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Abstract. We study theoretically and numerically a new kind of spa-
tial correlation for waves in disordered media. We define CΓ as the
correlation function of the fluorescent decay rate of an emitter at two
different positions inside the medium. We show that the amplitude and
the width of CΓ provide decoupled information on the structural cor-
relation of the disordered medium and on the local environment of the
emitter. This result may stimulate the emergence of new imaging and
sensing modalities in complex media.

1 Introduction

Sensing and imaging are key applications of the study of light propagation in strongly
scattering media [1]. Optical coherence tomography [2] is one of the most emblematic
example but is limited to small optical thicknesses where the single scattering regime
takes place. Because of multiply scattered light, sensing and imaging deeply inside
a strongly disordered system is very challenging and has been a matter of intense
study in the last two decades. Important breakthroughs were achieved recently by
“learning” the system using wavefront shaping techniques [3,4], by using multimodal
approaches such as acousto-optics [5], or by taking advantage of particular features
of light scattering in complex environments such as the memory effect [6], to cite a
few examples.
Another possibility consists in using fluorescent emitters embedded inside the

scattering medium. It is well known that the spontaneous decay rate Γ of such an
emitter strongly depends on the local environment [7]. More precisely, this decay
rate is proportional to the Local Density of States ρ (LDOS) at the position of the
emitter [8,9]. This makes this quantity strongly non-universal which is of great interest
in terms of imaging [10], sensing [11–13] and control [14]. By performing statistics,
signatures of the local order around the emitter [15] and of transport regimes [16] are
revealed.
Interestingly, the fluctuations of the LDOS are encoded in the spatial intensity cor-

relation function (speckle correlation) measured outside the medium. More precisely,
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LDOS fluctuations generate an infinite-range contribution to the speckle correlation
function denoted by C0 [15,17,18]. This contribution is a feature of speckle patterns
produced by a point source (e.g., a fluorescent emitter) located inside the medium.
Measuring C0 amounts to measuring LDOS fluctuations. In the optical regime, this
can be achieved by measuring fluctuations of the spontaneous decay rate of fluorescent
emitters [19–22]. In acoustics, direct measurements of C0 from speckle correlations
have been reported [23].
In this paper, we introduce and study a new type of spatial correlation function,

denoted by CΓ, and defined as the correlation function of the spontaneous decay rate
of a single emitter measured at two different positions inside the disordered medium.
As will be shown, this correlation function generalizes the usual C0 contribution. We
demonstrate that the amplitude and the width of CΓ provide decoupled information
on the structural correlation of the disordered medium and on the local environment of
the emitter, which makes this correlation function particularly interesting for sensing
and imaging in complex media.

2 Decay rate statistics and speckle correlations

The normalized correlation function of the intensity measured in the far field is
defined as

C(u,u′) =
〈I(u)I(u′)〉
〈I(u)〉 〈I(u′)〉 − 1 (1)

where I(u) is the intensity in direction u and 〈. . .〉 denotes an average over all pos-
sible configurations of disorder. This correlation function can be splitted into three
components [24]

C(u,u′) = C1(u,u′) + C2(u,u′) + C3(u,u′). (2)

The C1 term is usually the predominant short-range term and gives typically the size
of the speckle spot. C2 and C3 are long-range terms with smaller amplitudes. When
the speckle pattern is produced by a point source embedded inside the scattering
medium, an additionnal term of infinite-range exists, and is denoted by C0 [17]. The
C0 contribution to the correlation function is related to the normalized fluctuations
of the LDOS ρ(r0) [15,18]

C0 =

〈
ρ2(r0)

〉

〈ρ(r0)〉2
− 1 (3)

where r0 is the position of the emitter. For a fluorescent emitter in the weak-coupling
regime, the spontaneous decay rate Γ(r0) is proportionnal to the LDOS [9], and C0
can be rewritten as

C0 =

〈
Γ2(r0)

〉

〈Γ(r0)〉2
− 1. (4)

Several studies of LDOS fluctuations in disordered media, or equivalently of C0, have
been reported [9,11,16,19,20,25–27]. It was shown that C0 originates from near-field
interactions with the nearby scatterers, providing a non-universal behavior that is
particularly relevant for sensing and imaging [15,19]. Moreover, C0 is also expected
to be influenced by structural correlations in the disorder [13,15]. In this article, we
show that the new correlation CΓ carries enough information to extract signatures
of both the near-field interactions and the structural correlations, thus providing a
potentially useful extension of the usual C0 correlation function.
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3 Numerical study

3.1 Methodology

To get insight into the behavior of the new correlation function, we begin with a
numerical study. The system of interest is depicted in Figure 1. N point-dipole scat-
terers are lying between two coaxial cylinders of radii R0 and R respectively and of
longitudinal size 2R. The inner region with radius R0 corresponds to the region within
the medium in which the fluorescent source is free to move. The optical properties of
the scatterers are described by an electric polarizability

α(ω) = −6πγc
3

ω20

1

ω2 − ω20 + iγω3/ω20
(5)

where ω is the emission frequency, ω0 the resonant frequency of the scatterers, γ
the linewidth and c the speed of light in vacuum. From the polarizability α, we can
compute the scattering (σs) and the extinction (σe) cross-sections of one scatterer.
They are given by

σs =
k40
6π
|α(ω)|2 ; σe = k0 Imα(ω) (6)

where k0 = ω/c = 2π/λ. The optical theorem is correctly fulfilled by the polarizability
model, and in a non-absorbing medium such as the one considered here, we have
σe = σs. Defining the density of scatterers by N = N/V where V = 2πR(R2 −R20)
is the volume of the scattering system, we have also access to the scattering mean-
free path 	B in the limit of an uncorrelated system (Boltzmann mean-free path). Its
expression is

	B =
1

Nσs . (7)

To generate disorder correlations, a fictitious exclusion volume of diameter a is forced
between scatterers. This mimic a hard sphere potential. By increasing the value of a,
one increases the correlation level. Instead of using the parameter a to characterize
the level of structural correlation, we use the effective volume fraction f defined as

f =
NV0

V
= NV0 (8)

where V0 = πa
3/6 is the exclusion volume around each scatterer. Note that the

effective volume fraction f has to be understood as a correlation parameter, that
is changed by changing V0 only (the real density of scatterers N is constant through-
out the study).
The emitter lies initially at r0, the center position (see Fig. 1), that can be changed

to another position r′0 along the cylinder axis. The distance R0 corresponds to the
minimum distance forced between the source and the scatterers. In other words, it
parameterizes the near-field environment of the source (proximity of scatterers). The
spatial correlation function CΓ studied in this paper is defined as

CΓ(Δ) =
〈Γ(r0)Γ(r′0)〉
〈Γ(r0)〉 〈Γ(r′0)〉

− 1 (9)

where Δ = |r0 − r′0|. For Δ = 0, this expression coincides with the definition of C0 in
equation (4).
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Fig. 1. Sketch of the system. The strongly scattering medium lies between two cylinders of
radii R0 and R, respectively, and of length 2R. The inner region with radius R0 corresponds
to the region within the medium in which the fluorescent source is free to move, from position
r0 to position r

′
0. To mimic hard spheres correlations, a minimum distance a is forced between

scatterers.

To compute CΓ, we have first to solve Maxwell’s equations for a point dipole
source. For that purpose, we use the coupled dipoles method [28]. It consists in cal-
culating first the exciting field on each scatterer given by a set of N linear equations:

Ej = μ0ω
2G0(rj , r0, ω)p+ α(ω)k

2
0

N∑

k=1
k �=j

G0(rj , rk, ω)Ek (10)

where μ0 is the vacuum permeability and p the source dipole. G0 is the Green function
in vacuum. For vector waves in three dimensions, it is given by

G0(r, r0) = PV

{[
I+
∇r ⊗∇r
k20

]
exp [ik0R]

4πR

}
− δ (R)
3k20

I (11)

where PV, I, ⊗, δ are the Cauchy principal value operator, the identity tensor, the
tensor product operator and the Dirac delta function respectively. We have used the
notations R = r− r0 and R = |R|. Once the exciting fields on each scatterer are
known, the field at any position can be computed using

E(r) = μ0ω
2G0(r, r0, ω)p+ α(ω)k

2
0

N∑

k=1

G0(r, rk, ω)Ek. (12)

By varying the orientation of the source dipole p, the Green function of the full system
G can be obtained from the relation E(r) = μ0ω

2G(r, r0, ω)p. The LDOS averaged
over all orientations of the source dipole can be deduced by [9]

ρ(r0, ω) =
2ω

πc2
Im [TrG(r0, r0, ω)] (13)

where Tr denotes the trace of a tensor. We usually prefer to deal with normalized
quantities. Defining the vacuum LDOS as ρ0 = ω

2/
(
π2c3

)
and the vacuum decay rate
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Fig. 2. (a) Correlation function CΓ of the decay rate as a function of the normalized distance
Δ/R0 for four different levels f of structural correlation of the disorder. (b) Amplitude of
the spatial decay rate correlation at Δ/R0 = 0 (C0 correlation) versus the disorder correla-
tion level f . The parameters are k0R0 = 0.2, k0R = 11.9 and N = 100 with k0�B = 19 and
bB = 1.25. Depending on the value of f , between ten and one hundred million configurations
are needed to perform the statistical average.

of the emitter by Γ0, we have

Γ(r0)

Γ0
=
ρ(r0, ω)

ρ0
=
2π

k0
Im [TrG(r0, r0, ω)] . (14)

Repeating the operation for another position r′0 of the source and averaging over
disorder configurations leads to an estimate of CΓ.

3.2 Numercial results

We have performed numerical simulations on a system with parameters such that
k0	B = 19 (strength of the disorder) and bB = 2R/	B = 1.25 (optical thickness).
Other parameters are given in the caption of Figure 2. Thus the numerical simu-
lations are performed in a dilute system and close to the single-scattering regime.
The simulations are performed by varying the level of structural correlation of
the disorder, measured by the correlation parameter f . The results are shown in
Figure 2 (a). We clearly see that the width of the curves is independent on f , sug-
gesting that the width depends essentially on the microscopic length scale R0 that
measures the proximity of scatterers around the emitter. The dependence of f is
encoded in the amplitude of the correlation function CΓ for Δ = 0, as shown in
Figure 2 (b). Note that this amplitude corresponds to C0, that is known to depend
on f [15].
For weak structural correlations of the disorder (small values of f), the exclusion

distance a between scatterers is small, and more than one scatterer can lie in the
near field of the emitter. This implies that the emitter can interact with two or more
scatterers, inducing a strong dependence of the amplitude of CΓ on the correlation
parameter f . For a high level of structural correlations (large values of f), the ex-
clusion distance a is large enough to exclude the possibility of interaction with more
than one scatterer. For that reason, the amplitude of CΓ is almost independent on f
in this regime. This qualitatively explains the shape of the curve in Figure 2 (b).



1428 The European Physical Journal Special Topics

4 Analytical theory

To get physical insight, we support the numerical data by a theoretical analysis. This
has also the advantage to provide simple analytical formulas that could be useful
in practice. As the optical thickness bB is close to unity, the system operates in
the single scattering regime. In that case, the correlation function can be computed
analytically, at the price of a few crude but nevertheless controlled approximations.
In the single-scattering regime, the decay rate is given by

Γ(r0)

Γ0
= 1 + 2πk0

N∑

j=1

Im
[
α(ω)TrG0(rj , r0)

2
]
. (15)

Using the expression of the vacuum Green tensor [Eq. (11)], we find

Γ(r0)

Γ0
= 1 + 2πk0

N∑

j=1

Im

[

α(ω)

{

2− 10

k20R
2
j

+
6

k40R
4
j

+i

(
4

k0Rj
− 12

k30R
3
j

)}
exp(2ik0Rj)

16π2R2j

]

(16)

where Rj = |rj − r0|. As Δ = |r0 − r′0| is on the order of R0 � λ, we consider that
the most important contribution is given by the scatterers lying in the near field of
the emitter. Thus we now consider a subset Ω of scatterers located in the vicinity of
the source inside a volume V ′. This subset is defined by

Ω = {j | rj ∈ V ′} (17)

and under this near-field approximation, the decay rate becomes

Γ(r0)

Γ0
= 1 +

3α′′(ω)
4πk30

∑

j∈Ω

1

R6j
(18)

where α′′(ω) = Imα(ω). The computation of the correlation CΓ [Eq. (9)] requires the
computation of the first two statistical moments of the decay rate:

⎧
⎪⎪⎨

⎪⎪⎩

〈Γ(r0)〉 =
∫
Γ(r0)P ({rj}){d3rj},

〈Γ(r0)Γ(r′0)〉 =
∫
Γ(r0)Γ(r

′
0)P ({rj}){d3rj}

(19)

where P ({rj}) is the probability density of having the scatterers at positions {rj}.
We denote by N ′ the average number of scatterers in Ω, a quantity that depends
essentially on the exclusion radius R0 around the emitter and on the correlation
parameter f . Using this notation, the average decay rate is given by

〈Γ(r0)〉
Γ0

= 1 +
3N ′α′′(ω)
4πk30

∫

V ′

P (rj)

R6j
d3rj (20)

where P (rj) is the probability density of finding one scatterer at position rj . The
integral involves a fast decaying function in space, meaning that the integration vol-
ume V ′ can be replaced by V without changing the result. Then P (rj) = V −1 and
we obtain

〈Γ(r0)〉
Γ0

= 1 +
3N ′α′′(ω)
4πk30V

∫
d3r

|r− r0|6 . (21)
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The second moment can be obtained in a similar way, leading to

〈Γ(r0)Γ(r′0)〉
Γ20

=
〈Γ(r0)〉
Γ0

+
〈Γ(r′0)〉
Γ0

− 1 +
[
3α′′(ω)
4πk30

]2

×
[

N ′
∫
P (rj)

R6jR
′
j
6 d
3rj +N

′(N ′ − 1)
∫
P (rj , rk)

R6jR
′
k
6 d

3rjd
3rk

]

(22)

where R′k = |rk − r′0| and P (rj , rk) is the probability density of having two scatterers
at positions rj and rk. It is given by

P (rj , rk) = P (rj)P (rk) [1 + h(rj , rk)] (23)

with h the pair correlation function. This leads to

〈Γ(r0)Γ(r′0)〉
Γ20

=
〈Γ(r0)〉
Γ0

〈Γ(r′0)〉
Γ0

+

[
3α′′(ω)
4πk30

]2

×
[
N ′

V

∫
d3r

|r− r0|6|r− r′0|6
− N

′

V 2

∫
d3r

|r− r0|6
∫

d3r

|r− r′0|6

+
N ′(N ′ − 1)
V 2

∫
h(r, r′)d3rd3r′

|r− r0|6|r′ − r′0|6
]

(24)

from which the following expression of the correlation function CΓ is readily deduced:

CΓ(Δ) =
9α′′(ω)2

16π2k60

Γ20
〈Γ(r0)〉 〈Γ(r′0)〉

N ′

V

×
[ ∫

d3r

|r− r0|6|r− r′0|6
− 1
V

∫
d3r

|r− r0|6
∫

d3r

|r− r′0|6

+
N ′ − 1
V

∫
h(r, r′)d3rd3r′

|r− r0|6|r′ − r′0|6
]
. (25)

To compute the integrals analytically, we consider infinite cylinders (i.e., R� Δ) and
a small radius for the inner cylinder (i.e., R0 � R). We obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫
d3r

|r− r0|6 =
π2

4R30
,

∫
d3r

|r− r0|6|r− r′0|6
=
π2

2R30

Δ2 + 28R20

(Δ2 + 4R20)
4 ≤

7π2

128R90
.

(26)

As V � R30, the second term in equation (25) can be neglected and the correlation CΓ
reduces to the first and the last terms. The bulk pair correlation function is considered
such that it only depends on the distance between the two points r and r′. We also
consider a small correlation level (f 	 0.1) such that the pair correlation function
can be approximated by (for higher structural correlation levels, a refined model is
required [29])

h(|r− r′|) =
{
−1 if |r− r′| < a
0 elsewhere.

(27)
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Fig. 3. Numerical (red solid line) and analytical (blue dotted line) spatial decay rate corre-
lation CΓ normalized by C0 as a function of the normalized distance Δ/R0 for f = 1× 10−3
(a) and f = 0.1 (b). Same parameters as in Figure 2.

This leads to
∫
h(r, r′)d3rd3r′

|r− r0|6|r′ − r′0|6
=

∫

V

d3r

|r− r0|6
∫

V0(r)

d3r′

|r′ − r′0|6
(28)

where V0(r) is the exclusion volume around the scatterer centered at position r.
For dilute media, the quantity 1/|r′ − r′0|6 is slowly varying and can be replaced by
1/|r− r′0|6, so that equation (28) reduces to

∫
h(r, r′)d3rd3r′

|r− r0|6|r′ − r′0|6
∼ V0

∫
d3r

|r− r0|6|r− r′0|6
. (29)

Finally, the correlation function CΓ is given by

CΓ(Δ) =
9α′′(ω)2

32k60R
3
0

Γ20
〈Γ(r0)〉 〈Γ(r′0)〉

N ′

V

[
1 + (N ′ − 1)V0

V

]
Δ2 + 28R20

(Δ2 + 4R20)
4 (30)

with 〈Γ(r0)〉
Γ0

= 1 +
3πα′′(ω)
16πk30R

3
0

N ′

V
. (31)

This expression provides a theoretical basis to the qualitative discussion presented
at the end of Section 3. First, it shows that the width of the correlation function
CΓ depends only on the exclusion radius R0, i.e., on the minimum distance between
the fluorescent source and the nearest scatterers. More precisely, the full width at
half maxium can be approximated by 	1/2 = 0.89R0. Second, as far as the amplitude
is concerned, two important regimes can be identified. For large values of f (i.e.,
f > 0.02), the source is chiefly interacting with one scatterer, so that N ′ = 1. From
equation (30), one sees that the amplitude of CΓ does not depend on f in this regime,
as already seen in Figure 2 (b). Conversely, for small values of f , the source can
interact with more than one scatterer, and the amplitude of CΓ depends on f through
both N ′ and V0.
It is interesting to compare precisely the numerical results with the approximate

analytical model. The comparison is shown in Figure 3. It can be seen that
equation (30) describes very well the dependance of the correlation function CΓ on
Δ for all values of f , showing that the analytical model provides a very accurate
description of CΓ.
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5 Conclusion

In summary, we have highlighted a new type of spatial correlation function based on
the decay rate of a fluorescent emitter measured at two different positions inside a dis-
ordered medium. A numerical and analytical study has revealed that this correlation
function contains more information than the usual C0 intensity correlation function.
In particular, by measuring its width and amplitude, it is possible to decouple the
effect of the near-field interactions (proximity effects) and of the structural correlation
of disorder. This opens new perspectives for imaging and sensing in complex media,
and in particular in correlated media whose interest in photonics is growing up.
It might be interesting to establish a connection between the correlation technique

proposed here and a recent work on the fluctuations of the intensity emitted by two
incoherent sources inside a scattering medium [30,31]. It was shown that the intensity
fluctuations probe the cross-density of states (CDOS) [9] connecting the positions of
the two sources. The correlation function CΓ defined here probes the correlation of the
LDOS at two different points. A connection between CDOS fluctuations and LDOS
correlations could be established in certain conditions to be properly defined. This is
left for future work.

This work was supported by LABEX WIFI (Laboratory of Excellence within the French
Program “Investments for the Future”) under references ANR-10-LABX-24 and ANR-10-
IDEX-0001-02 PSL*.
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