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Abstract. The memory effect has seen a surge of research into its
fundamental properties and applications since its discovery by
Feng et al. [Phys. Rev. Lett. 61, 834 (1988)]. While the wave tra-
jectories for which the memory effect holds are hidden implicitly in
the diffusion probability function [Phys. Rev. B 40, 737 (1989)], the
physical intuition of why these trajectories satisfy the memory effect
has often been masked by the derivation of the memory correlation
function itself. In this paper, we explicitly derive the specific trajec-
tories through a random medium for which the memory effect holds.
Our approach shows that the memory effect follows from a simple con-
servation argument, which imposes geometrical constraints on the ran-
dom trajectories that contribute to the memory effect. We illustrate
the time-domain effects of these geometrical constraints with numeri-
cal simulations of pulse transmission through a random medium. The
results of our derivation and numerical simulations are consistent with
established theory and experimentation.

1 Introduction

Coherent wave transmission through a highly random medium, or reflection off a
rough surface, results in an interference pattern known as speckle [3]. The memory
effect is a phenomenon of wave propagation in which variations in the illumination,
or incident wave, are preserved in the reflected or transmitted wave produced from
the random medium, provided the variations are not too large. Thus, what was once
thought to be a hopelessly complicated relation between the incident wave and the
scattering medium, the complex and seemingly random speckle pattern has, in fact, a
predictable behavior owing to the memory effect. The degree to which the changes in
illumination are preserved in the reflected or transmitted wave is measured by means
of a correlation. The correlation is taken between a designated reference speckle
pattern and another speckle pattern produced by perturbing the incident wave.
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For example, such a perturbation might be the change in angle of incidence of the
incoming wave.
The memory effect was originally derived by applying a diagrammatic pertur-

bation expansion to the intensity-intensity correlation function for optical wave
transmission through random media [1]. What was to be termed the “memory
effect” was the leading order correlation term in this perturbation expansion (this
term is also commonly referred to as the short-range angular correlation, memory
correlation, or memory correlation function). The distinctive property of the memory
correlation function is that it is present only if the change in angle of the outgoing
wave matches the change in angle of the incident wave. This property causes the ran-
dom speckle pattern to track the motion of the incident wave without decorrelating.
For an incident wave with wave vector k that transmits through a random medium
of thickness D, the diagrammatic calculation of Feng et al. [1] determined that the
memory correlation function should asymptotically fall off for changes in angle of
incidence greater than 1/kD, after which the speckle pattern changes. The predic-
tions of this derivation were first experimentally verified by Freund et al. [4], who also
extended the theory to include memory correlations for reflections off rough surfaces.
Berkovits et al. [2] showed the physical basis of the memory effect to be the dif-
fusive probability of a photon that enters the scattering medium at one point and
exits the scattering medium at another. The diffusion probability function is maxi-
mized when the photon enters and exits the scattering medium from points near the
mean scatterer position along the line of sight. This result was derived by consider-
ing the interference of all possible photon trajectories through the random medium.
An important conclusion of this derivation was that the memory effect is indepen-
dent of the phases acquired by the waves through the multiple scattering process.
Much research has since been done on the fundamental properties and applications
of the memory effect, including its generalization to polarized waves, incorporation of
the effects of internal reflections and absorption within the scattering medium, and
noninvasive imaging experiments [5–18].
In this paper, we offer a simple derivation which shows explicitly the trajecto-

ries through the random medium for which the memory effect holds. We derive the
memory effect for the case of a point source using geometrical arguments only, with-
out the need to invoke diagrammatic methods or special functions. The emphasis of
our derivation is on the phases of the scattered waves, showing that the necessary
conditions for the memory effect to hold can be found by considering path differ-
ences and a conservation argument. Additionally, while previous treatments of the
memory effect have been given in the frequency domain assuming a monochromatic,
continuous-wave source, we demonstrate the memory effect in the time domain using
a bandlimited pulse source by performing two-dimensional numerical simulations.
Although our source is bandlimited, we continue to refer to the simulated interfer-
ence pattern as “speckle” for consistency with the literature.

2 Theory

A speckle pattern is produced by the superposition of many different scattered waves
that interfere with effectively random phases. Thus, because the memory effect is
a speckle phenomenon (an interference phenomenon), it can manifest in any solu-
tion to a linear wave equation. As we will show in this section, the backbone of the
memory effect is simply the superposition principle, together with a few geometrical
arguments.
The key principle behind the memory effect is that a particular speckle realization

is the result of waves that interefere with particular phase differences. That is, the
random but unique phase differences between the different scattered waves are what
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Fig. 1. Definition of the problem geometry for a point source. The solid lines indicate the
original incident and transmitted waves. The dashed lines indicate the perturbed incident
and transmitted waves. Arbitrary multiple scattering is represented by the wiggly line.

produce a particular speckle pattern. Intuitively, to observe the same speckle pat-
tern after we change the angle of incidence of the incoming wave, our first condition
to impose is that the phase differences amongst the different scattered waves be
preserved, or held constant. This conservation argument imposes the geometrical con-
straints on the scattered waves that contribute to the memory effect, as we illustrate
below.
Suppose we have a point source (denoted by a star in Fig. 1) that emits a pulse

which transmits through a random medium. On the other side of the random medium,
we observe the resultant speckle pattern at a point r0 (the point of observation
denoted by an inverted triangle in Fig. 1). While a phase difference can be found
between any two aribtrary waves at r0, possibly the simplest choice is to let the
phase of the direct wave (i.e., the nonscattered wave that traverses the line of sight
connecting the point source to the speckle spot) be the reference against which all
other phases are compared. Using this choice of reference, we consider the wave func-
tion at the point r0 and for a fixed wave number k. The wave function is then given by
a summation over all possible scattering trajectories p through the random medium
consisting of a finite number of isotropic point scatterers [19]:

ψ(r0) =
∑

p

Ape
ikLp =

∑

p

Ape
ik(L0 +ΔLp). (1)

Here, Ap is the complex amplitude and Lp is the path length attributed to path
p. Denoting the length of the line of sight trajectory by L0, the path difference
ΔLp : = Lp − L0 is used to determine the phase difference between any scattered
wave and the direct wave.
Let us denote by ΔLp the path difference before the incident wave is perturbed,

and by Δ̃Lp the path difference after the incident wave is perturbed. Then, according

to our conservation argument, we must impose the condition Δ̃Lp = ΔLp to obtain

the memory effect. It remains to determine ΔLp and Δ̃Lp.
Figure 1 illustrates the geometry of our problem. For the direct wave, its path is

characterized by the unit wave vector k̂0 along the line of sight path vector r0 (here,
we have tacitly assumed the origin of our frame of reference to be the location of the
point source). For any scattered wave, however, the path length is more difficult to
determine. A major simplification arises when we consider the fact that a perturbation
in the path length of any given trajectory through the random medium depends
only on the variations in length from the source to the first scatterer and from the
last scatterer to the point of observation; that is, perturbing the incident wave does
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not change the multiple scattering trajectories occurring between the first and last
scattering events along a given path. This observation allows us to relegate the total
phase contribution of these multiple scattering trajectories to a constant ϕp for each
path. Thus, to determine the path length of a scattering trajectory p, we need the
path vector from the point source to the first scatterer, denoted by rip, and the path
vector from the last scatterer to the point of observation, denoted by rtp. By using
the inner product 〈·, ·〉, we may determine the incidence and transmission angles θip
and θtp, respectively, formed between any trajectory and the line of sight (see Fig. 1).
With these considerations, the path difference before perturbing the incident wave

ΔLp is given by

ΔLp = 〈k̂0, rip〉 sec θip + 〈k̂0, rtp〉 sec θtp + ϕp/k − 〈k̂0, r0〉. (2)

More care needs to be taken to determine the path difference Δ̃Lp after perturbing the
incident wave. For a point source, we can change the angle of incidence of the incoming
wave by simply perturbing the location of the source in a direction orthogonal to
the line of sight (we could, in fact, perturb the source position in any arbitrary
direction, but only the component orthogonal to the line of sight affects the path
difference). Therefore, we let δr denote a perturbation in the source position such

that 〈k̂0, δr〉 = 0. For a scattered wave, such a perturbation in the source position
results in a change in angle of incidence Δθip to the first scatterer. However, as stated
above, the multiple scattering trajectories between the first and last scattering events
do not change as a result of δr. Thus, any variations in path length caused by a change
in angle of incidence must be compensated for by a change in angle of transmission
Δθtp from the last scatterer to a new point of interference. Keeping in mind that we
need to preserve the phase difference between the scattered and direct waves after
perturbing the source position, we must also require the direct wave to rotate through
some angle Δθi; however, it is not yet clear about which point the direct wave must
rotate. We denote this unknown rotation point by rx (again, see Fig. 1).
Thus, by anology with equation (2), the path difference after perturbing the in-

cident wave Δ̃Lp is given by

Δ̃Lp = 〈k̂0, rip〉 sec(θip +Δθip) + 〈k̂0, rtp〉 sec(θtp +Δθtp) + ϕp/k − 〈k̂0, r0〉 secΔθi.
(3)

Notice that when we set Δ̃Lp = ΔLp, the constant ϕp/k cancels, in perfect agreement
with the conclusion of Berkovits et al. [2], reaffirming that the memory effect is
independent of the phases acquired through the multiple scattering process. Another
important characeteristic is the general form of the path difference in equations (2)
and (3). In particular, the path difference depends upon sec θ, which grows very large
as θ deviates from 0◦, causing the complex exponential in equation (1) to rapidly
oscillate. Thus, a path summation (integration) amounts to integrating over angles
θ, and its dominant contribution comes from incidence and transmission trajectories
nearly parallel to the line of sight [20]. We therefore assume the angles in equations (2)
and (3) are close to 0◦, and approximate the secant function by a second-order Taylor
expansion.

Since rip and rtp are now assumed to be nearly parallel to k̂0, we see that they are
approximately scaled versions of r0, the original line of sight path vector. We there-
fore drop the boldface vector notation and use the scalar equivalent. We introduce
scalars αp, βp ∈ [0, 1] such that rip ≈ αpr0 and rtp ≈ βpr0. With these small angle
approximations, we can write the condition for the memory effect Δ̃Lp = ΔLp using
equations (2) and (3) as

αpΔθ
2
ip + βpΔθ

2
tp = Δθ

2
i . (4)
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Because there is only one direct wave in a path summation, Δθi is an unknown
constant, whereas Δθip and Δθtp vary with scatterer position along the line of sight.
Assuming we know the location of our point source and all the scatterers, we can,
in principle, determine Δθip. Thus, we have one equation and two unknowns: Δθi
and Δθtp. We would like to solve for the change in angle of transmission, Δθtp, and
we may do so using the following constraint. Under our current approximations and
assumptions, the first and last scattering events lie along the line of sight. Is there a
single point along this line such that the change in angle of incidence Δθip is nearly
constant, i.e., independent of the path p? We choose the unknown rotation point

rx to be this point. Then, given 〈k̂0, δr〉 = 0, we have Δθi ∼ δr/rx (see Fig. 1) and
Δθip ∼ δr/(αpr0). We seek the point rx along the line of sight such that the change
in angle of incidence of the direct wave Δθi is as close as possible to the change in
angle of incidence of the scattered wave Δθip for the most paths p. This occurs when
rx minimizes

S(rx) =
1

2

∑

p

(αpr0 − rx)2. (5)

Thus, the point rx about which the direct wave rotates is simply the average scatterer
position along the line connecting the point source to the speckle spot; that is, rx =
αavr0, where αav is the average value of αp along the line of sight. For paths p such
that rip ≈ rx, we have Δθip ≈ Δθi, and from equation (4) we find

Δθtp =

√
1− αav
βp

Δθi. (6)

Let D be the thickness of the scattering region along the line of sight and ε : = D/L0.
Then, for all paths p such that 1− (αp + βp) ≤ ε, we have Δθtp −Δθi = O(ε), which
goes to 0 as ε goes to 0. In other words, the phenomenon in which changes in the
angles of incidence and transmission are equivalent occurs only for a very small subset
of trajectories through the random medium where the first and last scattering events
occur near the mean scatterer position along the line of sight. This result is the well-
known memory effect. The dependence upon the thickness of the random medium
is explicit via the parameter ε. In particular, the memory effect is most pronounced
for transmission through thin media, which is consistent with performed experiments
(see, for example, [4,14]). Also note that our result does not impose any restrictions
on the random scattering trajectories occurring between the first and last scattering
events. Thus, in this context, much of the scattering that goes on inside the random
medium is completely arbitrary (see Fig. 2).
We next consider the temporal effects of a pulse source (i.e., a source of finite

duration). In this case, the transmitted speckle pattern is a time varying function
of path length. While we have shown the memory effect to hold in general for any
trajectory that satisfies α+ β ≈ 1, only for paths p that also satisfy the subsidiary
condition ΔLp < λ/4, where λ is the wavelength, will the scattered waves inter-
fere coherently in time. That is, forward-scattered waves that pass through the first
Fresnel zone will interefere with the direct wave, whereas multiple-scattered waves
that perform a random walk will not interfere with the direct wave at all. For a pulse
source, therefore, only the ballistic waves contribute to the shift in the speckle pat-
tern. On the other hand, if the source is of an infinite duration (i.e., a continuous-wave
source), at any given moment the speckle pattern is the simultaneous superposition
of waves traveling along both ballistic and random walk trajectories, and both sets
of trajectories contribute to the shift in the speckle pattern.
If one assumes the density of scatterers to be uniform, the maximum change in

angle of incidence (and consequently the maximum change in angle of transmission)
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Fig. 2. A schematic illustrating two possible tracjectories through a random medium, shown
as the shaded region, that contribute to the memory effect. The interference of the direct and
scattered waves produce a speckle spot, shown as the dashed ellipse. The simplest forward-
scattered trajectory is shown as the green dashed arrow. A random walk trajectory is shown
as the purple dashed arrow. Both trajectories satisfy α+ β ≈ 1.

for which the path vectors rip and rtp remain within the same Fresnel zone is

Δθmax ∼ WF

D
, (7)

where WF is the width of the Fresnel zone determined by

WF =

√
λL0αβ

2
. (8)

As the change in angle of incidence increases past Δθmax, the path vectors rip and
rtp begin to pass through a different Fresnel zone – where the waves interact with
different scatterers – and the resulting speckle pattern changes.
The extension of the memory effect to the case of an incident plane wave can

be made by considering the limit in which the point source is placed infinitely far
from the scattering medium. Then, by definition, all incidence angles are the same,
and the memory effect will hold for any line of sight between the incident plane wave
and the transmitted speckle pattern, provided the location of the last scattering event
is near the average scatterer position along the line of sight.

3 Numerical simulations

To test the validity of our derivation, we model the transmitted wave fields in a two-
dimensional Cartesian geometry using the method described by Groenenboom and
Snieder [19]. To simulate the scattering medium, we randomly embed 100 isotropic
point scatterers in a 1000 m × 800m region within a constant velocity background
(c = 2000ms−1). The scattering medium is placed 8000m from a point source ini-
tially located at the origin (Fig. 3). A set S = {s0, s1, . . . , s100} of receivers is placed
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Fig. 3. A homogeneous velocity model with 100 isotropic point scatterers randomly embed-
ded in a 1000m × 800m region. The point source is located at (x, z) = (0m, 0m). A line of
101 receivers extends from (9500m, ± 200m) at 4-meter spacing.

behind the scattering medium between (9500m, ± 200m) at 4-meter spacing. The
point source emits a single pulse with a bandwidth of 10Hz to 80Hz and central
frequency ν0 = 45Hz (dominant period T0 = 2.2× 10−2 s). We perturb the source
in the vertical direction in ±100m increments up to a maximum displacement of
δr = ±1400m. For each value of δr, the source emits a pulse which transmits through
the scattering medium, producing multiple-scattered waves that are recorded at each
receiver for 367 T0.
With this model geometry, the mean scatterer position rx along the line of sight

between the origin and the midpoint of the receiver line is approximately located
at (8700m, 0m). Using equation (8), the width of the Fresnel zone is WF ≈ 128m,
leading to a maximum change in angle of incidence Δθmax ≈ 7.3◦. We therefore expect
the memory effect to break down when |δr|/rx ∼ Δθmax, or |δr| ≈ 1100m.
To measure the similarity of the transmitted wave fields produced for each δr, we

compute time-shifted cross-correlations between the reference (δr = 0) and perturbed

(δr �= 0) wave fields ψ and ψ̃ at each receiver position. Furthermore, we apply three
different time windows to measure the range of the memory effect in various parts of
the (time-domain) wave field: the full waveform (i.e., the entire wave field recording),
the ballistic wave (window length = 11 T0), and the coda (window length = 130 T0).
These time windows are illustrated in Figure 4. The correlation coefficient Cδrij (τ) is
given by

Cδrij (τ) =

∫
ψi(t)ψ̃j(t+ τ) dt√∫
ψ2i (t) dt

∫
ψ̃2j (t) dt

, −1 ≤ Cδrij (τ) ≤ 1, (9)

where the integration is over the time window under consideration. For each receiver
pair (i, j), we plot the correlation coefficient at the time shift τ∗ for which Cδrij (τ∗)
attains its maximum value. In the special case δr = 0m, C0ij(τ

∗) = 1 when i = j
(i.e., the auto-correlation). We define the mean correlation coefficient 〈C〉 and mean
speckle shift 〈δs〉 for each value of δr as

〈C〉 =: 1|S|
∑

i∈S
max({Cδrij (τ∗) : j ∈ S}),

〈δs〉 =: Δz|S|
∑

i∈S
(argmax

j
Cδrij (τ

∗)− argmax
j

C0ij(τ
∗)
)
,

(10)

where |S| is the number of receivers and Δz is the receiver spacing.
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FW

B C

Fig. 4. A typical wave field recorded at one of the receivers. Forward-scattered waves that
arrive early in the waveform constitute the ballistic arrival (time window B). Multiple-
scattered waves that arrive later in the waveform constitute the coda (time window C). The
full waveform is indicated by FW.

4 Discussion of the numerical simulations

Examples of the correlation (9) are shown in Figure 5 for the full waveform, ballis-
tic, and coda time windows, respectively, for δr = 0m and δr = 500m. Within each
plot, the rows represent receiver i measuring the reference wave field ψ, the columns

represent receiver j measuring the perturbed wave field ψ̃, and the color values rep-
resent Cδrij (τ

∗). The patterns in both the full waveform and ballistic correlation plots
are nearly identical, and simply show that the pattern shifts (or translates) across
receivers as δr changes. The pattern in the coda correlation, however, is different
from those in the full waveform and ballistic correlations. Furthermore, there is no
coherent shift in the coda pattern as δr is changed; rather, we see the values of the
correlation function randomly fluctuate as δr changes. [To see animations of these
correlation experiments, see website.]
The mean correlation coefficient and mean speckle shift as functions of δr

(Eq. 10) are shown in Figure 6. The full waveform, ballistic, and coda time-windowed
correlations all show that the mean correlation coefficient 〈C〉 decays to an average
background value as δr is increased. Note that the decay of 〈C〉 for the full waveform
and the ballistic correlations is not symmetric about δr = 0 m, but the decay of 〈C〉
for the coda correlation is almost perfectly symmetric.
A simple explanation for this observation is the nonuniform scatterer density of our

model (Fig. 3); that is, the perturbations in the wave field when δr > 0 are different
than those when δr < 0. Thus, the scatterer density appears to affect the rate of decay
of the memory effect with increasing δr (increasing Δθ), suggesting the relation (7)
does not hold when there are significant variations in scatterer density. In a medium
with a uniform density of scatterers, however, we expect the decay of the memory
effect to be approximately symmetric about δr = 0m (Δθ = 0◦). The symmetry in
the falloff of the coda correlation can be attributed to the fact that nonballistic waves
traverse much longer paths throughout the scattering medium, thereby averaging out
variations in the density of scatterers.
The right-hand column of Figure 6 shows the mean speckle shift 〈δs〉 versus δr for

the full waveform, ballistic, and coda correlations. The negative slope about δr = 0m
for the full waveform and ballistic correlations confirms that the transmitted speckle
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δr = 0m δr = 500m

B

C

FW

Fig. 5. Cross-correlation plots showing Cδrij (τ
∗) for the full waveform FW, ballistic B, and

coda C time windows. Plots are shown for δr = 0m (left column) and δr = 500m (right
column).

pattern shifts in the direction opposite to the source perturbation. The value of δr at
which the slope changes from negative to positive indicates the maximum range of the
memory effect. Note how the slope becomes positive near δr = 1100m in the plot for
the full waveform correlation, in agreement with our prediction. The near-horizontal
slope in the coda correlation about δr = 0m confirms that there is no coherent speckle
shift for the coda waves.

5 Conclusions

We have shown that the memory effect can be derived by requiring phase differences
to be conserved after a perturbation in the incident wave. From this conservation
argument, we found the memory effect to hold for any trajectory through a ran-
dom medium where the first and last scattering events occur near the mean scatterer
position along the line of sight, as illustrated in Figure 2. Thus, the memory effect is



1454 The European Physical Journal Special Topics

C δs

FW

B

C

Fig. 6. Mean correlation coefficient 〈C〉 (left column) and mean speckle shift 〈δs〉 (right
column) as functions of δr for the full waveform FW, ballistic B, and coda C time-winodwed
correlations.

independent of the phases acquired through the multiple scattering process, in agree-
ment with established theory [2]. Our numerical simulations of pulse transmission
through a random medium illustrate the temporal effects of the geometrical con-
straints imposed on the scattering trajectories that contribute to the memory effect.
The results of our numerical simulations suggest that imaging through thin, random
media with a pulse source can be achieved by exploiting the ballistic component of
the transmitted wave field.

We would like to thank two anonymous reviewers, whose comments and critique greatly
helped us to enhance the presentation and clarity of this paper. This work was supported by
the Consortium Project on Seismic Inverse Methods for Complex Structures at the Colorado
School of Mines.
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