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Abstract. We report measurements and theory on the distribution and
evolution of diffuse ultrasonic waves in elastic bodies with weakly bro-
ken axisymmetry. Aluminum cylinders with dimensions large compared
to wavelength were excited by transient point sources at the center of
one of the circular faces. The resulting power spectral density PSD was
then examined as a function of time and frequency and position on
that face. It was found that the PSD showed a marked concentration
at the center at early times, a concentration that subsequently slowly
diminished towards a state of uniformity across the face, over times
long compared to ultrasonic transit time across the sample. The evolu-
tion is attributed to scattering by symmetry breaking heterogeneities.
Relaxation did not proceed all the way to uniformity and equiparti-
tion, behavior shown to be consistent with Enhanced Backscatter and
Dynamical Anderson Localization.

1 Review/background

There is a long literature on diffuse ultrasound in solids with potential applications
in nondestructive evaluation [1-9] and seismology [10-16]. Diffuse field ultrasound is
employed also for explorations of stochastic wave fields in general, including systems
described by random matrix theory and systems that may be analogs for mesoscopic
electronics and quantum chaos [17-33]. Weaver [31] provides an overview and tuto-
rial. Diffuse field concepts have been applied to room acoustics and vibro-acoustics
in structures [32-34]. Throughout this work attention has generally been confined
to elastic or fluid structures with little or no geometric symmetry. Irregular shapes
and/or the presence of random scatterers have been imagined as required for the dif-
fuse field assumption in which we take the field subsequent to a transient excitation
to have been scattered sufficiently that the resulting wave field is maximally garbled.
It is preferred to study structures with no special symmetries, so that that the energy
is well mixed across all modes and positions. Ideally one would wish for structures in
which ray trajectories are chaotic [28] and ergodic. Should the sample have a good
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symmetry (say a reflection symmetry) then energy originally deposited in one sym-
metry state (e.g even) is never scattered into the other (e.g., odd). In consequence the
diffuse field is a superposition of two or more nonmixing diffuse fields and lacks full
equipartition. Examples of this are provided by Weaver [22] and Ellegaard et al. [23]
who showed that symmetry in solid blocks had a significant effect on the statistics of
the eigenfrequencies.

In recent years, diffuse elastic waves have found application in seismology. Mul-
tiply scattered seismic coda waves at wavelengths of the order of kms approach the
condition of full diffusivity [10,11]. Seismic noise generated by ocean storms (with
wavelengths of the order of tens of km) is not well scattered before being dissipated,
but nevertheless shares some of the characteristics of fully diffuse waves. Correla-
tions of such noise fields have been found to permit retrieval of approximate seismic
Greens functions, without the need for controlled sources [12,13,35-37]. At longer
seismic wavelengths yet one would imagine that diffuse field analysis would not ap-
ply; the earth appears spherically symmetric on long length scales. To the extent that
the earth is exactly spherically symmetric, seismic waves will preserve their wave
angular momentum. Waves associated with different vector spherical harmonics will
not mix and the usual diffuse field arguments would not apply [38]. To the extent
that the actual earth weakly breaks spherical symmetry, spherical harmonics will mix.
One therefore anticipates the possibility that a long wavelength seismic diffuse field
will make a transition from a superposition of many independent diffuse fields corre-
sponding to different vector spherical harmonics to a single global field. The rate of
that transition should be a measure of the degree of symmetry breaking, with longer
wavelengths mixing more slowly.

With a view towards informing diffuse field analysis in axisymmetric structures in
general and for long wavelength coda waves in the earth in particular (we envision an
examination of the coda of 100 second waves from large earthquakes with ring down
times up to of days (e.g., [16,38]) here we study the ultrasonic diffuse field dynamics of
nearly axisymmetric laboratory bodies. The next two sections describe our laboratory
system and some of the diffuse field measurements made there. Section 3 presents a
simple model for expected behaviors, whose predictions are then shown to be not
in accord with measurements. Section 4 then develops a more precise theory for
diffuse waves in nearly axisymmetric bodies. It begins by developing theory for modal
densities and mean square surface displacements in subspaces of specified angular
momentum. (We use the term angular momentum to describe the azimuthal Fourier
index; it directly corresponds to true angular momentum for quantum mechanical but
not for classical waves.) A time-domain statistical energy like model for the incoherent
migration of energy between angular momentum subspaces is proposed that predicts
evolution towards a state of equipartition in which all angular momenta have the
same energy per mode. It is then argued that enhanced backscatter and dynamical
Anderson localization can modify that prediction and affect late time energy densities,
and in particular, prevent equipartition. It is demonstrated that the parameters of
our system are such that dynamical localization should be strong. These ideas are
then used in Section 5 to analyze the laboratory measurements and confirm their
consistency with theory.

2 Laboratory system

Our samples are aluminum cylinders of thickness L of the order of 100 mm and
diameters 2R of 176 mm. Our wavefields are composed of ultrasonic elastic waves
at frequencies between 300 and 950 kHz, corresponding to shear wavelengths between
9 and 3 mm respectively — short compared to cylinder dimensions. Quality factors @
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Fig. 1. Schematic of experimental system. An 6061 polycrystalline aluminum alloy cylinder
of radius R = 88 mm and height L = 100 mm is prepared by saw and lathe, then polished
and cleaned to reduce surface losses. A voltage pulse was applied to the center transducer
and the resulting field was detected at the center and termed signal ‘CC.” The response at a
point M at » = 50 mm was also collected, and termed ‘C'M.” Also shown is a transducer near
the edge ‘E’ used as an alternate source. A 12 mm deep hole of 4 mm diameter is drilled (and
tapped) normally into the outer surface a distance 55 mm from the bottom. The cylinder
was supported on three upward-pointing wide-headed 2 cm nails, with point diameters about
0.4mm, in turn resting on a rubber sheet.

are greater than 10°, thus permitting study of diffuse field evolution over long times
usually sufficient to ascertain the asymptotic behavior of the energy distribution.

2.1 Samples and transducers

A cylinder of interest is pictured in Figure 1. It has radius R = 88 mm and height
L =100mm. The pictured cylinder has a symmetry-breaking 12mm x 4 mm hole
tapped into its outer surface. A Valpey-Fisher VP-1063 thin ultrasonic “pin” trans-
ducer (1.6 mm diameter, 30 mm length, sensitive to vertical motion) is placed (without
the usual liquid couplant and with a minimal contact force of 45 grams i.e., 0.44 N)
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at the center ‘C” of the top face. Another (VP-1093, 2.36 mm diameter, also sensitive
to vertical motion) is placed (also without couplant but with a contact force of 13N)
at a point midway ‘M’ between edge and center a distance 50 mm from the center
and yet another VP-1093 at point ‘E’ 78 mm from the center. The use of couplant
and/or greater weights would improve signal to noise ratios, but the associated in-
homogeneous losses due to the corresponding greater transducer intrusiveness would
distort the diffuse field energy evolution and complicate attempts to make quantita-
tive predictions. For this reason we use dry coupling.

2.2 Sources and signal acquisition

We wish to measure wave response at C and at M due to a source at C. Diffuse
signals detected at a source can be problematic, because at late times a diffuse field
can be so weak due to dissipation that even low noise that may leak from the pulse
generator into the detection circuit can compete with the desired signal. To avoid
this, we use a reed relay (see Fig. 1). On receipt of the 5V square wave coil control
signal the reed relay detaches from its rest position in which port a is connected to
port b and commences to make a connection between ports b and c¢. The process of
de-connection and re-connection takes about 200 microseconds. Thus the generator’s
pulse (of 10 nsec duration) proceeds without hindrance through the reed to excite the
source transducer at C. Two hundred microseconds later the reed has detached from
a and made the connection between b and c. At these later times the signal detected
by C will reach its preamplifier, and do so without contamination from pulser noise.
The signal is then anti-alias filtered and digitized. 400 msec later when the square
wave control signal drops back to zero the reed returns to its rest position connecting
a and b. The process repeats every 800 msec. Signals received at both C and M, are
amplified (by 60dB for C and 40 dB for M, regardless of whether the source was at C
or at E), four-pole anti-alias low-pass filtered with 3 dB points at 2250 and 950 kHz
respectively, and digitized at 16 bits and 5 MSa/sec for 100 msec.

The first few msec of a typical signal detected at the center transducer due to a
source at the center is shown in Figure 2. An approximately 300 usec interval starting
at t = 0 is not meaningful, as the reed relay mechanism leaves the transducer uncon-
nected, or poorly connected, to its receiver circuit during that period. To compensate
for the poor signal to noise caused by the dry coupling, the signal has been repetition
averaged 1000 times, taking about 34 minutes.

2.3 Minimizing temperature drifts

The specimen has been enclosed under a plastic dome in order to limit temperature
fluctuations. A temperature change AT is known to lead to an average fractional
wavespeed change of C AT where C in aluminum is 0.027% per degree Celsius [26,39].
This in turn leads to a phase shift at frequency fof 2m ft C AT where t is the time
since the source impulse acted. At a frequency f the varied phase shifts will lead to
destructive interferences and diminishment of perceived power by a factor
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A thermocouple monitors the temperature during the repetition process and allows
us to confirm that temperature fluctuations are not great enough to cause phase
differences at late times that would significantly degrade the average. Temperature
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Fig. 2. The first few msec of signal CC. The main bang is visible at time zero. The first 300
microsec after that are not meaningful and are not used in the analysis.

changes were less than AT = 0.05 degrees Celsius across the duration of the mea-
surement (the figure is limited by our thermocouple’s precision; we actually expect
it was better than that because the temperature was constant to within 0.1 C over
a period of hours, much longer than the 34 minutes required for 1000 repetitions).
The above estimate then indicates that degradation due to temperature fluctuations
is small (certainly no more than 50% at f = 500 kHz after ¢ = 100 msec). In any case,
such degradation only diminishes signal-to-noise ratios uniformly for all signals and
would not impact the behavior seen in ratios of energies that we wish to investigate.
Furthermore, it will be seen that the data show no evidence of non-exponential decays
like those predicted by the above equation.

2.4 Spectra

A short section of the Fourier transform (absolute value of FFT) of the signal CM
is shown in Figure 3. The rapid Erickson fluctuations on a fine scale of df ~20Hz
with amplitudes of the order of 100% seen in 3b are characteristic of any stochas-
tic signal (and for which correlation range §f scales inversely with signal duration
here identifiable as a combination of inverse dissipation rate and the record length
100 msec) and are not due to electronic noise or transducer resonances. Nor are
they individual normal modes of the structure, these are not well resolved here.
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Fig. 3. a) A short section of the spectrum of signal CM. b) The spectrum on a fine scale.

The longer range variations seen in 3a on a scale of 20 kHz are, we conjecture, due
to reverberations through the thickness or across the surface with periods of order
2L/cs ~ 2R /cs ~ 50 usec. Longer range variations are sometimes observed also; these
are due to reverberant reflections over the 30 mm length of the transducers, with
round trip travel times of the order of 20 usec. For many applications in ultrason-
ics the latter irregularity is undesirable (and transducer designers seek to minimize
them), because the corresponding time-domain distortions disperse otherwise distinct
ray arrivals. In diffuse field applications without discernable ray arrivals they are less
objectionable, while the pinducers’ low intrusiveness is desirable. Hence our choice of
these pin transducers.

2.5 Pinducer intrusiveness

We measured the intrusiveness of the thin pinducer used at C' by a method analogous
to methods used in room acoustics to measure absorptivity of surface panels or solid
objects. The pinducer was placed — without couplant and with 45 grams of contact
force (0.44 N) — on an irregular block of volume 1095 cm?, insonified and measured re-
spectively by two other transducers. This placement was found to increase the rate of
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energy dissipation by 0.00055 factors of e of energy per msec (mostly independent of
frequency in our range). Thus we characterize the pinducer’s absorption by the quan-
tity p = 0.6 cm? /msec. If we divide by a characteristic wave speed cs = 310 cm/msec
(cs because shear waves dominate a diffuse elastic wave field [27]), this can be con-
verted to an absorption cross section of 0.0019 cm?, one tenth the geometric cross
section of the face of a 1.6 mm diameter cylinder: 0.02cm?. Clearly the majority of
the wave energy incident upon the transducer is not absorbed into it. This quantity
p will be used in the analyses of Section 5.

3 Power spectral densities CC and CM and their time-evolution

Many diffuse field analyses measure and model the evolution of wave spectral
energy density in space and time (e.g., [4,19-21,31]). For the cylinder of Figure 1
we anticipate the evolution to be described by the following picture, informed chiefly
by the assumed almost fully preserved axisymmetry. Under the idealization that the
axisymmetry is perfect, all normal modes of the structure will have definite angular
momentum, as quantified by an azimuthal index m that takes negative and positive
integer values. The index m plays a role in the mode shape, such that the com-
ponents {u;,u,,up} of the vector field vary with angle like exp(im#). The transient
normal force generated in the transducer C creates bulk P and SV waves. It also
generates Rayleigh waves that constitute the majority, ~64%, of the deposited en-
ergy [40,41]. If the normal point force source is on the axis of the cylinder, then all
waves created have m = 0. On a transit time scale ~2R /¢, (which here is about 50
usec) these waves reach the edge and mode convert to other P and SV and Rayleigh
waves. Within the assumption that the body is exactly axisymmetric, they retain
their vanishing angular momentum even as they mode convert. After the waves have
experienced a few such wall and edge reflections we anticipate that a fully diffuse
P-SV-Rayleigh m = 0 field is established (it will lack m = 0 torsional SH waves).
This field will have much less Rayleigh wave energy and more bulk wave energy than
the initial deposition. The conversion of the Rayleigh waves is due to scattering at
the edges. According to Gautesan [42] for Poisson ratio 0.33, on a Rayleigh wave
encountering an edge about 50% of the energy is transmitted to the vertical surface
and about 11% is reflected. The remainder is mode converted to bulk waves. The
Rayleigh energy on the top surface will therefore diminish with each reflection by
89% until it asymptotes at a proportion characteristic of an m = 0 fully diffuse field.
That proportion is given by the ratio of modal densities of P/SV bulk to Rayleigh
waves, which is of order (Lw/mcs). The field will therefore need something of order
In (Lw/mes)/|In(11%)] transits for the initial Rayleigh wave energy to mix with all
the P/SV waves at m = 0 and fill the depth uniformly. A few hundred microseconds
should more than suffice in the bodies used here.

On a longer time scale (~5msec in these experiments, see below) the waves will
start sampling whatever non-axisymmetry the structure may have. Our initial m = 0
diffuse P/SV/R waves can mode convert to m # 0 P/SV/R waves, also to SH waves,
and to the m = 0 SH waves that were not excited by the original source. At m # 0
all SH and P/SV/R waves of the same m mode convert to each other and equilibrate
on fast transit time scales, so we lump them together into separate diffuse fields, one
for each m.

Our interest is in studying the spatial distribution of the wave energy, and its
evolution as the waves sample the weak non-axisymmetry. The preeminent observ-
able feature of the initial distribution is anticipated to be a deficit of power spectral
density at M relative to that at C by a factor of the order r times wavenumber
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where r is the distance of M from the center. At short time (much less than 5
msec) the field is all in the m = 0 subspace and so vertical displacement u, varies
with r like some superposition of Bessel functions of different radial wavenumbers
~Jo(€r) where £ is a wave number of order 27 f/cs. On recalling the asymptotic form
Jo ~ (2/m€r)1/? cos(ér-m/4), one concludes that the mean square normal displacement
at the center should be enhanced over that at larger r by a factor of w&r. (It is fur-
ther enhanced by an enhanced backscatter EBS factor of two or three [14,18,19,43],
of which more in Sect. 4.5 below.) This rough argument is made more precise in
Section 4.2 where it is shown why edge effects may be neglected and how ¢ should be
interpreted.

The diffuse field established before the first msec as purely m = 0 should then,
as it samples any nonaxisymmetry and in particular as it scatters off the hole in the
side, evolve. The m =0 subspace should lose energy to other m. It is useful to first
imagine evolution under the simplifying assumption of incoherence, with no Anderson
localization and no enhanced backscatter. We also assume no significant differences
in absorption amongst the various subspaces. With those assumptions one concludes
that at late enough times the energies at all values of m will have equilibrated and the
field will have become globally diffuse; all points on the surface becoming equivalent
(except for some possible variations close to the edge) such that the energy at the
center is no longer enhanced over the energy at other distances. So, regardless of
the character and rate of the transport amongst angular momentum states (as long
as there is transport) we predict a substantial change in energy profile across the
top surface. The ratio (mean square signal at M due to a source at the center C
divided by mean square signal at C due to the same source) is predicted to increase
over time by a factor of order w&r. In the cylinders used here and at the frequencies
examined here, and for r = 50 mm, this factor is over a hundred and potentially
dramatic.

Figure 4 shows the power spectral density (PSD) in the 390-468 kHz frequency
band versus time for the signal received at C' due to the source at C (labeled ‘CC")
and the signal simultaneously received at M for the same source (labeled ‘CM’). (It
also shows PSDs due to a source at E, these will be discussed in Sect. 5.) Repetition
averaged signals like that pictured in Figure 2 were time-windowed into coterminous
windows of duration A¢ = 0.8192msec (excluding the interval from 0 to 300 pusec),
Fourier transformed, squared, and summed into several non-overlapping frequency
bands of width Af = 78 kHz. The figure shows the time dependence of the PSDs in
one such band. The noise level is seen at negative times. The first non-negative time
is centered on 0.709 msec corresponding to the window that spans times between
t = 300 and 1119 usec; successive time windows are spaced by At = 0.8192 msec.
The familiar approximately exponential decay of the energy ascribed [1,2,24,31] in
whole or part to ultrasonic absorption is readily seen. Each data point is subject
to some irreducible fluctuation due to the stochastic nature of the signal and not
related to electronic noise. Standard arguments [44] assuming stationarity across At
and whiteness across Af teach that the natural logarithm of each binned energy has
a standard deviation statistical error of (AtAf)~1/2 = 0.125.

The two transducers have, intrinsically and also due to their different contact
forces, different sensitivities to vertical displacements (they also have different filters
and amplifiers) so the two power spectral densities cannot be compared directly.
Nevertheless we can examine the evolution of their ratio CC/CM, predicted above to
diminish by a factor w€r about equal to 100, as time proceeds from zero to infinity.
Examination of the data in Figure 4 shows the ratio of these power spectral densities
diminishes by a factor of about 12. Diminishment of the ratio is apparent, but is much
less than anticipated. This is a chief result.
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Fig. 4. The power spectral densities at C and M in the 390-468 kHz frequency bin due to
sources at C and at E. CC = source at C, receiver at C; CM = source at C, receiver at
M; EC = source at E, receiver at C; EM = source at E, receiver at M. CC decays at early
times like exp(—At) with A = 0.18/msec. At late times all PSD decay like exp(—ot) with
o = 0.025/msec. The In PSD fluctuate, with theoretical standard deviation 0.125.

The next section develops a diffuse field theory with which to predict these
profiles, their ratios, and how they vary in time. We will find that the above pic-
ture based on incoherent evolution, though attractively simple, is overly simple.
The actual distribution does not relax to equipartition and uniformity, even at infinite
time. The picture can be made more quantitatively precise. It must also be corrected
to account for enhanced backscatter and for dynamical Anderson localization.

4 Theory for angular-momentum resolved diffuse waves

The normal modes and responses of a thick solid cylinder with traction-free bound-
aries, even if axisymmetry is unbroken, are known only numerically. Hutchinson [45]
discusses the modes when wavelengths are comparable to cylinder size. Here we ad-
dress the statistics of higher frequency modes and responses. Theory to date for
diffuse elastic waves has not considered fields of specified angular momentum. Hence
we begin by revisiting some basics. Key questions concern modal density in m-specific
subspaces. We also require estimates for the participation of each angular momentum
in the mean square normal displacement on the top surface and the closely related
question as to how a specified source distributes its radiated energy in m. This section
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concludes with a theory for the way in which energy migrates between m-specific sub-
spaces, and with a discussion of how Anderson localization and enhanced backscatter
modify that picture.

4.1 Modal densities

Key to diffuse field analysis is the concept of modal density. Conventional arguments
indicate that the mode count N (number of modes with frequencies below w) of a
scalar wave of speed ¢ in a volume V is given to leading order at short wavelength by
the first term of the Weyl series [46]

e V1dr Vw3
N(‘*’):ﬁ / kO (w/c— k3+k§+k§):ﬁ§3?w3: 6c3m2 @

first octant

obtained by associating one mode to each unit volume in k-space (Ak)3V/73 and
integrating over the first octant in a Cartesian k-space. © is the Heaviside function,
equal to unity if the argument is positive and zero otherwise. The formula is extended
to elastic waves by summing N over two distinct S waves and one P wave [27,47].

Vw?

Ntotal = 4 5
62

[2¢;% + ¢, 7). (3)
Rayleigh waves are relatively negligible at leading order in mode counting, contribut-
ing only terms of order Sw?/c?> where S is the surface area. Contributions to N of
that smaller order are usually neglected. They depend on boundary conditions [22,48].
Modal density n is the w derivative of N;n = ON/0w.

The same count may be attempted by summing over angular momentum states
and integrating over radial and axial wavenumbers k,. and k, in cylindrical coordinates
rather than Cartesian.

P / dr. S / Z’ZT Ow/c — VEZ L R2). (@)

The spacing Ak, in radial wave number is not constant as it is for a Cartesian
wavenumber, but rather Ak, ~ (7/R)[1 —m?/k?R?]~1/2. See Watson [49] section
15.82. This estimate is obtained by examining the spacing of the zeros of Bessel
functions J,,,(z). For z > m, the zero spacings are 7; for z close to but larger than
m they are greater than 7. Of course for z < m there are no zeros except for the
trivial zero at z =0, so the square root [1 — m?/k?R?]'/? is interpreted as zero when

|m| > k,R.
Therefore
=R [ i dky /T— 2 RO/ — 2+ 12). (5
- w2 2z T m T w/ce T z/
k.>0 M=, >0

The sum over m may be converted to an integral (valid for large enough k, R)

k

- R
S VIR A2 / V1= 2 K2 R2dm — kR /2. (6)

m=—0o0 0
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The mode count then becomes

2
N = L / dk. / krdk, O(w/c > /K2 + k2)

2T
k. >0 k>0

L 2
% / Fovdley /0% — 2 (1)

k»>0

2me3 6c3m2

1
LR? LR? Vws
wg/\/l—x%dxzﬁwg d
0

which agrees with the conventional Cartesian derivation above.
We may adapt the above approach to calculate the number of modes N, in
subspace m: (m = —o00...0,1,...00)

L
Nm:ﬂ—f / dk. / dk, /1 — m?/k2R?O(w/c > \/k2 + k2)

k.>0 k»>0

LR
== dk, /1 —m2/k2R2\/w?/c? — k2
Er>0
/2
LR
=3 2w2 / cos® 0 df \/1 — 2m?2 /w2 R?sin? 0
i
arcsin(|m|c/Rw)
LR
= 4c2ﬂw2[1* m|e/Rw)? ©(Rlw|/c — |m]). (8)
It is apparent that m-resolved modal density diminishes with m and vanishes for
|m| > Rw/c.
At m =0, it is
LR
0= 477(:2w ) 9)

Similarly, the sum of Ny, over all m from —oo to oo, is merely N itself, equal to
LR2w?/6c3m. The modal densities are the w derivatives of these:

LR
o= 27rc2w
LR
s = At (@~ mle/R) O(s ~ |mc/R) (10)
d d LR*>.3 LR?w?
Zm>0 ftm dw( ) dw 61 2me3

In the short wavelength limit at wR/c > 1, the m =0 modes constitute a small
fraction of the total.

Of course in a homogeneous isotropic elastic body, these modal densities must be
summed over two shear waves and one dilatational wave.

For our particular 100 mm high by 88 mm radius aluminum cylinder, we take
¢s = 3.1mm/usec and ¢, = 6.2mm/usec. We calculate n, (not counting SH) =
dNy/dw = 1.145 msec times frequency in MHz (f/MHz), nS® = 0.916 msec (f/MHz).
Total modal density 1ot =dN /dw is 347 (f /MHz)? msec.
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4.2 Mean square field amplitudes

Diffuse field analysis makes the assumption that all modes of similar frequency have
statistically equal energy € per mode. For a diffuse field that is resolved in m, and well
mixed within each m-subspace, and for which there is only slow transport between
different m, we make the generalized assumption that all modes at specified m have
energy &,, per mode, a quantity that may differ for different m. Slow time-evolution
of the €,, may take place due to scattering between the weakly coupled subspaces
identified with different m; this is discussed in subsection 4.4.

A measurement like that described in Section 2 of free vibration dynamic displace-
ment 1, (in direction v and band limited to a frequency range Aw) at a position r
in a generic solid may be modeled in terms of the normal modes

Gl t) =Ry agul)(r) expliwst) (11)

where u®) is the s** mode (normalized such that [ p| u®(r)[2dV =1 where p is mass
density) and ws is its natural frequency. The prime on the sum indicates that the sum
is confined to those modes s with frequency within a range Aw in the vicinity of some
central frequency. The factor ags is the mode’s amplitude. The energy in that mode
is ¢ = w?|as|?/2. The diffuse field assumption in which mode amplitudes are uncorre-
lated and each mode in the vicinity of a given central frequency has equal expected
energy translates to each as having equal mean square value (asa’,) = 20sy¢/w?2. The
brackets () may be understood as an ensemble average. Thus, where n is modal den-
sity, the mean square displacement U (at position 7, in direction v, integrated over
the frequency band and over the ensemble) is

U= (@u(r,t)?) = (/o ndwlul?) (r)?). (12)

The average indicated by brackets () on the right side may now be considered an aver-
age over all modes s in the range Aw, and using an ergodicity assumption understood
to apply to a typical specimen from the ensemble.

The mean square mode shape at 7, <u,(,s)(r) %), that appears above may [40] be
computed from a calculation of the Green function at r. This may be seen in the
following argument: Consider the modal sum representation of the frequency domain
Green’s dyadic (7 is an infinitesimal positive quantity introduced to ensure causality)

o ul® (r)ul) ()

G(r,r' w) = Z (13)

s wZ—(w—in)?
The imaginary part of a diagonal element, eg. InG,,,,, at 7 = 7’ is related to the rate
at which a harmonic point force (in the v-direction, at r) does work. More impor-
tantly here, it is (using the familiar expression from the calculus of distributions [50]
(x — (y—in))~! = P(x —y)~! —imd(z — y), P being Cauchy principle part)

ImG,,(r,r,w) = —% ul® ()26 (w — wy). (14)

The sum is interpretable (if a factor of p is inserted) as local density of states [51].
Equation (14) permits us to identify the mean square mode shape <u(ys)(r) %) as a
frequency average of ImG:

(2w/m) /A InG,, (r,7;w) dw = —n Aw(ul® (r)?). (15)

This allows us to estimate (u?) from a separate calculation of G.
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Finally we obtain the key result that a diffuse field distributes its mean square
strength in proportion to the energy-per-mode e and to (real part of) drive point
admittance.

U

(o (1, 0)2) = (—2¢ ) / MGy (7, 73 ) d (16)
Aw

This connection, between a diffuse field participation at a point and the Green func-
tion at that point, is the 7=’ case of the widely derived connection between the
Green function between points 7 and 7’ and the correlations of a diffuse field between
those points [35-37]. The identity has been used to interpret measurements that com-
pare mean square diffuse seismic displacements in horizontal and vertical directions
in order to infer local stratigraphy [15]. In a form similar to the above it was first de-
rived in elastodynamics by Weaver [40], but can be found earlier in acoustics [52,53].
The result is derived in a Structural Acoustics context by Shorter and Langley [34],
who term the relation between U and G diffuse field reciprocity.

We now wish to extend this argument to the case in which the field may have
different energies e, in different angular momentum subspaces. The modal sum for
the free vibration (11) is now broken into a sum over angular momenta and a sum
over modes s at that angular momentum

Yy (r,t) = Re Z Z/as ul(,s)(r) exp(iwst) (17)

m sEm

such that the mean square diffuse field signal in the band is now

U= ((r,1)%) =Y (em/w?) nmAw(ul<™ (r) %)

m

= (—2/w7r)25m /ImGl(,Z‘)(r,r;w)dw. (18)

Aw

It is given in terms of the m-resolved Green’s function G(™).

In order to evaluate the above expression for U, we need to evaluate the frequency
smoothed and m-resolved Green’s function for the structure, in particular for points
on the top surface of our cylinder and for normal directions v where the measurements
described in Sections 2 and 3 were made. Calculations of elastodynamic G in a finite
body are complex and usually can only be done numerically, and even there they are
generally confined to low frequencies for which wavelengths are of order or greater
than system size [45]. However, here it suffices to consider an unbounded half space
rather than the finite cylinder of the experiments. This is because reflections from the
boundaries arrive after finite time equal to the round trip travel time from the point of
interest to the edge, so if our frequency averaging range Aw is broad enough, the edge
cannot contribute to deposited spectral energy density [54]. (This incurs some error
if the point 7 of interest is at or near the edge and Aw is small.) Thus the calculation
of G reduces to Lamb’s problem [41] for a half space. This is a classic calculation and
amenable to analytic treatment. On performing a double-spatial Fourier transform
and introducing the Fourier transform vector variable £ in the horizontal plane, the
governing equations for the harmonic Greens function due to a harmonic normal point
source at v/ = (r,0’) on the surface become coupled ordinary differential equations
in depth z. After solving these and performing the inverse double spatial Fourier
transform for a receiver position r=(r,6) on the surface, one obtains [41]

1 w? exp(i& - (r — "))

G..(r, v w) = d*¢a DE.)

. 1
dum? c2 (19)



1384 The European Physical Journal Special Topics

where D is the Rayleigh function
D(¢,w) = (267 — w?/c2)? — 4ape? (20)

and a and 3 are (the imaginary unit ¢ times) the vertical P and S wavenumbers
associated with the horizontal wave vector ¢:

a= /e w2 p=E 73 (21)

with the sign chosen such that they have positive real part. Singularities are resolved
as in equation 13 by interpreting w as w — 7. p is the shear modulus.

We expand the r dependence in a partial wave expansion taken from Abromowitz
and Stegun’s [55] formulas 9.1.44 and 45.

oo

exp(i€ - r) = exp(i€rcos(d — 0¢)) = Z i T (E) (07 0¢) (22)

m=—0o0

where 0 is the direction of the vector §. Without loss of generality we also assume
the source at 7’ is on the z-axis, #’ = 0, to get

/. 1 Ld72 = /Oo exp( ’LfT‘/ cos 95) ‘m im(0—0¢)
G..(r,v'w) = "L Z £de d e o Dew) Jm(Er)e .
m=—00
(23)
The integration over 0¢ may be performed:
/ d ¢ exp(—i&r’ cosO)e™ ™0 = 2w iT™ J,, (Er). (24)

One then derives, for the steady state z-displacement at position r on the surface
consequent to a unit harmonic vertical force on the surface on the z-axis at r’

im@Jm (&r'). (25)

, 1 w?
G..(r,riw) = ——5—5 2 | Edé
dpm? 2
m=—0oo
This G, is the response at r, 6 to a unit source at v’ on the x axis. The sum over m
is manifestly a sum over the generated waves J,,, (r)exp(imf) at angular momentum
m. We now specify to the response at the source position (§ = 0,7 = r’) and obtain

4m2 02 Z o / gdga §7‘ (26)

m=—0o0

ImG..(r,r;w) =

So that we identify the m-resolved G by

m) (e T (€r)
ImG{™ (r, r;w) = 4wr2 c2 / ¢d¢Im DE.o) (27)
The integrand is positive semi-definite.
We define an overbar as a weighted average of a £ dependent quantity
- §dg X (&)Im g 5
x=? D) (28)

fﬁd&ImD(g >
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to obtain

ImG™ (7, r;w) = N [Im Dg(fa)

2um 2
We now recall equation 18, insert v =z for normal displacement, and deduce for the
mean square normal displacement at r integrated over the band:

o[22 fosigt] [mm o S oo

22
CoT
m>0

} &) (29)

Thus the mean square diffuse signal U at r on the top surface is expressed in terms
of the €. Inasmuch as we are chiefly interested in U’s r-dependence (and its time
dependence via time dependence in the ¢) the prefactor in square brackets is ignorable.
That U’s r-dependence within each m-specific subspace is J2, (£r) was anticipated in
Section 3.

The integral (28) that defines our overbar is dominated by the contribution from
the Rayleigh pole at £ = w/cRayleigh- The majority of energy goes into Rayleigh surface
waves. Hence we might for simplicity approximate the overbar average (28) by an
evaluation at £ = w/cr. A more precise value, that includes contributions from the
P and SV and head waves in G, requires a numerical evaluation of the integral. One
important case is the overbar of 1/£. On defining a kind of effective wave speed
c¢* by 1/m€r = 1/n&*r = ¢* /nwr (the inverse of ¢* corresponds to a kind of average
radial slowness, as weighted by the efficiency with which a normal point force radiates
energy, or equivalently the efficiency with which a point vertical displacement detector
measures diffuse energy) we calculate

= /dglm //g )

7 A /52 _ K2
=c dslm
S/ (452 +1)2 — 4v/s2 — K2y/s2 — 1

0

/ / sdsIm Vs® — K7 = 1.29¢, (31)
) (452 +1)2 —4y/s2 — K2y/s2 — 1

where K is the ratio of wavespeeds ¢;/c,. The value 1.29 was obtained numerically
for the case K =% corresponding to aluminum with Poisson ratio 1/3.

Figure 5 shows the indefinite integral of the weight function Im fa/D at
Poisson ratio 1/3. It has been normalized to 100% at large slowness. A small imag-
inary part was subtracted from w to regularize the numerics. The singular step-up
at the Rayleigh slowness 1.07 is apparent. The inset shows the weight function itself,
dominated by the Rayleigh singularity.

4.3 Some special cases of U(r)
4.3.1 Equipartition over all m

If all the € are equal, as they would be in a fully diffuse field, then equation 30 tells
us (ignoring the prefactor)

Uoce |[J2(Er)+2 > J2(Er)

m>0
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Fig. 5. The integral fOS sv/s2 — K2/{(4s* +1)® — 4v/s?2 — K21/s2 — 1}ds of the weight
function for Poisson ratio 1/3 is normalized to 100% and plotted versus nondimensional
slowness S. The singular step-up of about 0.64 is visible at the Rayleigh slowness 1.07
(indicating that 64% of the energy goes into Rayleigh waves). Other non-analyticities are

also discernable, at the longitudinal slowness 0.5 and at the shear slowness 1.0. The weight
function itself is portrayed in the inset, smoothed slightly to soften the Rayleigh singularity.

But, using identity 9.1.76 from Abromowitz and Stegun [55],

JoEr)+2 ) Ja(er) =1 (32)

m>1

we conclude that all € equal implies that U is independent of r, as it ought be; a
fully diffuse field will distribute its mean square displacement uniformly over the top
surface.

4.3.2 Equipartition amongst all m # 0
For the case in which the &,, are not all equal, general evaluation of the sum

(30) is not possible except numerically. However, the special case in which all &,
for m # 0 are equal to each other while ¢( differs is addressable. In this case we write,

N - -
U= [:CQ;‘; / fd“mp(?,w)} {eoJ(%(frH?sm#omeJ%(fT)] (33)

and use the identity (32) to replace the sum over J2 to obtain

U= {:c?; /fdﬂmD(zw)] [50n73(§7‘)+5m¢0(1 - Jg(&‘))]

- [;’f;ﬁ; / 5d§ImD(zw)] [sm¢o+ (go_wowg(gr)]. (34)
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At the center, r = 0, where J, = 1, this is

wAw «
= — I _
Ucenter MC§7T2 €0 / €d£ mD(f, w) (35)

At a distance r large compared to 1/¢ such that Jy(€r) may be approximated as cos(..)
[wér/ 2]*1/ 2 and on doing an average over a short range of w to permit replacing cos?
with 3, it is

A
Untrso — L‘j: / cde Imng,w)} Emro + (c0 — empo) I/TEF.  (36)

The ratio Uy /Ucenter Was discussed in Sections 2 and 3. It is

Uat r#0 / Ucenter = [Em;éO + (50 - 5m;£0) 1/7T£T]/€0
= 1/m&r = 1/m&"r when &p40=0. (37)

This ratio is unity at equipartition when e,,20 = €o, and is the small quantity
1/7€&*r when all energy is in m = 0, as it is at early times in the measurements of
Section 3. )

For the measurements of Section 3, the enhancement factor 1/wér = is 2w2fr/c*,
equal to 247 (f/MHz) if r = 50mm using ¢* = 1.29¢;. U(r) due to a source at the
center is, before any transport between angular momentum subspaces, predicted to be
strongly concentrated at the center. Thus we arrive at a confirmation of the argument
of Section 3, and find that U at the center should be enhanced, at early times, over U
at point ‘M’, CC/CM, by a factor of 247 (f/MHz). The CC and CM data of Figure 4
at early times do not permit corroboration of this enhancement, because the relative
sensitivity of the transducers is not known. As a first attempt to calibrate them it
is tempting to evaluate the ratio CC/CM at late times, and assume equipartition at
those times. This argument then leads to a prediction that the ratio CC/CM that
may be discerned in Figure 4 should decrease by a factor of 247 (f/MHz) = 106 from
time zero to late times, much more than the observed 12. The reason for this striking
discrepancy is discussed below.

4.3.3 Sources far from center.

If a source acts at a point 7’ other than the center, the initial distribution U(r) is
more complicated. We may calculate it from equation (30) using e, as given by
the following argument. The energy (per frequency) deposited in angular momentum
m by an impulse at v’ is (using Eq. (29) and neglecting m-independent prefactors)

W = J2,(&r7). Thus the energy per mode deposited in the m™ subspace is

Em = J2, (1) /M. (38)
We conclude
U(r,r') ~ J2(r") J2(r) fno + 2 J2,(&r") JZ,(€r) [nm: (39)
m>0

These quantities are evaluated numerically and plotted in Figure 6. W is plotted
versus m for the case of a source at wr'/c; = 77 (corresponding to ' = 76 mm at
500 kHz). &, is obtained by dividing W,,, by n,,, for which we must know R, so we
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Fig. 6. a) Work done W,, = J,(&r")? in different angular momentum subspaces, for the
specified position corresponding to 7’ = 76 mm from the center if f = 500 kHz. b) The energy
per mode €, = Wy, /ny, after a source acts at wr'/cs = 77. These €g are obtained by divid-
ing the W,,, of Figure 6a by nm, = 2/cg (1 — |m|cs/wr)® (1 — |mlcs/wR) +(1/cp)(1 — |m|
¢p/wR) O(1 — |mlcp/wR) with ¢, = 2¢,. We choose wr/cs = 89, which corresponds to
r =88 mm if f =500kHz. The n include the SH waves, though for short times and low
m, one might argue that they should not have; to do so would have nearly doubled the &
at small m. The € amongst the m < 50 differ by factors of no more than four, making them
moderately close to equipartition. ¢) U(r,7’) (i.e., Eq. 39 using the ¢ of Fig. 6b) for a source
at dimensionless distance wr’/cs = 77, in a cylinder of dimensionless size wR/cs = 89, versus
dimensionless distance wr/cs. U shows some undulations that will wash out on averaging
over a finite frequency band. This shows that energy density over the inner regions after a
source acts at finite radius r’ is nearly constant.
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Fig. 6. Continued.

take wR/cs = 89 (corresponding to R = 88 mm if f = 500kHz). U is then evaluated
and plotted for these parameters versus dimensionless distance rw/cs over a region
interior to the source, r < r’. U represents the early time activity of the diffuse field
at r due to the source at 7/, before any scattering has changed the values of the e. Of
particular note is that U(r,r’) is approximately independent of r over a range 0 to
27’ /3; there is no striking enhancement of energy U at the origin, as there is when the
source is at the center. Sources at large distance r’ generate a field U that, even at
times before scattering redistributes the ey,, is nearly uniform over the inner regions.

4.3.4 The effect of a poorly sited central transducer.

If the C transducer that is nominally at ' = 0 is actually at r’ = a < wavelength,
the initial U(r) profile (Eq. 39) due to a source at C is no longer the simple J2(&r)
calculated above. At large r (and for a small enough that the series (39) converges in
a few terms), we may approximate

J2.(&r) /nm = 1/7&r /ng = 1/7%r ng. (40)

Therefore
U(a,a)/U(r,a) = [J2(€a) +2Sms0T3(€a) Imer. (41)

The initial ratio U(source)/U(r) that had been predicted (Eq. (37)) to be w&*r is
diminished by the first factor above in square brackets that captures the effect of an
imperfectly centered transducer C. Figure 7 shows a plot of that factor as evaluated
by numerical integration for the case Poisson ratio = 1/3. The diminishment is by
a factor of ~2.22 at a = ¢;/w = 0.49mm/(f/mu,). A half mm misplacement would —
at f =1 MHz — diminish the enhancement by more than a factor of two. The effect
is weaker at lower frequencies. It seems that predicted dramatic ratio (37) would be
obscured by minor mis-positioning, but it is also apparent that miscentering would
have far too weak an effect to be responsible for the discrepancy noted above.
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Fig. 7. The factor in equation (41) in square brackets, the factor by which enhancement
7€q*r of CC over CM is predicted to be diminished by imperfect centering of the transducer
at C. It is plotted versus dimensionless miscentering wa/cs.

4.3.5 Energy transport between subspaces

Given a model for how the e, evolve from initial conditions, we could use (30) to
predict how the mean square fields U and their ratios change in time. The present
subsection offers a specific model for that evolution. The model is, however, highly
ideal and not meant to be taken as general. Nor is it needed for Section 5’s compar-
isons with measurements. This subsection may therefore be skipped without loss of
continuity. It is offered merely for completeness.

Statistical Energy Analysis SEA [32] is usually formulated for a time-independent
steady state of energy distribution amongst substructures under the joint influence
of continuous energy deposition, incoherent transport, and dissipation. Time-domain
SEA equations for that evolution take the form (where E,, = nyéen, is the energy per
frequency in subsystem m)

By [dt = N degn /dt =Y Dy (En — &) (42)

The positive quantities D are related to SEA’s “coupling loss factors.” They govern
the rate at which energy leaks between subspaces. These equations may be concep-
tualized as analogous to thermal conduction in which the net rate at which energy
leaks into subsystem m from subsystem n is proportional to the difference in energy
per mode ¢ (analogous to difference in temperature) between those two subsystems
and to a thermal conductance D,,,. This system of equations has — by inspection
— a constant solution in which all € are equal, corresponding to equipartition. If D
is symmetric, it also has the property that total energy Fiotal = XEm = XemnNy, i
a constant, as demanded by energy conservation. Symmetry of D follows from reci-
procity ([32] Eq. 4.1.14).

The above equations may be supplemented with extra terms on the right I, (t)
—OmNmEm representing input power and linear dissipation. In the present section
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we are assuming that all subspaces experience identical dissipation o and as we will
only be examining ratios of energy, the effect drops out. Dissipation affects energy
ratios between subspaces only if differences in dissipation in different subspaces are
sufficiently large compared to transport rates.

The above equations purport to describe how the energy, originally deposited in
different subspaces m, migrates between subspaces. The details and rates of such mi-
gration are of interest as they are measurable in principle and functions of scattering.
In this section we describe the energy flows consequent to certain simple assumptions
on the D that may or may not obtain in practice. The model is proposed simply
for illustration and is not intended to be definitive. Fortunately the SEA prediction
that energy is ultimately distributed uniformly is independent of these assumptions
on D. Let us take, for lack of much information on a better model for the scatter-
ing, Dy, = d nqny, for some fixed d. This implies that the energy flow rate from the
I*" to the m™® subspace is D,,e; = dninm,e; = dEn,,, which is proportional to the
total energy in ! times the number of modes n,, able to accept it in m. The model
is excessively simple and arguably incorrect for our cylinder (because modes at very
different angular momenta are concentrated at different radii, so will presumably be
more weakly coupled than modes with similar angular momenta). But the model has
the virtue of simplicity and no parameters other than an overall transport time scale
1/d; it also has the virtue of permitting an analytic solution.

We rewrite the above as

P/SV P/SV
Eo Eo
ef/SV/SH Ef/SV/SH
€P/SV/SH PISv PISV/SH EP/SV/SH
8, { 2 = —d(ny"* 405" 423 SV ) L 52
>0
esH esH
cP/SV
ng/sv 2nf/SV/SH 2n§/SV/SH o ;n(,:;;‘H Ef/SV/SH
n(})’/SV an/SV/SH 2n§/SV/SH 7ngH EP/SV/SH
+d 2
né)/sv an/SV/SH 2n§/SV/SH CinSH
esH
(43)
Here EO(P/SV) is the energy per mode at m = 0 in P/SV/R waves. engi/()SV/SH) are the

energies per mode at m > 0 and include the SH waves under the presumption that
m # 0 P/SV/R and SH waves of the same m mix rapidly (on a transit time scale).
EgH is the energy per mode in m = 0 SH waves (presumed to couple only slowly to
other modes and so given their own subspace). The n are the corresponding modal
densities. The subspaces associated with positive m > 0 and negative m < 0 angular
momenta have been combined, hence the factors of 2. From Section 4.1, we recall the
leading asymptotic approximations

ng® = (LR/2¢*T)w; n(I;/SV = (LR/2012)7T + LR/2¢%T)w. (44)
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The sum over all n is

LR?w* [ 2 1
Ntotal = TLgH + TLOP/SV + 2 anP/SV/SH = T |:c3 + C3:| (45)
1>0 s P

the total modal density. The factor multiplying the Identity matrix in equation (43)
may be seen to be d times the total modal density.
We desire a solution that can match initial conditions 5 = 0;851/;0‘// SH _ 0;

5(1)3 /5V # 0. The solution must be composed of the following two eigenstates of the

SEA dynamics (with y = (ntotal — n(I)D/SV) nOP/SV = (2Rw/cs)(1 + K3/2)/(1 + K?)
—1 = (17Rw/10c,s) — 1 where K is the ratio of wave speeds ¢,/c, ~ taken here to be
4, and XA = dnyetar) For the system of Section 2 y = 303 (f/MHz). That solution is

1 Yy
1 —1

{e}y={. V+<{ . Yexp(-\t) (46)
1 1

The first term is recognized as the equipartitioned late time steady state. The second
term is recognized as having zero total energy, a requirement for any time-varying

eigenstate of an energy-conserving SEA dynamics.
From this solution we recover 5OP/SV =1+ yexp(—At) and Ef/SV/SH =(1-

exp(—At)). Therefore, using (37)

EP/SV/SH
Ur/Ucenter - W(l - 1/€T7T) + 1/57"71’
€o

1 —exp(—At) T + T/
(- Term) + 17€ (47)

This makes the anticipated transition from the small quantity 1/7£*r of order 0.01
in our cylinder at time zero, to unity, i.e., equipartition, at late time ¢ > In(y)/A.

4.4 Residual coherence

The above picture for the distribution of energy in diffuse wave fields must be
modified to correct two oversights common to theories like SEA that assume inco-
herence. Enhanced backscatter (EBS — sometimes called weak Anderson localization,
and sometimes called elastic enhancement) describes how signal strength backscat-
tered to a source is stronger than otherwise predicted, by factors of two or three
[14,18,19,43,56]. Dynamical Anderson localization describes how energy transport
between subspaces, whether associated with different angular momenta [57-59] or
other kinds of subspaces [17,60], must cease at times after the so—called Heisenberg
time, regardless of whether or not equipartition has been achieved.

EBS is widely discussed. In time-reversal invariant systems, multiply scattered
rays from a source back to the source are phase coherent with rays that travel by the
reverse route. They therefore superpose coherently and interfere constructively. Thus
the expected energy level at the source is twice the energy level at nearby positions.
The effect appears almost immediately - after a few mean free scattering times (a few
hundred psec in the present experiments) and diminishes rapidly with distance from
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the source — on a scale comparable to wavelength. On longer time scales enhancement
grows beyond a factor of two: after times such that the modes are resolvable (the
Heisenberg time Ty = dN/df = 27n) enhancement grows to a factor of three, still
decaying with distance from the source. These EBS factors have been observed both
numerically and in ultrasonic experiments [14,18,19].

Anderson localization is distinct from EBS and more subtle. See Lagendijk
et al. [61] for a recent general review of localization for a variety of wave types,
including electronic and optical. Ultrasound has provided clear laboratory demon-
strations of localization [20,21]. In a statistically homogeneous multiply scattering
random medium, one may define a Boltzmann diffusivity proportional to mean free
path and wave speed. This diffusivity will govern the spread of wave energy for short
times and distances. When diffusion is sufficiently slow, however, wave interference
can cause energy to be incapable of diffusing over large distances; transport ceases
after finite time. Eigenmodes are localized in space. Less well studied is dynamical
Anderson localization [57-59], in which wave energy fails to diffuse, not in space, but
rather in a dynamical coordinate like angular momentum. The best known example
is perhaps the kicked rotor [59] that classically can diffuse in angular momentum
but that when quantized can localize. A nearly axisymmetric wave system whose
rays scatter between a finite number of neighboring angular momentum states m is
related; it has a nominal diffusivity in angular momentum that governs transport at
short times, and a failure to diffuse over long ranges [57,58]. One consequence is an
absence of long range transport in m; equivalently, the normal modes of the structure
are all localized over short ranges in m.

The present circumstances are somewhat different from the standard picture of
dynamical Anderson localization of waves in angular momentum [57,58]. Our drilled
hole scatters waves between very different angular momentum states. All subspaces
m are therefore directly coupled to each other by the scattering. This is in contrast
to a picture in which each scattering event changes a ray’s angular momentum by
only small amounts. Nevertheless, the essential physics still applies: transport must
cease after some effective Heisenberg time, regardless of whether or not equipartition
has been achieved by then. Energy originally deposited by the source into the m = 0
subspace leaks out to other m, at least initially, at a rate A\ that we can observe in
plots such as those of Figure 4 and ascribe to scattering by the hole. But if that rate
is too slow, then transport must cease before equipartition is achieved amongst the
€m, and uniformity of U(r) is not obtained, even at late times.

In an attempt to estimate the strength of this effect and determine whether or
not the observed A in figures like 4 are slow enough, we construct the following
argument. Consider a set of N > 1 subspaces, each of the same modal density n
such that total modal density is Nn, with a transient source acting in one of the
subspaces, termed the “home” subspace. Consider the case in which coupling leads to
an (initial) exponential leakage of energy A out of the home subspace. In the limit of
no coupling, A =0, the modes of the home subspace are modes of the whole structure.
As the coupling is turned on, each mode (of frequency @) of the home is mixed with a
number of order An(N —1) modes of the rest of the structure, those with frequencies
within A of w. Thus energy originally deposited in a mode of the home subspace
is ultimately distributed amongst 1+An(N —1) modes, only one of which is in the
home system. (This argument fails for An >1 where it does not account for mixing
back into other modes of the home system.) The steady state late time energy left
in the home system is therefore diminished from the original deposition by a factor
of 1/(1+ An(N — 1)) corresponding to partition of the original energy over these
1+ An(N — 1) modes. This may be compared to the fraction left if it were to achieve
tull equipartition: 1/N. The ratio is N/(1 + An(N — 1)). For large ANn we therefore
expect the late time energy in the home system to exceed equipartition by a factor of
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order 1/An. The effect is significant if An is small. If the leaking rate A out of the home
subsystem is slow compared to the inverse of modal density n in the home system,
equipartition is not achieved. As described above our cylinder has néj /SVIR _ 1145
msec (f/MHz), so InCC in Figure 4 with f = 430kHz and an initial slope A of about
0.20/msec is indeed slow on this scale (An = 0.07); dynamical Anderson localization
is very plausible.

In order to get a more precise estimate we turn to numerical simulations and a
rudimentary theory [62]. A thorough study of localization amongst multi-coupled
substructures is beyond the present scope, but we have examined transport and
localization for the case of N = 100 statistically equivalent GOE random matrix
[30,63] substructures, each with unit variance in its off-diagonal elements, each with
100 internal degrees of freedom and identical modal densities n, all coupled weakly. A
range of coupling strengths is examined, resulting in a set of different values for the
leaking rate A and for the key parameter An. Figure 8 shows the factor Z by which
energy at late times in the home substructure was found to exceed equipartition at
times long after an initial deposition of energy in the home substructure. It also plots
the prediction [62], Z = N{\/1+4/NAn —1+2/N}/{y/1+4/NAn + 1}. That Z is
greater than unity is an indication of dynamical localization. It is apparent that the
cylinder of Sections 2 and 3, with values of A times modal density comparable to
those in Figure 8, should be expected to Anderson localize.

5 Analysis of measured energy profiles

We now revisit the measurements introduced in Section 3, and analyze them using
the concepts developed above. We discuss PSD distribution and evolution in three
cylinders: the cylinder presented in Sections 2 and 3, another with no machined holes
and thus better axisymmetry, and finally a more heavily machined version of the first
cylinder with diminished axisymmetry.

5.1 Original cylinder

Figures 4 and 9 show the evolution of the Power Spectral Densities in each of eight
frequency bins, for each of four signals, in the cylinder of Figure 1. In Figures 9,
the noise has been subtracted before taking the logarithm, and the negative times
suppressed. The data sets marked CC and CM correspond to a source at C, and
received at C' with the reed relay and received simultaneously at M 50 mm from
the center. Data sets marked FC and EM correspond to the signals received (again
simultaneously) at C' and M respectively due to a source at point £ 78 mm from the
center. Key measures on these profiles are summarized in Table 1.

The first three rows of Table 1 after fcentral are obtained from theory; n, is the
modal density in the m =0 P/SV/R subspace not including the m =0 SH waves;
no =1.145 msec (f/MHz) (this should be halved if the interest is in the m = 0
modes of definite up/down parity) 1t is the total modal density at that frequency
347(f/MHz)? msec. m&*r = 247 (f/MHz) is predicted incoherent zero-time enhance-
ment, equation (37), of mean square signal at the center over that at a distance
r = 50 mm, neglecting EBS.

The next several rows are taken in whole or part from measurements; o is the
observed late time slopes of all four profiles, a measure of internal friction. We may
define the quality factor of the structure as Q = w/o = 6280 (f/MHz)/(o/msec™!).
Typical values are @ = 10°. We have found that if insufficient attention is paid to
minimizing temperature drift during the 1000 repetitions, then the slopes increase at
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Fig. 8. Results from a numerical study of dynamical localization in a 10000 degree of
freedom system composed of N = 100 nearly uncoupled substructures, each of 100 internal
degrees of freedom. Z, which depends chiefly on the product of early time energy leaking
rate A and local modal density m, is the factor by which energy in the home substruc-
ture exceeds at late times that which would be predicted by equipartition. Error bars are
based on observed fluctuations across numerical ensembles and are equal to the standard
deviation amongst 12 samples, divided by 1/12. Also plotted (continuous line) are the pre-
dictions of a theory [62]: Z5€ = N{/1+4/NXn —1+2/N}/{/1+ 4/Nin + 1}. InZ5€ as-
ymptotes at In(IN) on the left and In(1) on the right. The predictions are qualitatively in
accord with the numerical simuations but tend to overestimate the excess. In Section 5,
where we observe values of In An between —1 and —4, we use the theoretical Z, but reduce
it by 20%.

Table 1. Summary of measurements on the first cylinder. Numbers are taken from the plots
of Figures 4 and 9.

feentral (kHz) 350 429 507 585 664 742 820 898

no (msec) 0.40 0.49 0.58 0.67 0.76 0.85 0.94 1.03
Ntotal (MSeC) 42.5 63.9 89.2 119 153 191 233 280
T 86 106 125 144 164 183 202 222
Mo (msec™ 1) 0.17 0.18 0.25 0.23 0.31 0.30 0.36 0.40
o (msec™ ) 0.025 | 0.025 | 0.027 | 0.033 | 0.035 | 0.037 | 0.035 | 0.04

AT (msec 1) | 0.10 | 0.095 | 0.15 | 0.11 | 0.18 | 0.22 | 0.20 | 0.23
In(CC,/CM,) | —0.25 | 0.60 | 1.7 | 1.30 | —0.50 | 0.70 | 3.0 | 5.0
In(CCoo/CMoo) | 23 | -18 | 15 | 25 | 40 | =27 | 09 |05
In(ECo/EM.,) | 5.8 | 49 | 41 | 49 | 64 | 52 | 27 |14

ETE 257 245 330 493 365 365 299 602
ETE/n&*r 2.99 2.31 2.64 4.14 2.23 1.99 1.48 2.71
LTEobserved 3.5 3.1 2.6 2.4 2.4 2.5 1.8 1.9
LTE theory 4.0 3.9 3.5 3.7 3.2 3.0 3.0 2.8

Z@pparent 11.1 9.6 5.1 3.22 4.95 6.1 4.1 2.5
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Fig. 9. The power spectral densities in the cylinder of Figure 1 (and plotted for one band
in Fig. 4) are plotted here versus time for the other frequency bands.

late time (note how Eq. (1) diminishes at first like the square of time) and the slope
at 100 msec becomes an overestimate of average internal friction. Figures 4, 9, 10

and 11 show no sign of this effect.

Ao is the observed initial t = 0 slope of the profile InCC and is a measure
(after corrections; see below) of apparent scattering rate out of the m =0 subspace.
This slope is evaluated using data from times after the theoretical local Heisenberg
time 27n,, and before the time at which In CC noticeably deviates from linearity,
typically 10msec. The early time slope of In CC quantifies the rate at which en-
ergy in m = 0 is diminishing. This diminishment is due to distinct mechanisms.
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Fig. 9. Continued.

It includes a contribution from transport, as energy is scattered to other angular
momenta. It includes a contribution from bulk absorption o. It furthermore includes a
contribution from loss due to the intrusive dissipation of the C transducer. That trans-
ducer dissipates only the m = 0 subspace; it concentrates its otherwise small effects
(p = 0.6 cm®/msec; see Sect. 2.5) there. We calculate its contribution to losses in the
m = 0 subspace as pJ,(0)2/[2nL [ rdrJ,(ér)?] = p€* /2LR = 0.05 (f/MHz) msec™ .
The loss into the transducer is further augmented by an EBS factor of two or
three whenever the transducer is at the source of the field. We conclude that
the tabulated values of A\, are overestimates of transport rates into other angular
momentum subspaces. The table therefore provides a A corrected by subtracting o,
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Fig. 10. The power spectral densities in two of the frequency bands, for a cylinder like that
of Figure 1, but with only 76 mm height and, more importantly, with no hole drilled to break
axisymmetry. Legend as in Figures 9.
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Fig. 11. The power spectral density in each of two frequency bands for a cylinder with
more machining, to better break axisymmetry and up/down reflection symmetry. Legend as
in Figures 9.
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and subtracting the estimate 0.15 (f/MHz)/msec for the extra losses in the C trans-
ducer: A" =\, — o — 0.15(f/MHz).

We may attempt a connection between the A°°™™ and a scattering cross section
¥ for the hole: A\ = ¢X/Vef | where Ve is an effective volume, equal to 2r LR? =
4800 cm? (twice the actual volume due to the non uniform distribution of the m = 0
energy.) A A" of the observed order, 0.10 to 0.20/msec, thus corresponds to a cross
section of about 1.5 to 3.0 cm?. This cross section is not unreasonable. To the extent
that it exceeds what we might have expected for a 12mm x 4 mm tapped hole at shear
wavelengths of order 5 mm, one could posit the existence of other sources of scattering.
Perhaps the nail supports or the transducers provide some scattering. Scattering by
polycrystalline microstructure is unlikely to be significant; such scattering is weak
in aluminum below 1MHz unless crystallites are large, and would in any case be
expected to be a strong function of frequency [64].

In (CC,/CM,) represents the relative strengths of these two PSDs at time zero. It
is obtained by linear extrapolation of the measured In (CC/CM) to zero time using
the data from times at and after the local Heisenberg time 27n,, and before the ratio
noticeably deviates from linearity.

In (ECo /EM ) represents the relative strength of these two PSDs at late time. It
is obtained by averaging In (EC/EM) over late times, defined as a period during which
there is no discernable trend, typically from 30 to 100 msec. (Values for In CC, /CM,
are obtained by similar averaging.) On presuming late time mean square fields U at
C and at M due to a source at E are equal, this number quantifies the relative
sensitivities of the two transducers at C and M. The late time equality of U at C and
M due to a source at E follows from our knowledge that E deposits energy roughly
uniformly over the lower values of m, and over smaller values of r, as illustrated in
Figure 6. It therefore creates an initial field that is close to equipartitioned. After
some transport (i.e. at large t) the field must be even better equipartitioned. Thus we
compare the powers EC and EM at late times to assess the relative sensitivities of the
sensors at C and M. That EC/EM rises in time by a factor of about three (consistent
with Figure 6’s estimate that EC starts below equipartition and so must rise due to
transport), and completes its changes within 20 msec, is a further indication that
transport is well finished by ¢ = 100 msec and that EC/EM has achieved its steady
state.

Observed early time enhancement ETE is defined as ETE = (CC,/CM,)
(EMs/ECs) and represents the observed enhancement of energy CC over CM at
early times, as corrected by the calibration provided by EM/EC at late times. This
quantity may be compared to the enhancement predicted in Sections 3 and 4: w&*r.
Values of ETE/w&*r are of order three, consistent with predictions of enhanced
backscatter. At the higher frequencies, they drop to order two. Thus we corrobo-
rate the assertion in Sections 3 and 4.3, that energy densities at time zero in the
center will be enhanced over energy densities elsewhere by the large number w&*r,
though also enhanced by EBS.

We suggest two possible explanations for our short-time EBS measure
(i.e. ETE/mw&*r) to be closer to 2 than 3 at higher frequencies. It may be that there
is some miscentering as illustrated in Figure 7. Perfect centering is difficult and high
frequencies magnify the effect of imperfect centering. We estimate after repeated mea-
surements that the center of the C transducer is placed with an error of no more than
0.5mm. (Furthermore, the transducer itself has a diameter of 1.6mm and the precise
center of its sensitivity is unclear.) An error of 0.5 mm at 1 MHz leads to degradation
by a factor of 2.22, as shown in Figure 7. This would be sufficient to explain the ob-
served EBS factors. As an alternative explanation one could hypothesize that EBS,
though equal to 3 in an isolated subsystem, is lessened by leaking into other systems
when that leaking is significant on a scale of the local Heisenberg time [64]. Indeed
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if transport A were fast enough, EBS would start at two but would not approach 3
until ¢ = 2mnyeta). Lacking a theory for EBS in a system of multiple substructures,
we cannot tell which explanation is more likely.

Late time enhancement LTE is a measure of residual coherence and failure to
achieve equipartition; it is defined by LTE = In(CCu/CMs)(EMoo/ECx ). This
number is constructed to be independent of transducer sensitivities and amplifica-
tions and thus represents the corresponding ratio of mean square fields U at different
positions; it would be zero if energy were to be fully incoherent and equipartitioned,
i.e, in the absence of Anderson localization or enhanced backscatter.

If transport were rapid such that there is little Anderson localization, LTE would
simply be the In of the EBS factor (i.e., In 2 at times well before the total system
Heisenberg time 27nt°tal In 3 after). In the absence of any transport, such that
all energy remains in m = 0, CC would experience the full EBS factor of 3 (because
50-100 msec is late compared to local Heisenberg time 27n,,). In that limit LTE would
(still taking EM, /ECo, to nevertheless calibrate the transducers) be In(37&*r).

However, in the parameter regime of these measurements, in which Z is much less
than 7&*r, theoretical LTE is approximately LTEh®°™Y = In (EBS times Z taken from
Figure 8). It is not clear whether the appropriate EBS value is 3 or 2 or something
in between, as the effective Heisenberg time is not obvious for this purpose, 27n, or
2rntotal [65]. Thus we split the difference and choose the geometric mean /6; the
uncertainty is in any case mild compared to measurement uncertainties. LTEh¢ory =
Iny/6+ InZ%¢(\°""n, /2)-0.2, where 0.2 is subtracted to bring self consistent theory
Z°C in Figure 8 closer to the numerical simulations shown in Figure 8. We use
A%, /2 rather than An, after noting that for these purposes the modal density in
the home substructure is n,/2, not n,, due to how the cylinder’s nominal up/down
reflection symmetry splits each subspace m into nominally uncoupled even and odd
parts.

We see a general agreement between the observed and theoretical LTE, thus con-
firming our hypothesis that this system exhibits dynamical Anderson localization.
Energy at late times is stronger at C than at M by significant factors, exp(LTE), as
high as 40. Predicted enhancement according to our theories is generally greater (thus
localization is stronger) than observed, by factors of order 3, though the trends are
the same. Differences are perhaps ascribable to underestimates of A\°°™* or extra losses
in CC relative to CM due to the intrusiveness of the C transducer, or the lack of exact
correspondence between the 100 equally coupled statistically equivalent subsystems
of the simulations and theory in Figure 8 and the more than 100 non-equal-sized
non-equally coupled subsystems in the cylinder.

Dynamical localization is revealed also, without recourse to intepretations
of EC/EM as a calibration, by the quantity Z®PPa*2t defined as w&*r
(CC/CM) 0 /(CC/CM)p. (This is the quantity discussed in IV.C.2 as taking the value
106/12 for the data of Figure 4.) This is the factor by which CC/CM has not achieved
equipartition at time 100 (and inasmuch as CC/CM is in a steady state at late times,
presumably at t = oo also). If EBS is unchanged from time zero to ¢ = 100 msec, this
is simply Z, the factor by which late time energy in m = 0 exceeds its equipartitioned
share. Z2PParent would be unity in the absence of localization.

5.2 Cylinder without hole

To provide further evidence for the above picture we have repeated these mea-
surements on a cylinder with better axisymmetry, one for which we therefore ex-
pect corrected A\ to be much less, and correspondingly expect LTE to be much
greater. A second cylinder was prepared (178 mm diameter x77 mm height) without
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Table 2. Summary of measurements on the cylinder with no holes.

feentral (kHz) 350 | 429 507 585 664 742 820 898
no(msec) 0.31 | 0.38 0.45 0.52 0.59 | 0.65 0.72 0.79
Ngotal (MSEC) 327 | 49.2 | 68.7 | 91.6 | 118 | 147 179 216
w&r 86 106 125 144 164 183 202 222
Xo (msec ) 077 | 15 | 16 | 014 | 014 | 12 | .10 | .11
o (msec) .026 | 0.025 | .027 0.027 | .030 | .031 .033 .034
A% (msec™ 1) -.01 | 0.04 0.04 0.00 -.01 | -0.05 | —0.08 | —0.09
In(CC,/CM,) 0.3 1.4 2.25 1.9 1.25 2.3 3.1 4.2
In(CC/CM)100ms | -8 | —15 | —25 | —75 | -1.5 | 20 | .6 18
In(EC/EM)100ms | 6.5 | 5.4 | 525 | =55 | 6.0 | -4.5 | 2.7 | -1.6
ETE 900 | 900 1800 | 1640 | 1800 | 900 330 330
ETE/n&xr 104 | 8.5 14.5 114 11.0 | 4.9 1.63 1.48
LTE observed 5.7 5.3 5.0 4.75 4.5 4.7 3.3 3.4
7,2pparent 29 22.5 10.3 10.2 10.5 22.4 16.6 3.0

a hole drilled in the side. M was again at 50 mm. Sample PSD profiles are shown in
Figures 10. Table 2 summarizes the measurements on this cylinder.

Values of o as ascertained from the late time slopes of EM were again about
0.03/msec. Values of A taken from the early time slopes of CC were much less in
this cylinder without hole than in the cylinder with hole. A°°*¢¢*¢d values (using
acorrected — Ao 5 — 0.19(f/MHz) as appropriate for the 77 mm thick cylinder) were
negative or within uncertainty of zero. Of course negative transport rates are unphys-
ical. We offer brief speculations as to how corrected A might be negative by noting
that, if localization is strong as it clearly is here, then the early times in CC over
which )\g is evaluated will include times in which localization has slowed the trans-
port. Thus our measurement of Ao may underestimate the actual A\g. Alternatively,
miscentering would distribute the intrusiveness of the C transducer over two or more
m subspaces, diluting its effect and rendering our estimate 0.19(f/MHz) too large at
high frequencies.

We conclude that transport is much slower in this cylinder than it is in Figures 4
and 9 but recognize that we cannot accurately estimate transport rates. In that this
cylinder without hole exhibits no discernable transport, we confirm the supposition
that the drilled hole was responsible for the transport seen in the original cylinder.

The profiles In(EM) show almost no deviations from linearity in time; decay is
nearly purely exponential. This is consistent with a lack of transport; EM neither
loses nor gains due to transport, and is dissipated only by bulk losses o. The other
PSD in Figure 10 are not, however, decaying purely exponentially. This is not in-
consistent with a lack of transport, as differential absorption (m = 0 being more
strongly attenuated due to the intrusiveness p of the transducer C) will manifest as
decay curvature [24,66,67] in any PSD, especially those measured at C or having
source at C.

That transport is so slow is also evident in that our key ratio (CC/CM) has not
achieved a steady state value, even at ¢ = 100 msec (at which time it is still decaying,
at rates between 0.01 and 0.02/msec). This may be because transport is so slow that
it is still ongoing at ¢ = 100. But even if there were no transport, this behavior could
be explained as due to non-uniformity of dissipation associated with C’s intrusiveness,
m = 0 modes being more strongly dissipated and not replenished by transport from
other subspaces; hence the more rapid decay of CC.
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Table 3. Summary of measurements on the cylinder with extra holes and a bevel.

fcentral (kHz) 350 | 429 507 585 664 | 742 | 820 | 898

no(msec) 0.40 | 0.49 0.58 0.67 0.76 | 0.85 | 0.94 | 1.03
Ntotal (IOSEC) 42.5 | 63.9 89.2 119 153 | 191 | 233 | 280
w&r 86 106 125 144 164 | 183 | 202 | 222
Xo (msec™ ) .28 311 .40 0.39 0.40 | .41 42 .56

o (msec™ 1) .022 | 0.029 | .030 0.031 | .038 | .047 | .045 | .055

AT (msec ') | 0.20 | 0.22 | 0.29 | 0.27 | 0.26 | 0.25 | 0.25 | 0.37
In(CC,/CM,) | 00 | .75 |16 |12 |04 |13 |28 |45
In(CCo0/CMoo) | 2.2 | 21 | 175 | 2.9 | 3.7 | 2.8 | -1.5 | 0.0
In(ECo./EM..) | 5.3 | -4.35 | 3.8 | 4.6 | 5.8 | 48 | 29 | 1.4

ETE 200 | 164 221 330 493 | 446 | 299 | 365
ETE/n&xr 2.3 1.55 1.77 2.64 3.0 244 | 148 | 1.64
LTEobserved 3.1 2.25 2.05 1.7 2.1 2.0 1.4 1.4
LTE theory 3.1 2.9 2.5 2.5 2.4 2.3 2.3 1.9
ZApparent 9.5 6.1 4.4 2.4 2.7 3.0 2.7 2.5

The EM to EC ratios at ¢ = 100 msec are, in this cylinder, unreliable as an in-
dicator of relative sensitivity of transducers. We recall that the ratios EC/EM rose
with time in the first cylinder, but here they appear to fall. A falling ratio is not
at all consistent with evolution towards equipartition after an initial deposition as
described in Figure 6 that favors energy at M. It is consistent with excess losses in
m = 0 and no transport. If we nevertheless construct ETE and LTE using EC/EM at
t = 100 msec for calibration (see Table 2) we find values of ETE/mw&*r as high as 14.
This ratio ought be EBS, which in this case of very weak transport ought be 3. One
presumes then that calibration using t = 100 msec is incorrect by factors up to 4.5.
No estimate can be made of theoretical LTE, as A°" is poorly known (so theoretical
LTE has been omitted from the table), but the observed values are greater than those
listed for the first cylinder (Table 1) and so are consistent with greater localization
associated with slower transport.

Similarly, in that CC/CM has not achieved its steady state, even at ¢ = 100, the
quoted values of apparent Z are not meaningful.

In sum, we make qualitative assessment that transport is exceptionally weak. But
the values of A®rected and LTE and ETE and Z2PParet quoted in Table 2 are not
as robust as they were in Table 1. The significant qualitative differences between
Figures 9 and 10 and between Tables 1 and 2 nevertheless provide striking evidence
for the effect of weak axisymmetry breaking on transport and localization.

5.3 Cylinder with extra scattering

As an alternate corroboration of the theory we add scatterers to the first cylinder,
further breaking the axisymmetry by machining five 3mm diameter 3 mm deep flat
bottomed holes on the bottom face. They are placed at points r = 10, 25, 40, 65
and 80mm from the center, and 6 = 36,108, 180,252 and 324 degrees respectively
from the 12mm hole. We also add an axisymmetric 6 x 6 mm 45 degree bevel to the
bottom edge to break the up/down reflection symmetry. Representative PSD profiles
are shown in Figure 11. M was, as previously, at r = 50mm. E was at v’ = 78 mm.

Table 3 lists the main features. As anticipated, the extra holes have increased
the corrected A, by factors between 1.5 and 2. Internal friction o has been
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Fig. 12. Comparison of early time enhancement in the original cylinder and after further
machining. The two dashed lines are 2w£*r and 3 7€*r. Theory predicts early time enhance-
ment should lie between the two dashed lines. That energy at C where the source acts is
enhanced at early times over that at M is apparent.

increased slightly, consistent with observations (e.g. 20) that machining induces a
surface damage that manifests in extra losses. LTE®R°Y is now calculated as In\/6+
In(Z5¢(\°"n,)) — 0.2 (we no longer use n,/2 in this formula because the bevel
has broken the up/down reflection symmetry so the home subsystem modal den-
sity is now n, not n,/2). Both measured and theoretical LTE have been substantially
diminished by the machining. The observed enhancement, as quantified by the EBS
value ETE/7¢*r, is less than three, even more so than in the original cylinder. That
this weak EBS occurs at low frequencies suggests that miscentering cannot be respon-
sible for all of it. The conjectured culprit is therefore, as hypothesized for the first
cylinder, weakened elastic enhancement in open systems [65].

Figures 12 and 13 summarize the key quantities from these three tables. Figure 12
shows that the early time enhancement of the signal CC over the signal CM, argued
in Section 3 to be large, m&*r, is indeed large. Actual enhancements are slightly
greater, consistent with EBS. Figure 13 shows that the enhancement at the center,
while diminished by transport, continues to late time, in contrast to what would be
expected were the field to become equipartitioned. Late time enhancement is observed
to be anti-correlated with scattering strength A°°™ and modal density n,, as expected
by models of dynamical localization.

6 Summary

We have measured the time-dependent diffuse ultrasonic energy density at points on
the flat top surface of a nominally axisymmetric body. The distribution in space is
shown theoretically to be a function of the distribution of energy amongst different
angular momentum subspaces, so its evolution is a function of diffuse transport of
energy between angular momentum subspaces. A striking feature of that time-
dependent distribution is a large concentration, at early times, of the mean square
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Fig. 13. The late time enhancement of energy at the center C over the energy at point M
due to a source acting at the center. If full equipartition were to be achieved this quantity
would be zero. Observed enhancements are between e!® and %7 and are comparable to
what is predicted by a combination of EBS and our numerical simulations of dynamical
localization. The expected greater enhancement for specimens with better axisymmetry and
for lower frequencies (i.e. for smaller values of An,) is apparent.

signal at the cylinder center due to a source at that center, followed by a subsequent
slow relaxation of that concentration. Measurements show that the initial concentra-
tion conforms to these simple incoherent diffuse field theory predictions, as modified
by weak Anderson localization (EBS). We further find that the subsequent relax-
ation does not proceed all the way to the equipartition and uniformity predicted
by incoherent diffuse field theory. It is shown that dynamical Anderson localization
is likely responsible for this. The observed degree of localization is slightly weaker
than predicted by numerical simulations of coupled random matrices but trends as
predicted with the inverse of local modal density and scattering rate. Precise com-
parisons between experiments and theory and numerics are complicated, however, by
intrusiveness and losses in the C transducer. They are also complicated by theoretical
uncertainty for the strength of enhanced backscatter in open substructures and by
imprecise correspondence between our random matrix model parameters and those
of the ultrasonic system.

These ideas are of interest in general for mesoscopic waves; Anderson localization
and enhanced backscatter remain intriguing and non-intuitive even after six decades.
But these ideas may also have direct application. Diffuse transport is important in
structural vibrations and room acoustics and quantum dots. Rooms and structures
with approximate axisymmetry, or other kinds of weakly coupled substructures that
may localize, are not uncommon. Dynamical Localization is observed in lasing micro-
cavities [68].

A further potential application of these ideas is to elastic waves in the earth. Seis-
mic records below about 3 mHz have corroborated theory for the normal modes of
an idealized earth and given information on its large-scale structure [69]. At higher
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frequencies, however, the earth’s normal modes are not resolvable, because dissipa-
tion is too great and/or modal density is too high, but analyses of the kind presented
here might permit retrieval of statistical information on large scale earth structure
at higher frequencies. One envisions, for example, detection of an enhancement of
the diffuse field following a large earthquake, an enhancement in the vicinity of the
earthquake and at its antipode, relative to the amplitude at points 90 degrees from
the earthquake source. One further envisions that the enhancement would then di-
minish with time as the waves scattered off of large scale features that break the
approximate axisymmetry of the earth around an axis going through the source and
its antipode. Many of the parameters governing such measurements in the earth will
be very different from those of an ultrasonics laboratory. Quality factors in the earth
are less than those of the aluminum samples used here, thus limiting the time period
over which diffuse seismic coda will be discernable. On the other hand, the earth
permits absolute measurements of PSD (especially at low frequencies where site am-
plification factors are relatively uniform), without the complications encountered here
due to unknown sensor sensitivities. Contact ultrasonic sensors disturb a wave field,
artificially breaking symmetries and contributing inhomogeneous absorption; seismic
sensors do not. The use of multiple ultrasonic contact sensors is contraindicated by
their intrusiveness; the use of multiple seismic sensors is not.
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set-up and early measurements. RW would especially like to acknowledge and thank the
ever-gracious Roger Maynard for stimulating conversations. He will long be remembered.
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