We will improve TR
focusing process inside granular media, especially to learn to focus high-amplitude
ultrasound at a particular position to trigger rearrangements.
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20. J. Léopoldès, G. Conrad, X. Jia, Phys. Rev. Lett. 110, 248301 (2013)
21. R. Snieder, Pure Appl. Geophys. 163, 455 (2006)
22. M. Leibig, Phys. Rev. E 49, 1647 (1994)
23. R.L. Weaver, J. Mech. Phys. Solids 38, 55 (1990)
24. E. Somfai et al, Phys. Rev. E 72, 021301 (2005)
25. O. Mouraille, W. Mulder, S. Luding, J. Stat. Mech. 2006, P07023 (2005)
26. C.J. Reichhardt, L.M. Lopatina, X. Jia, P.A. Johnson, Phys. Rev. E 92, 0222203 (2015)
27. P. Sheng, M. Zhou, Science 253, 539 (1991)
28. L.E. Ballentine, J.P. Zibin, Phys. Rev. A 54, 3813 (1996)
29. S. Wildenberg, A. Tourin, X. Jia, Europhys. Lett. 115, 34005 (2016)
30. M. Tanter et al., Phys. Rev. E 64, 016602 (2001)
31. B.E. Anderson et al., Acoustics Today 4, 5 (2008)
32. S.E. Skipetrov, R. Maynard, Phys. Rev. Lett. 85, 736 (2000)

Open Access This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.


	1 Introduction
	2 Experiments
	3 Numerical simulations
	4 Discussions and conclusion
	References



