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Abstract. Because time and space play a similar role in wave propaga-
tion, wave control can be obtained by manipulating spatial boundaries
or by manipulating time boundaries. These two dual approaches will be
discussed in this paper in the context of the generation of time-reversed
waves. The first approach uses the “time-reversal mirror” approach
with wave manipulation along a spatial boundary sampled by a finite
number of antennas. In the second approach, waves are manipulated
from a time boundary and we show that “instantaneous time mirrors”,
simultaneously acting in the entire space can also radiate time-reversed
waves.

1 Introduction

It is well known that, although classical mechanics equations are reversible on the
microscopic scale, it is difficult to test the time reversal invariance of a complex
system of particles. It requires introducing a “mirror” of the time variable that can be
ascribed to the sudden change in initial conditions of the complex system resulting in
full motion reversal. It was first the Austrian physicist J. Loschmidt that challenged
Boltzmann’s attempt to describe irreversible macroscopic processes with reversible
microscopic equations that imagined daemons capable of inversing instantaneously
all velocities of all particles in a gas. The daemons have to prepare the system in a
new initial condition where all the velocities are reversed. However such a proposal
remains mainly a thought experiment, the extreme sensitivity to initial conditions
that lies at the heart of chaotic phenomena in nonlinear dynamics renders any such
particulate scheme impossible to realize.

Time-reversal invariance does not occur only in classical mechanics, it also occurs
in wave physics to the extent that waves propagate without any dissipative process.
Waves are more amenable to time-reversal schemes since they can be described in
many situations by a linear operator and any error in the initial conditions will
not suffer from chaotic behavior. It is interesting to note that both the holographic
principle and the time-reversal mirror approach are mainly based on the time-reversal
invariance of wave equations. They also rely on the fact that any wave field can be
completely determined within a volume knowing the field (and its normal derivative)
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on any enclosing surface [1,2]. Hence, information reaching the 2D surface is sufficient
to recover all the fields inside the whole volume. Based on these properties, Denis
Gabor [1] introduced the Holographic method providing an elegant way to back-
propagate a monochromatic wave field towards its initial source and to obtain a
3D images of any radiating object. Time-reversal mirrors (TRMs) exploit also the
same principles for broadband wavefield to physically create a time-reversed wave
that exactly refocus back, in space and time, to the original source regardless of the
complexity of the medium as if time were going backwards. This latter approach has
been implemented with acoustic [3,4], electromagnetic [5] and water waves [6,7]. It
requires the use of emitter-receptor antennas positioned on an arbitrary enclosing
surface. The wave is recorded, digitized, stored, time-reversed and rebroadcasted by
the same antenna array. If the array intercepts the entire forward wave with a good
spatial sampling, it generates a perfect backward-propagating copy. Note that for
optical waves, this processing is difficult to be implemented [8,9] and the standard
solution is to work with monochromatic light and to use nonlinear regimes such as
three-wave of four-wave mixing [10,11].

We have seen that the Loschmidt approach to design a “time machine” for particles
is based on the sudden change in initial conditions of a complex system. The motion
or “state” of an N particle system is determined at one time by the N positions and
N velocities of the particles as a point in a 6N phase space described by{r;,v;}. The
Loschmidt daemons prepare new initial conditions for the N particles as {r;, —v;} by
reversing the N velocities

In order to understand the way to design such a “time machine” for waves, we have
to take into account the exact nature of the wave equation. It is a partial differential
equation of order 2 and the wave field ¢ (r, ) is a continuous function of 4 variables (3
dimensions in space and one in time). Therefore the solution to the wave equation has
to be a function described over a “hyper volume” with 4 variables and its boundary
is a “hypersurface” with 3 variables [12].

In fact, there are two possibilities for the 3 variables of the hypersurface. It can be
2 spatial dimensions and one time dimension. This is the so called Cauchy Boundary
Conditions (BCs) that prescribe both the field ¢(r,t) and its normal derivative W

for r along a 2D surface S for all time t. Once we know {p(r € S,t), %es’t)

we can use the Huygens-Fresnel-Helmholtz theorem to predict the field in all the
hypervolume as

¢
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with G (r,ro;t) the spatio-temporal Green’s function solution of the wave equation
with an impulsive point-like source located in ry.

The other possibility is a hypersurface described by 3 spatial dimensions where
both the field ¢ (r,t,,) and its time derivative % for all r are prescribed at
a given time t,,. This is the Cauchy initial Conditions (ICs) that are described by

dp(r,t)

the wavefield state {y, ==}, . This is the initial value theorem that is classically

called the Cauchy problem with the wave field at time ¢ and position r given by:

o(r,t) :/// {G(r,r’;t—tm) 4 (;t’ tm) _ 9G (r, ra/;tt_tm)go(r',tm)}dgr/. (2)

These two possibilities of Cauchy conditions (BCs) or (ICs) give rise to two dual
approaches to create a “time machine” for waves.
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Section 2 is devoted to the “time-reversal mirror” (TRMs) concept that was ini-
tially developed and experimented with acoustic waves and later with microwaves.
It refers to the manipulation of boundary conditions on a 2D surface sampled by a
finite number of antennas.

Section 3 will be devoted to a second approach “a la Loschmidt” with wave control
by manipulation of the initial conditions. It refers to the concept of “instantaneous
time mirrors” (ITMs) that mimics the role of Loschmidt daemons, simultaneously
acting in the entire space at once to radiate time-reversed waves, and we will show
experimental evidence of this process with water waves.

2 The time-reversal mirror approach “a la Huygens”

We have seen that there are two dual approaches to predict a wavefield inside a
hypervolume. We will now focus on the first choice where we used BCs instead of
ICs. We know that if we record an incoming wavefield along a 2D surface during
a sufficient time, the Huygens-Fresnel- Helmholtz—Kirchoff integral theorem allows
recovering the wavefield at any time (past and future) in the whole volume.
Therefore a time-reversal experiment “a la Huygens” can be conceived in the
following way. During a first step an initial source radiates a transient wavefield inside
a volume surrounded by a 2D surface S along which the field and its normal derivative

are recorded and stored as {p(r € S,t ), %ﬁs’”} during a sufficient amount of time

to be sure that the incoming field as completely disappear along S.
Employing a source term s (r,t) the radiated wavefield verifies the wave equation

1 9%p(r,t)
Ap(r,t) — c(r)2 oz =S (r,?). (3)

As we are in a causal universe, ¢ (r,t) is of course the causal solution of equation (3).
Besides, due to the time reversal symmetry of the wave operator, there is also an
anti-causal solution (the advanced one) that is never observed.

In the second step of the time-reversal experiment, our goal is to radiate from the
boundary such an advanced solution. New boundary conditions have to be created
along surface S with a wavefield oscillating in a time-reversed chronology compared
to the chronology of the causal field. These time-reversed boundary conditions along

S can be written {p(r € S,T —¢t), a“’(reis’T_t)} where T is a causal delay needed to
record and reemit the signals. Experimentally, it required the use of emitter-receptor
antennas positioned on surface S that recorded, digitized, stored, time-reversed and
rebroadcasted by the same antenna array both the field and its time derivative (see
Fig. 1).

These new boundary conditions radiated a wave that is going backward to the
source: the so-called time-reversed field s.(r,t). It can be computed using the
Helmholtz-Kirchhoff integral that is valid inside a zone without source (see Eq. (1)).

Instead of directly computing this integral, there is a straightforward way to pre-
dict the time-reversed field if we note that that this new wavefield verifies a homo-
geneous wave equation with the time-reversed BCs (the original source is no longer
present)

1 0% (r,t)
c(r)®  Ot?

Acptr (I‘, t) - =0. (4)

Therefore, it cannot be equal to ¢(r,T — t). In fact, it is not enough to time-reverse
the wavefield on the boundary S. You also have to time-reverse the source term
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Fig. 1. Schematic of the time-reversal mirror. (a) Recording step: a closed surface is filled
with transducer elements. A point like source generates a wave front which is distorted
by heterogeneities. The distorted wavefield is recorded on the cavity elements. (b) Time-
reversed or reconstruction step. The recorded signals are time-reversed and reemitted by
the elements. The time-reversed field back-propagates and refocuses exactly on the initial
source.

on equation (3) and ¢ (r,T — t) indeed verifies the following equation deduced from
equation (3) where t is replaced by T' — ¢

1 ¢ (r,T —t)
c(r)? ot

Ap(r,T —1t)— =s(r, T —1). (5)

This means that in order to achieve a perfect time reversal, both the source has to
be transformed into a sink (the time-reversal of a sources(r,T —t)), and also the
field and its normal derivative on surface S has to be time reversed. Note that if the
source is impulsive, it writes s (r,t) = S (r) §(¢) and as §(t) = §(—¢) and we easily find
that [13]

gptr(r,t):go(r,T—t)—go(r,T—Ft). (6)

This result means that to obtain the advanced wavefield, one has not only to time-
reverse the field but the original source as well. Equation (6) can be interpreted as
the difference of advanced and retarded waves centered on the initial source position.
The converging wave (advanced) collapses at the origin and is followed by a diverging
(retarded) wave. Thus the time-reversed field observed as a function of time, shows
two wavefronts of opposite sign. The wave re-emitted by the time reversal mirror
looks like a convergent wavefield during a given period, but a wavefield doesn’t know
how to stop. When the converging wavefield reaches the location of the initial source
location, it collapses and then continues its propagation as a diverging wavefield.

In the case of a punctual impulsive source term located at ro we obtain for the
time-reversed field:

o (r,t) =G (r,re; T —t) — G (v,ro; T+ 1) . (7)

If the point-like source is monochromatic with pulsation w we obtain through a Fourier
transform a field pattern proportional to

q?)tr (r,w) —2jImGY (r,ro,w) (8)
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Fig. 2. Schematic of the Instantaneous Time Mirror. A wave source emits at time ¢y a wave
packet which propagates in a given medium. A sudden spatially homogeneous disruption
of the wave propagation properties occurs in the entire medium at time t,, = to + At. It
results in the production of a counter propagating time-reversed wave in addition to the
initial forward propagating wave. The counter propagating wave refocuses at the source
position at time to + 2At.

with G (r,rp,w) being the monochromatic Green’s function. The time-reversed field
is then proportional to the imaginary part of the Green’s function and it is a universal
result valid for any complex media provided that there is no dissipation. In free space,
as the Green’s function is a diverging spherical wave, the focal spot is limited to one
half-wavelength as it is well known. Note that in complex media the field amplitude
at the focal point is directly proportional to the LDOS, the so-called local density of
states that depends on the medium complexity. Thus, the time-reversed field at the
source point and at the focal time is directly proportional to the number of modes
excited by the source.

To achieve a perfect time reversal both the field on the surface of the cavity has
to be time reversed, and the source has to be transformed into a sink [14]. In this
manner one may achieve time-reversed focusing below the diffraction limit. The role
of the new source term in equation (5) is to transmit a diverging wave that exactly
cancels the outgoing spherical wave.

In a monochromatic approach, taking into account the evanescent waves concept,
the necessity of replacing a source by a sink in the complete time-reversed opera-
tion can be interpreted as follows. In the first step, a point-like source of size much
smaller than a wavelength radiates a field that can be described as a superposition

of homogeneous plane waves propagating in the various directions k£ and of decaying,
nonpropagating, evanescent plane waves. The evanescent waves contain information
on fine scale features of the source; they decay exponentially with distance and do
not contribute to the far field. If the TRM is located in the far field of source, the
time-reversed field retransmitted by the mirror does not contain these evanescent
components. The role of the sink is to radiate exactly, with the good timing, the
evanescent waves that have been lost during the first step. The resulting field con-
tains the evanescent part that is needed to focus below diffraction limits. Time reversal
below the diffraction limit has been experimentally demonstrated in acoustics, using
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an acoustic sink placed at the focal point. Focal spots of size A/14 have been observed
by de Rosny et al [14]. One drawback is the need to use an active source at the fo-
cusing point to exactly cancel the usual diverging wave created during the focusing
process.

Another solution is to create a passive sink that behaves as a perfect absorber of
subwavelength size and it is concept that is currently studied by different teams in
optics and in acoustics [15-17].

3 The “instantaneous time mirror” mimicking Loschmidt for waves

To mimic the Loschmidt approach in wave physics, one has first to measure an incom-
ing wavefield at one specific time ¢,, in the whole volume {¢p, %—f}tm. Then the analog
for wave of the particle velocity reversal is to prepare a new set of initial conditions
{¢e, —%—f}tm where the sign of the time derivative has been reversed. Such an initial
conditions will give rise to a time reversed wave. Even if this solution is appealing, it
is not clear how to prepare such a new wave field pattern. It is in this context that
an interesting solution was recently proposed [18] in the field of water waves. Because
of the wave superposition principle, the emergence of this time reversed wave is how-
ever not limited to this choice of new initial conditions. For instance, a new initial

condition {¢,0}, can be split into 3{¢, W}tm associated with a forward wave
and 1{p, —%}tm associated with a backward time reversed wave. This particular

disruption erases the arrow of time starting from a “frozen” picture of the wave field
at time t,, with no favored direction of propagation. Similarly, a new set of initial
condition {0, W}tm in which the wave field is null would also comprise a back-
ward propagating wave with negative sign. More generally, any superposition of the
old initial conditions {¢, %f}tm with a new set of initial conditions {0, f (%f)}tm with
f being any function of %—f results in the superposition of a forward and backward
propagating wave.

To prepare such a new wave pattern, we use the fact that a sudden modification
of the wave celerity in the whole medium at time ¢,,, results in a new source term that
depends of the incoming wavefield observed at time ¢,,. This offers a straightforward
way to experimentally implement an instantaneous time reversal mirror. To under-
stand the origin of this source term in the d’Alembert’s wave equation, let us introduce
a time-dependent phase velocity ¢(t) = co/n(t), where n(t) is a time-dependent index
and cg is the initial phase velocity. The disruption undergone by the medium at time
tm can be modelled by a §-Dirac function such that c(t)? = c2(1 + ad(t — t,,)). The
wave equation can be written as a nonhomogeneous equation in which the equivalent
source term s(r,t) is induced by the velocity disruption:

1 8%p (r,t) B
Ap(r,t) — %7&2 = s(r,t) 9)
with

a 0%p (r,t
s(r,8) = —53(t - tm)%
0

The source term is localized in time but delocalized in space. It corresponds to an
instantaneous source that is proportional to the second time derivative of the wave
field at the instant t,, of the disruption. This source term suddenly creates a set
of real monopolar sources s(r,t), instantaneously in the whole space which isotropi-
cally radiate, generating in all directions an additional wave field. This instantaneous
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source term in the wave equation is equivalent to a change in the initial conditions
(see Eq. (2)) that becomes now the superposition of the original state of the un-

plus an added term {0, %%%f} [12,18]. This last
tm 0 t

term generates both a forward-propagating wave field and a time-reversed backward-
propagating wave field that are proportional to the time derivative of the original
incident wave field.

It is in the field of gravity-capillary waves that such an experiment was recently
described [18]. Since the surface wave celerity depends on the effective gravity g,
the disruption of the celerity is simply achieved by applying a vertical impulsive
acceleration to the whole liquid bath that change g in g + 7v,,. A bath of water is
placed on a shaker to control its vertical motion. A tip is used to hit the liquid
surface and generate a point-like source of water waves. Figure 3a shows a sequence
of images of the wave propagation on the bath taken from above. A circular wave
packet centered on the impact point is emitted as the tip hits the surface. Due to
the dispersive nature of the gravity-capillary wave the wave profile is modified with
time. The average wave propagation velocity is of the order of magnitude of 10 cm/s.
After a time t,, = 60 ms, a vertical downwards acceleration is applied to the bath. It
reaches 7,, = —18g in approximately 2 ms. Such an impulsive change of wave celerity
can be described by a delta function in time. The propagation of the initial outwards
propagating wave is not significantly affected by this disruption. However, at the
time of disruption, we observe the radiation of a backwards converging circular wave
packet which focus back to the initial source and that diverge again after. Such a
behavior is analog to classical time-reversal mirrors except it is obtained without any
antenna array or memory. The information stored in the whole medium at one instant
plays the role of a bank of memories. We observed the emergence of the advanced
Green’s function from the bath and it is followed after the collapse by a diverging
wave. This result can be extended to any type of source and Figure 3b shows an
impressive example with a metallic “smiley” hitting the liquid surface and radiating
a complex field pattern. The ITM is activated at a time ¢,, where the field structure
has apparently completely loss the shape of the smiley and by virtue of the time-
reversal symmetry, one observe a backward wave that recreate a real image of the
smiley in the bath !!!

It is also interesting to interpret this experiment in term of the two concepts of
time refection and time refraction [18-21]. When we introduced an instantaneous
time disruption for the wave speed or for the time-dependent index of refraction
as c(t)? = c2(1 + ad(t — tm)), we have to remember that a Dirac pulse is the limit
of a rectangular pulse with two time discontinuities. Therefore the instantaneous
time disruption for the index can be considered as the limiting case of a rectangular
time profile with two discontinuities. At time t,,, the wave speed jumps from ¢ to
c1 = co/n1 and then, at time ¢}, changes back to its original value cg. A temporal
discontinuity in a homogeneous medium conserves the momentum but not the energy.
In our experiment, this energy brought to the wave field is provided by the jolt. The
time analog of the Fresnel formula can be obtained from conservation laws Hence, a
monochromatic wave e!®r+%0t) of wave vector k and angular frequency wy is split at
the time discontinuity in a “transmitted” wave torelert@it) and a ‘reflected’ wave
rmei(k"”*“’lt), where w; = w/ny is the angular frequency in medium 1, and to; and
ro1 are temporal Fresnel coefficients for time refraction and reflection, respectively.
Each wave emerging from the first temporal discontinuity will be split again into
two waves at the second discontinuity (see Fig. 4). This time slab is the time ana-
logue of a Fabry-Pérot resonator. However, because of causality, multiple reflections
are not permitted. The time-reversed wave field is thus the result of interference be-
tween two delayed backward waves with opposite signs (because ro1t10 = —710to1)-

perturbed wave field {gp, %—f}
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Fig. 3. (a) Water wave experiment. Image sequence of an ITM experiment with a point
source showing the divergent wave and the time reversed wave which diverges again after
focusing back at the source position. v, = —2lg and At = 60ms. (b) Image sequence of the
water wave instantaneous time reversal of a complex wave field. The source is composed of
an object that hits the water surface in the shape of a Smiley. The size of the images is
approximately 8 cm.
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Fig. 4. Schematics of an incident wave field ¢; impinging on a time slab. ¢rr is the time
reversed field. ¢;; and r;; are the transmission and reflection time Fresnel coefficients between
medium ¢ and j.
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This explains why the resulting time-reversed field is not the perfect time reverse of

the incident wave field ¢, but rather of its derivative %—f in the limiting case of an

instant disruption as the delayed between the two backward waves tends to zero.
For any source of complex shapes, these backwards waves recreated a perfect image

of the initial source as in a holographic experiment, except that here the hologram is

spread in the whole space and read by the action of the temporal discontinuity.

4 Conclusion

In this paper, we presented the two main approaches that can be used to gener-
ate time-reversed waves. The first approach uses “time-reversal mirrors” with wave
manipulation along a spatial boundary sampled by a finite number of antennas. There
are plenty applications of this approach for telecommunication, imaging, therapy and
defense. In the second approach, we have shown that waves can also be manipulated
on time boundaries by sudden modifications of the wave speed in the whole medium.
Such an approach of “instantaneous time mirrors” mimics the Loschmidt point of
view and is very efficient to radiated time-reversed waves without the use of any
antenna.
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cussed with us the different ways to conduct time-reversal experiments. Shortly before he
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experiment with the smiley. We will never forget the pleasure he had discussing with us this
experiment.
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