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Abstract. Equipartition is a central concept in the analysis of ran-
dom wavefields which stipulates that in an infinite scattering medium
all modes and propagation directions become equally probable at long
lapse time in the coda. The objective of this work is to examine quanti-
tatively how this conclusion is affected in an open waveguide geometry,
with a particular emphasis on seismological applications. To carry our
this task, the problem is recast as a spectral analysis of the radia-
tive transfer equation. Using a discrete ordinate approach, the smallest
eigenvalue and associated eigenfunction of the transfer equation, which
control the asymptotic intensity distribution in the waveguide, are de-
termined numerically with the aid of a shooting algorithm. The inverse
of this eigenvalue may be interpreted as the leakage time of the diffuse
waves out of the waveguide. The associated eigenfunction provides the
depth and angular distribution of the specific intensity. The effect of
boundary conditions and scattering anisotropy is investigated in a se-
ries of numerical experiments. Two propagation regimes are identified,
depending on the ratio H∗ between the thickness of the waveguide and
the transport mean path in the layer. The thick layer regime H∗ > 1
has been thoroughly studied in the literature in the framework of diffu-
sion theory and is briefly considered. In the thin layer regime H∗ < 1,
we find that both boundary conditions and scattering anisotropy leave
a strong imprint on the leakage effect. A parametric study reveals that
in the presence of a flat free surface, the leakage time is essentially
controlled by the mean free time of the waves in the layer in the limit
H∗ → 0. By contrast, when the free surface is rough, the travel time
of ballistic waves propagating through the crust becomes the limiting
factor. For fixed H∗, the efficacy of leakage, as quantified by the inverse
coda quality factor, increases with scattering anisotropy. For sufficiently
thin layers H∗ ≈ 1/5, the energy flux is predominantly directed par-
allel to the surface and equipartition breaks down. Qualitatively, the
anisotropy of the intensity field is found to increase with the inverse
non-dimensional leakage time, with the scattering mean free time as
time scale. Because it enhances leakage, a rough free surface may re-
sult in stronger anisotropy of the intensity field than a flat surface, for
the same bulk scattering properties. Our work identifies leakage as a
potential explanation for the large deviation from isotropy observed in
the coda of body waves.
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1 Introduction

Equipartition is a central concept in a number of recent advances in the field of
multiple scattering of waves and ambient noise. Following Weaver (1982); Ryzhik
et al. (1996) and many others, we say that a field is at equipartition when, in a
given frequency band, all the modes of the system are statistically equiprobable. By
mode we mean a stationary solution – an eigenfunction – of the underlying wave
equation independent of the fact that the system is closed or open. In particular,
in infinite translationally invariant media, the modes are plane waves that form a
complete continuous basis. In this context, equipartition implies in particular that
the angular distribution of energy flux tends to isotropy at long lapse-time. The main
contribution of this paper is to show that this conclusion may completely break down
when propagation of the waves takes place in an open waveguide. Such a configuration
is widespread in seismology but its implications have been largely overlooked so far.
Previous studies have shown that equipartition may be achieved thanks to re-

verberations (Weaver, 1982), multiple-scattering (Ryzhik et al., 1996) or by con-
tinuous excitation of the waves by a random and statistically uniform distribution
of sources (Lobkis and Weaver, 2001). Equipartition implies that the average cross-
correlation of the wavefield is proportional to the imaginary part of the Green’s func-
tion in the frequency domain (Barabanenkov and Ozrin, 1991; Van Tiggelen, 2003),
a property which has been widely exploited in recent years for both imaging and
monitoring purposes (Shapiro et al., 2005; Sens-Schönfelder and Wegler, 2006;
Brenguier et al., 2008). In practice, strict sense equipartition is rarely met for a
number of reasons. In ambient noise cross-correlation, the non-homogeneity of the
sources of noise is most often invoked to explain deviations from equipartition. Other
phenomena such as spatial variation of absorption or preferential absorption of some
modes may also hamper equipartition, even if the distribution of random sources or
scatterers is statistically homogeneous (Margerin et al., 2001; Snieder, 2007). In this
paper, I will focus on the equipartition properties of a diffuse field excited by a single
source with a particular emphasis on earthquake coda waves. The word coda refers
to the long time-tail of the seismograms following the ballistic arrivals and which is
composed of waves scattered by medium heterogeneities (Aki, 1969; Aki and Chouet,
1975). Because absorption hampers the detection of coda waves at large epicentral
distance for small to moderate earthquakes, equipartition is often thought to apply
locally, i.e., in a region of finite extent surrounding the source and station. For appli-
cations of the equipartition concept to the noise wavefield, I refer to the review papers
by Sánchez-Sesma et al. (2008), Weaver (2010) and Campillo and Roux (2015).
Sato and Matsumura (1980) were probably the first to address the problem of

equipartition in seismology by studying the partitioning of the kinetic energy on
the three components of a seismometer installed in a deep borehole in the Kanto
plain. With the deployment of seismological networks, it is now possible to analyze
the cross-correlation of coda waves across arrays, which provides stringent tests of
equipartition. Van Tiggelen (2003) shows that imperfect equipartition manifests it-
self as a lack of temporal symmetry in the correlation function. The asymmetry is
caused by the persistence of an energy flux coming from the source which vanishes
only algebraically in time in the diffusion regime. This result clearly puts forward
the asymptotic nature of equipartition when a single source is considered. Malcolm
et al. (2004) demonstrate experimentally the convergence of the diffuse coda wave-
field towards equipartition in a laboratory experiment of ultrasound propagation in
a rock sample. They study the temporal asymmetry of the cross-correlation func-
tion and show that it depends strongly on the lapse-time in the coda, i.e., on the
“age” of the signal used to perform the cross-correlation. The strong asymmetry ob-
served in the “early” coda progressively vanishes as the waves undergo more and more
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scattering and surface reflections in the sample, in agreement with multiple scat-
tering theory. A similar observation was made by Paul et al. (2005) using earth-
quake coda waves. These authors show that the level of scattering in the crust in
Alaska is too weak to reach equipartition before the signal enters the noise level.
Emoto et al. (2015) performed an extensive study of the asymmetry of the correlation
function of noise and earthquake coda waves using a large dataset from Japan. Their
analysis demonstrates very conclusively the relation between the temporal asymme-
try of the cross-correlation function and the energy flux radiated from the source.
They further show that an almost isotropic distribution of Rayleigh waves composes
the late coda in the 0.1–0.2Hz band in Japan.
Some studies have also discussed – either directly or indirectly – the relevance

of equipartition for the interpretation of the long-period seismic coda. Using (f, k)
analysis, Maeda et al. (2006) have shown that in the 90–180 s period band, the com-
position of the coda wavefield evolves with lapse time. Array observations of the early
coda suggest that it is mostly composed of a sum of scattered fundamental modes
Rayleigh waves, whereas the late coda appears to be dominated by high−Q spher-
oidal higher-modes. Sens-Schönfelder et al. (2015) used data from USArray to analyze
the angular distribution of energy in the coda of the 2013 Okhotsk earthquake. They
showed that multiple reverberations without significant effect of scattering persist at
long lapse-time in the coda in certain period bands. Furthermore, they find that the
typical time to randomize the propagation direction of deeply steeping body waves
approximately equals 10 hours at 40 s periods, which is of the order of the typical du-
ration of the coda before the signal reaches the noise level. This observation underlines
the asymptotic character of equipartition.
The primary tool to model quantitatively the convergence of the diffuse wave-

field towards equipartition is transport theory. In particular, the radiative transfer
equation allows one to calculate the modal, spatio-temporal and angular distribution
of energy in the coda as a function of the scattering and absorption properties of
the medium. Margerin et al. (2001) have studied the impact of absorption on the
modal equipartition of multiply-scattered P and S waves (i.e., without consideration
of the angular or spatial distribution of the energy). They find that equipartition
is stable against perturbations of the anelastic quality factor. In other words, only
strong absorption of one mode with respect to the other can significantly shift the
shear to compressional energy ratio in the coda. Using Monte Carlo simulations of the
transport process, Paul et al. (2005) take an additional step and show that the sta-
bilization of energy ratios in the coda occurs long before the energy flux has become
almost isotropic, i.e., before “ground-truth” equipartition is reached. These numerical
results provide an explanation for the success of equipartition theory in predicting
energy ratios observed in short period seismic data although the condition of perfect
isotropic illumination is still far from being satisfied.
In many of the works discussed above, the key role played in the transport process

by reflection and transmission at the boundaries of the open crustal waveguide is often
disregarded. However, several numerical and theoretical studies have underlined the
impact of stratification and boundary conditions (B.C.) on the multiple scattering
of waves in the heterogeneous Earth (Hoshiba, 1997; Margerin et al., 1998; Bal and
Ryzhik, 2002; Wegler, 2004). In particular, the leakage of energy from the crust to the
mantle has been put forward as a potentially important contribution to the decay of
the coda observed around 1Hz (Korn, 1993; Margerin et al., 1999). Bal and Ryzhik
(2002) consider the impact of surface disorder on guided Love waves and concoct
models of random roughness that hamper leakage. In this work, I revisit the question
of energy leakage and investigate its impact on the asymptotic angular distribution of
intensity in the coda. The critical question to be addressed is the following: To what
extent can coda waves be considered as a superposition of random plane waves coming
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from all possible space directions at long lapse time? To answer this question, I use
radiative transfer theory for scalar waves to model the multiple scattering process in
a waveguide geometry. The role of B.C. is carefully examined and shown to have a
profound impact on the depth and angular distribution of the intensity detected in
the coda.
It is worth noting that the radiative transfer model does not take into account

coherent multiple-scattering effects (Akkermans and Maynard, 1985). This neglect
should not be critical in the weak scattering regime considered in this work. Other
limitations of the model should be mentioned. Because we use a scalar transfer equa-
tion, the coupling between shear and compressional waves is not taken into account in
our approach. Weaver (1990), Turner and Weaver (1994, 1995) and Ryzhik et al. (1996)
derived transport equations for elastic waves which may be employed in the future to
model the energy exchange between different waves types taking polarization of shear
waves into account. Because coda waves are thought to be dominated by shear waves,
a scalar model may still provide insight into the leakage effect. Another limitation of
the present work comes from the fact that boundary conditions are formulated at the
level of energy flux conservation laws, thereby neglecting the generation of interface
waves. In a seismological context, Rayleigh surface waves are important since they
are efficiently excited by shallow sources. Expanding the wavefield into a sum of Love
and Lamb waves, Trégourès and van Tiggelen (2002) have established a multi-mode
quasi 2-D transport equation in plate geometry, including the Rayleigh surface wave.
A notable advantage of this approach is the explicit treatment of boundary conditions
at the level of the elastic wave equation. However, because the bounding surfaces are
perfectly reflecting, the leakage effect is so far not taken into account in their model.
The present work examines the case where the frequency is so high that the con-
tribution of Rayleigh waves to the energy transport in the layer may be considered
negligible. In the next section, I introduce the key equations and briefly describe their
numerical solution.

2 Asymptotic analysis of the transport equation

2.1 Basic equations and boundary conditions

To model the transport of energy in a scattering and absorbing medium, I introduce
the radiative transfer equation satisfied by the specific intensity I(r, n̂, t):

(∂t+cn̂·∇) I(r, n̂, t) =−
(
1

τ
+
1

ta

)
I(r, n̂, t)+

1

4πτ

∫
4π

p(n̂, n̂′)I(r, n̂′, t)dn̂′+S(r, n̂, t).

(1)

The specific intensity quantifies the flux of energy directed around the unit vector n̂
at point r and time t in a scattering medium. The source of intensity is denoted by
S(r, n̂, t). Because we focus on the long time behavior of the intensity, this term will
be of no concern to us and will be simply ignored. The physical parameters which
enter into equation (1) are: the wave velocity c, the scattering mean free time τ and
the absorption time ta. In the regime of weak fluctuations, perturbation theory pro-
vides an explicit relation between the phase function p(n̂, n̂′) – which describes the
anisotropy of the scattering – and the power spectrum – the Fourier transform of
the spatial correlation function – of the fluctuations in elastic parameters. Analy-
ses of well-log as well as seismic data support the idea that correlation functions of
the Von-Karman type represent adequately the randomness of the Earth’s crust (see
Sato et al., 2012, for a review). For the numerical applications, I specialize to the



From Ill-condensed Matter to Mesoscopic Wave Propagation 1357

Total Reflection

Full Transmission

Total Reflection

Partial Transmission

Total Reflection

Partial Transmission

Total Reflection

Full Transmission

Total Reflection

Full Transmission

vc, Zc

vm, Zm

vc, Zc

vm, Zm

(a) (b)

(c) (d)

z

H

Fig. 1. The four scattering models considered in this paper, classified after the combination
of B.C. imposed at the bottom and top of the layer of thickness H. (a) Flat free surface
with total specular reflection at the top, transparent boundary at the bottom (no impedance
contrast). (b) Flat free surface with total specular reflection at the top, partial reflection and
transmission at the bottom. vc (resp. Zc) and vm (resp. Zm) denotes the wavespeed (resp.
acoustic impedance) of the scattering layer and of the underlying half-space, respectively.
(c) Rough free surface with total diffuse reflection defined according to Lambert’s law, total
transmission at the bottom. (d) Rough free surface with total diffuse reflection defined
according to Lambert’s law, partial reflection and transmission at the bottom.

popular exponential distribution. In what follows, I further assume the medium to
be translationally invariant in the horizontal directions x̂ and ŷ. Equation (1) must
be supplemented with appropriate B.C. at the surface of the Earth and at depth. We
shall consider the four situations depicted in Figure 1. To express the B.C.s, it is con-
venient to decompose the intensity into up-going (+) and down-going (−) components
such that I±(μ) = I(±μ), where μ ∈ [0, 1] denotes the cosine of the incidence angle
measured with respect to the vertical direction ẑ. Note that, following the seismolog-
ical practice, the ẑ axis points downwards. As a consequence, positive μ corresponds
to increasing depths in the model. Four different kinds of B.C.s are considered in this
work (see Fig. 1). Total specular reflection (top surface on Fig. 1a,b):

I+(μ) = I−(μ). (2a)

Total diffuse reflection (Lambert reflector, top surface in Fig. 1c,d):

I+(μ) = 2

∫ 1
0

I−(μ)μdμ. (2b)

Full transmission (bottom surface in Figure 1a,c):

I−(μ) = 0. (2c)
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Partial specular reflection (bottom surface in Fig. 1b,d):

I−(μ) = R(μ)I+(μ) (2d)

where R(μ) denotes the energy flux reflection coefficient. In the scalar approxima-
tion this coefficient depends on the acoustic impedance contrast Zm/Zc between the
heterogeneous layer and the underlying homogeneous half-space as follows:

R =

⎧⎪⎪⎨
⎪⎪⎩

(
1− Zmμ′

Zcμ

1 + Zmμ
′

Zcμ

)2
for μ > μc

1 for μ ≤ μc
, (2e)

where μc =
√
1− v2c/v2m is the cosine of the critical incidence angle, μ′ =

vm
vc

√
μ2 − μ2c , and vc (resp. vm) denotes the wavespeed in the scattering layer (resp.

half-space). In this work, I have only considered constant τ and ta, but depth-
dependent properties may be easily incorporated in the model. The Lambert reflector
model is very common in optics but has not been very much in use in seismology. It
assumes that the reflected field is perfectly diffuse so that no coherent component sur-
vives. It is of course an idealization. In the case of light, ground glass and matte paper
have been found to be good Lambertian reflectors (see e.g., Thomas and Stamnes,
2002, chapter 5). The theoretical study by Rogatkin (2004) indicates that a coarse
perfectly reflecting surface with a correlation length four times larger than its RMS
topography fluctuations is an excellent approximation of a Lambert reflector in the
short wavelength limit. In this work, the extreme case of perfectly diffuse reflection is
not meant to represent accurately the reflection of waves at the Earth’s free surface.
However, this extreme model does offer insight into the leakage process as shown
below.
Obtaining the full solution of equation (1) is notoriously difficult and has been the

topic of a very large number of papers. The goal of this study is much more modest:
characterize the asymptotic (t→∞) behavior of the specific intensity only. As dis-
cussed in the introduction, the multiple-scattering process tends to homogenize the
energy distribution in phase space. This implies, in particular, that the specific inten-
sity must become independent of both the azimuthal angle of propagation and the
position in the horizontal plane at sufficiently long lapse-time in the coda. However,
because of the stratification of the scattering properties in the medium, we expect
the gradient of intensity in the vertical direction to remain finite, even in the late
coda. Clearly, this gradient is caused by the leakage of energy at the bottom of the
scattering layer. Taking these properties into account and rescaling the space and
time variables by the scattering mean free path and the scattering mean free time
respectively, the equation of transfer simplifies to:

∂I(z, μ)

∂t
+ μ

dI(z, μ)

dz
= −I(z, μ) + 1

2

∫ 1
−1
p(μ, μ′)I(z, μ′)dμ′, (3)

where p(μ, μ′) denotes the azimuthally averaged phase function, normalized such that∫ 1
−1 p(μ, μ

′)dμ′ = 2. Note that the result (3) may also be obtained by integrating
equation (1) over the horizontal plane. Equation (3) is of the form: ∂tI = −LI, where
L is a linear operator. When the medium is closed, 0 is an eigenvalue of L correspond-
ing to the conservation of energy in the medium. In the case of an open system, char-
acterizing the long-term behavior of the intensity suggests to look for the eigenvalue
of L that lies closest to zero. This eigenvalue is interpreted as the inverse residence
time of the waves in the layer, using the terminology of Margerin et al. (1999). Note
that the operator L is not self-adjoint so that there is in fact no guarantee that the
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spectrum of L is real. Nevertheless, numerical simulations of the transfer equation as
well as the study of L in the limit of small mean free times (the so-called diffusion
approximation) support the idea that the intensity I(z, μ) asymptotically decays ex-
ponentially in a variety of situations which are relevant to our purposes (Margerin
et al., 1998). Bowden and Williams (1964) have studied analytically the eigenvalue
problem for the operator L in the case of a slab with fully transmitting boundaries
on each side. Their results confirm the asymptotic exponential decay of the specific
intensity in this geometry. We will therefore take for granted that equation (3) has
a well-defined eigenfunction with real eigenvalue τ−1l (τl is the leakage time), which
encapsulates the long-term behavior of the intensity in the coda. Since absorption is
supposed to be uniform, it only shifts the spectrum and will therefore not be con-
sidered. Note again that depth-dependent absorption and scattering properties can
easily be incorporated in the model. Although this is not necessary from a mathe-
matical point of view, we will restrict our search of the nondimensional eigenvalue
to the interval (0, τ/τ∗), with τ∗ the transport mean free time of the waves in the
layer. From the physical point of view, this ensures that the wavefield can indeed be
deemed “diffuse”. We remind the reader that τ∗ = τ/(1− g) with g the mean cosine
of the scattering angle, which will be also referred to as the anisotropy factor.
Equation (3) represents a tremendous simplification compared to the original

transport problem (1). As a consequence, the full spatial and dynamical behavior
of the specific intensity is lost. In the seismologically relevant case of a localized point
source, horizontal gradients will also contribute to the observed angular dependence
of the specific intensity and represent an additional source of non-isotropy which is
not taken into account in our approach. Diffusion theory (e.g. Malcolm et al., 2004)
suggests that these horizontal gradients vanish only algebraically in time, so that de-
viations from isotropy may be much larger in the observations than in our model due
to the effect of the source. Numerical simulations of the transport process for a point
source with the aid of Monte Carlo simulations are therefore highly necessary to at-
test of the relevance of our study to seismic data. They will be presented in Section 3.
In what follows, I outline the numerical technique employed to solve approximately
the spectral problem.

2.2 Numerical solution by the discrete ordinate approach

Following Chandrasekhar (1960), I discretize the specific intensity into a set of di-
rections based on a numerical quadrature scheme to be specified below. As a result,
the integral term becomes a finite sum and equation (3) reduces to a system of cou-
pled first-order linear differential equations for the unknown I(z, μi). To ensure that
the B.C. are accurately specified numerically, I further decompose the intensity into
down-going and up-going components to obtain:

μi
dI+(z, μi)

dz
= (λ− 1)I+(z, μi) + 1

2

j=N∑
j=1

wjp(μi, μj)I
+(z, μi)

+
1

2

j=N∑
j=1

w−jp(μi,−μj)I−(z, μj),
(4)

−μi dI
−(z, μi)
dz

= (λ− 1)I−(z, μi) + 1
2

j=N∑
j=1

wjp(−μi,+μj)I+(z, μj)

+
1

2

j=N∑
j=1

w−jp(−μi,−μj)I−(z, μj)
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where the notational convention of equation (2a)–(2d) has been adopted. In
equation (4), λ denotes the eigenvalue parameter and the weights of the quadra-
ture scheme wj are even. In this work, I adopt a variant of the well-known “dou-
ble Gauss” quadrature formula by splitting the integration domain into 4 intervals:
(−1,−μc), (−μc, 0), (0, μc), (μc, 1). This procedure guarantees that the points of in-
tegration are clustered where the intensity varies most rapidly and also allows one to
take into account the discontinuity of the first derivative of the reflection coefficient
at μ = μc. The quadrature points and weights have been obtained from the usual
Gauss-Legendre formula by mapping each sub-interval to (−1, 1) through a change
of variable. To achieve sufficient accuracy, I use 64 points of integration per interval.
As mentioned in introduction, the phase function chosen in this work is based on the
assumption that the fluctuations are exponentially correlated. Following the approach
of Stamnes et al. (1988), I further approximate the phase function through a Legendre
series expansion, which guarantees that no spurious dissipation is introduced by the
numerical scheme (Wiscombe, 1977). Analytical expressions for the coefficients of the
Legendre series are taken from Le Bihan and Margerin (2009).
As is well-known, the solutions to the homogeneous first-order differential system

(4) span a 2N -dimensional space and are of the form:

ψ(z, μi;λ) =

2N∑
i=1

CjVj(μi;λ)e
αi(λ)z (5)

where Ci are constants to be determined. The first (resp. last) N components of ψ
correspond to the down-going (resp. up-going) fluxes. The eigenvalues αi and 2N -
dimensional eigenvectors Vi may be obtained upon substitution of the ansatz ψ(z) =
V eαz into equation (4) using standard techniques from linear algebra. As is clear
from equation (5) the eigenvalues and eigenvectors depend on the parameter λ and
are generally complex. Note that complex eigenvalues αi always occur as complex
conjugated pairs. Additionally, it may be noted that if αi is an eigenvalue then so
is −αi. To determine the smallest eigenvalue of the operator L, I employ a simple
shooting method. Starting with an initial guess 0 < λ0 < τ/τ∗, one first calculates the
set of eigenvalues αi(λ0) and eigenvectors Vi(λ0). The general linear combination (5)
satisfies the system of differential equations (4) but not the B.C. at the surface and at
depth. Imposing these B.C. results in a homogeneous linear system of 2N equations
in the 2N unknown Ci which only has the trivial solution unless its determinant
Δ(λ0) vanishes. Using a standard optimization algorithm such as Newton’s method,
it is possible to find a new candidate eigenvalue λ1 that improves on the initial
guess. By monitoring the real and imaginary parts of Δ, and iterating the process
with λ2,··· the sought after nondimensional eigenvalue τ−1l may be determined to the

desired accuracy. The corresponding eigenfunction ψ(z, μ; τ−1l ) is then easily found
by normalizing one of the coefficients, say C2N = 1 and solving for the remaining
coefficients to match the B.C.s.
For the above procedure to be applicable, the knowledge of an initial guess λ0

is necessary. In general, this is a very difficult problem. In this study, however, we
are primarily interested in finding the smallest eigenvalue of L for a series of layer
thickness H. Therefore, we may start with a sufficiently thick layer (say H/l� τ∗/τ)
for which the diffusion approximation is applicable. The associated spectral problem
is easy to solve numerically and provides an excellent approximation to the eigenvalue
of the exact transport equation (see e.g. Margerin et al., 1998, for extensive numerical
tests). We may then decrease iteratively the layer thickness by a small increment and
make use of the exact eigenvalue obtained at the preceding step as the initial guess
for the current step. In this way, we obtain a sequence of eigenvalues of the spectral
problem corresponding to decreasing layer thicknesses, as required.
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Fig. 2. Asymptotic energy density distribution in a diffuse layer with isotropic scattering
predicted by Monte Carlo simulations (symbols) and by numerical spectral analysis (solid
lines). In both cases, the results have been normalized by their RMS. On the horizontal
axis, the unit length is the mean free path. Triangles: case (a). Circles: case (b). Diamonds:
case (c).

3 Impact of leakage on coda decay and angular pattern of intensity
at long lapse-time

3.1 Numerical tests of the method

I begin with a numerical verification of the spectral technique described in the previ-
ous section using comparisons with Monte Carlo simulations. In Figure 2, I consider
the asymptotic behavior of the intensity in a layer of thickness one men free path. In
the Monte Carlo approach, the random walk of a large number of particles launched
from an isotropic point source positioned at a depth z = H/2 is monitored as a func-
tion of time. For a flat surface, the B.C.s are imposed through the application of
the usual laws of geometrical optics to the particle. The possibility of reflection and
transmission is treated as a Bernouilli process. In the case of a Lambert surface, the
probability distribution of the particle direction after reflection is given by μ =

√
ε,

with ε a uniformly distributed random number in (0,1). This ensures that the flux
reflected in a particular direction by the surface is proportional to the direction co-
sine μ, which in turn corresponds to a uniform distribution for the reflected specific
intensity. After each time step dt/τ = 0.025, the particle density is averaged hori-
zontally in thin layers of thickness dz/l = 1/80. The energy density profiles are then
averaged temporally from lapse time t/τ = 7.5 to t/τ = 15. Note that the results are
independent of the position or radiation pattern of the source, as they should. For
the three combinations of B.C.s considered in Figure 1a–c, excellent agreement is
found between the discrete-ordinate and Monte Carlo methods. Note that the results
have been normalized by their RMS to facilitate the comparison. The nondimen-
sional eigenvalues corresponding to the eigenfunctions shown in Figure 2 are given
by τ−1l = 0.297 (a), τ−1l = 0.135 (b) and τ−1l = 0.311 (c) (in units of inverse mean
free time). The Monte Carlo and discrete ordinate methods agree to within three dig-
its accuracy. Qualitatively, the gradient of intensity is seen to increase with the rate
of leakage. In the case of a Lambert surface the intensity has a maximum inside the
layer. Such a phenomenon is not predicted by the diffusion approximation, which only
considers flux conservation at interfaces and therefore does not distinguish between
a flat and a rough boundary. In the framework of the diffusion approximation, the
fact that the intensity has no maximum inside the layer may also be understood as a
consequence of the maximum principle (see e.g. Stakgold and Holst, 2011, p. 507).
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Fig. 3. Polar diagram of the asymptotic distribution of specific intensity at the surface of a
scattering layer with thickness H/l = 1 (top) or H/l = 1/4 (bottom) for cases (a) (left) and
(c) (right) as summarized in Figure 1. Note that for the thinnest layer a logarithmic scale is
employed on the radial axis. The ratio between the minimum (µ→ 1) and maximum (µ→ 0)
value of the specific intensity is larger than 20 and 100 in case (a) and (c), respectively.

3.2 Complete breakdown of equipartition: an example

As a clear illustration of the result put forward in the title of this article, I consider
in Figure 3 the case of a layer of isotropic scatterers with either a flat (left) or rough
(right) totally reflecting surface at the top and transparent B.C.s at the bottom. I
first examine the top plots corresponding to the adimensional layer thickness H/l = 1
for which we have already calculated the intensity profile (see Fig. 2). In the case of
a flat surface (left), the angular intensity distribution is symmetric with respect to
an inversion of the propagation direction as required by equation (2a). In the case of
a rough surface, the dowgoing intensity verifies the isotropy conditions in accordance
with equation (2b). It is therefore clear that the eigenfunctions shown in Figure 3
verify the B.C.s at the surface. Although not shown here, this property also holds at
the lower boundary, which gives us confidence in the accuracy of the numerical results.
The calculations demonstrate that, even asymptotically, the angular distribution of
energy flux departs significantly from isotropy. The specific intensity is typically larger
along the surface than perpendicular to it. This feature will crop up repeatedly in
other examples and contrasts remarkably with the prediction of diffusion theory, that
the maximum intensity should align with the current vector in the positive z direction.
In the case of a thin layer (H/l = 1/4, bottom), the lowest adminensional eigen-

value of the transport problem is τ−1l = 0.905, 0.976, for case (a) and (c) respectively.
In other words the leakage time is only slightly larger than the transport mean free
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time in the layer. For such fast leakage rates, the basic Monte Carlo method de-
scribed above becomes inapplicable. This is admittedly an extreme scenario but it
does provide insight into the impact of B.C.s on the angular distribution of intensity
in the coda at long lapse-time. In particular, one observes a very large peak of in-
tensity directed along the surface. Typically, the ratio between the specific intensity
along and perpendicular to the surface can be as large as 100. Said in loose terms,
the waves that remain in the layer at long lapse-time tend to minimize their interac-
tion with the boundaries of the medium, a conclusion which appears intuitively quite
reasonable. The calculations shown in Figure 3 also illustrate qualitatively the fact
that the anisotropy of the specific intensity increases with the eigenvalue of the non-
dimensionalized transport problem. This correlation between the leakage rate and the
anisotropy of the specific intensity will be further illustrated below.

3.3 Analysis of leakage in open waveguide geometry

As the main application of the theory developed in this work, I revisit the problem
of energy leakage from the Earth’s crust and its interplay with the persistence of an
anisotropic flux of energy at long lapse-time in the coda. This corresponds to models
(b) and (d) in Figure 1 with an impedance contrast Zm/Zc ≈ 1.34 between crust and
mantle. Leakage is one of the two key processes at the origin of the decay of crustal
coda waves, the second being absorption. The coda decay is most often quantified with
the aid of a quality factor Qc (Aki and Chouet, 1975). Qc gained high popularity in
the seismological community because this parameter is easy to measure and conveys
information on attenuation which is complementary to the velocity structure. At long
lapse-time in the coda, the coda quality factor may be expressed as (Margerin et al.,
1998):

Q−1c = Q
−1
i +Q

−1
l (6)

where Qi and Ql denote the absorption and leakage quality factors, respectively.
Equation (6) shows that it is essential to remove the leakage contribution from the
observed coda quality factor to get a correct estimate of the absorption properties of
rocks at depth. It is worth noting that the guiding of the waves between the Moho and
the free surface of the Earth is usually neglected in popular analysis methods such as
the Multiple Lapse-TimeWindow Analysis (Fehler et al., 1992). Based on Monte Carlo
simulations, Del Pezzo and Bianco (2010) have proposed an empirical a posteriori
correction of the outputs of MLTWA for the leakage effect. Using spectral analysis
of the transport equation, it is in fact possible to calculate the leakage quality factor
of the waves as a function of the transport mean free path in the crust. This offers
an alternative approach to the a posteriori correction of the estimated absorption for
the leakage effect.
In seismological applications, the thickness of the crust is usually known with much

less uncertainty than its scattering properties. To compare models with different levels
of scattering anisotropy, it is therefore natural to express the leakage quality factor
as a function of the transport mean free path:

Ql = ωττl(l
∗) =

ωl∗(1− g)τl(l∗)
c

(7)

where ω is the central frequency of the waves, and c is the wave speed. In the examples
that follow, I assume a nominal frequency of 1Hz (ω = 2π) and a wave speed of
3.5 km/s, typical of shear waves in the Earth’s crust. The results of the calculation
of the leakage time and quality factor in a series of anisotropically scattering media
are presented, respectively, in Figure 4 and 5 for either a flat (left) or rough (right)
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Fig. 4. Non-dimensional leakage time as a function of non-dimensional thickness in a hetero-
geneous waveguide. The correlation function of the fluctuations is exponential and the mean
cosine of the scattering angle g quantifies the scattering anisotropy. The different curves
correspond to different levels of anisotropy (see inset). The transport mean free path l∗ is
used as scaling length on the horizontal axis. The impedance contrast between mantle and
crust is Zm/Zc ≈ 1.34. Left: flat free surface (case b). Right: rough free surface (case d). See
Figure 1 for further details.

Fig. 5. Leakage quality factor at 1Hz in a heterogeneous waveguide as a function of the
transport mean free path. In this example, a typical crustal thickness H = 35 km is assumed
and the correlation function of the fluctuations is exponential. The mean cosine of the
scattering angle g quantifies the scattering anisotropy and the different curves correspond
to different levels of anisotropy (see inset). The impedance contrast between mantle and
crust is Zm/Zc ≈ 1.34. Left: flat free surface (case b). Right: rough free surface (case d). See
Figure 1 for further details.

free surface. Although these figures basically convey the same information, they shed
light on different aspects of leakage. Figure 4, which represents τl as a function of
H∗, will be particularly useful in the following to establish a link between the non-
dimensional leakage rate and the anisotropy of the energy flux in the coda at long
lapse time. Figure 5, which represents Ql as a function of l

∗ (for H = 35 km), is
particularly relevant to seismological applications, where the impact of leakage on
the coda decay needs to be assessed. Before discussing in greater details Figures 4
and 5, it is worth noting that models with the same τl and l

∗ do not necessarily
have the same leakage quality factor. This is simply explained by the fact that the
scattering mean free time is the key conversion factor from τl to Qc. Media with
the same l∗ but different anisotropy factors g have different mean free time τ , and
therefore different Qc according to formula (7).
Figure 4 shows that the non-dimensional leakage time τl depends monotonically

on the non-dimensional crustal thickness H∗ and the anisotropy factor g. Based on
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the scaling of τl with H
∗, Figure 4 allows one to define a thick layer (H∗ > 1) and

a thin layer (H∗ < 1) propagation regime in the waveguide. These two regimes may
also be clearly identified in Figure 5. In the thick layer case, the leakage quality factor
is a decreasing function of l∗ and is independent of the details of the propagation.
By contrast, in the thin layer case, the leakage quality factor increases with l∗, and
both B.C.s and scattering anisotropy play a prominent role. The difference in behav-
ior between τl and Ql may be traced back to the extra l

∗ factor which appears in
equation (7). The case g = 0 of Figure 5 (left) was previously examined by Margerin
et al. (1998) using the diffusion approximation for H∗ > 1 and numerical solutions of
the transfer equation by the Monte Carlo method for H∗ < 1. Excellent agreement
has been found between their results and the spectral analysis presented in this paper.
For the study of equipartition, the spectral technique does offer a number of advan-
tages. It is fast and accurate, even more so when scattering is anisotropic, and allows
the computation of both the leakage rate and angular pattern of specific intensity. In
what follows, the dependence of the leakage time and quality factor on the scattering
properties of the crust will be analyzed separately for the two regimes.
The thick layer regime (H∗ > 1) has been well studied in the literature and will

be described briefly. In this regime, the leakage quality factor is independent of the
scattering anisotropy and B.C. at the free surface, and the diffusion approximation
does an excellent job at approximating the eigenvalues of the transport problem. The
leakage time turns out to be essentially equal to the Thouless time H2/D which quan-
tifies the propagation time of diffuse waves through the crust. This implies the scaling
relation τl ∝ (H∗)2 which is indeed approximately verified in Figure 4, independent
of the B.C. at the surface. It is worth noting that if one uses the transport mean free
time as the time scale in Figure 4, the curves corresponding to different anisotropy
factor g collapse on a common master curve for H∗ > 1 (but not for H∗ < 1). This
confirms that the transport mean free time is the relevant time-scale in the thick layer
regime and explains the independence of the leakage quality factor on the scattering
anisotropy in Figure 5. The scaling relation for τl indicates that Ql varies approxi-
mately like 1/l∗ in the thick layer regime.
The thin layer case H∗ < 1 requires more detailed discussion. In this regime,

multiple reflections at the free surface and Moho generate partially guided waves
whose properties depend on the angular dependence of the reflection coefficient. These
complexities cannot be correctly modeled in the diffusion approximation and call for
the use of the radiative transfer machinery. Figure 5 clearly demonstrates that the
efficacy of leakage depends to a large extent on the type of bounding free surface (flat
vs rough) as well as on the details of the scattering pattern. Further examination
of Figure 5 reveals that surface roughness enhances leakage and strongly reduces its
sensitivity to the anisotropy of the scattering pattern. The dependence of leakage
on B.C.s imposed at the surface may be understood as follows. In the flat surface
case and in the absence of scattering, the waves that propagate post-critically remain
indefinitely trapped in the crust and dominate the signal at long lapse-time. In the
presence of scattering, a randomization of the propagation direction occurs with a
time scale typically equal to the transport mean free time. Because the layer is thin,
other details of the escape process such as the time taken from the last scattering
event to the Moho are negligible. This reasoning indicates that the limiting time of
the leakage process is the mean free time and suggests the scaling τl ∝ 1 (i.e., τl
is independent of H∗). This, in turn, explains why the curves tend to flatten out
at small H∗ on Figure 4 (Left). By contrast, in the case of a Lambert reflector at
the surface, the wave trajectories get completely randomized after each interaction
with the roughness. In other words, even in the absence of scattering in the bulk
of the medium, leakage is guaranteed by the presence of the rough surface. In this
case, the travel-time of the waves through the crust (itself proportional to H) now
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Fig. 6. Polar diagram of the asymptotic distribution of specific intensity at the surface of a
crustal waveguide with thickness H/l∗ = 1 (top) or H/l∗ = 1/5 (bottom) for cases (b) (left)
and (d) (right) as summarized in Figure 1. The impedance contrast is Zm/Zc ≈ 1.34 and
isotropic scattering is assumed.

plays the role of limiting factor which suggests the scaling τl ∝ H∗. This last relation
is approximately verified in Figure 4 (right) and explains the flattening of the Ql
curves for l∗ > H in Figure 5. Actually, the fact that Ql slightly increases as H

∗
decreases in the thin layer regime indicates that τl increases slightly less rapidly than
H. In all cases examined, the efficacy of energy leakage, as quantified by the quality
factor Ql, is maximum around H ≈ l∗, i.e., for a transport mean free path in the
range 30−40 km. This is approximately the value of the mean free path estimated
in the most tectonically active regions in the crust. The results shown in Figure 5
are therefore important to interpret the coda quality factor Qc measured in these
regions. Finally, comparison of Figures 4 and 5 reveals that for fixed l∗, τl and Qc
vary oppositely as a function of the anisotropy factor g. This difference in behavior is
simply explained by the extra (1− g) factor in formula (7). Figure 5 demonstrates that
in the thin layer regime the efficacy of leakage is enhanced by scattering anisotropy,
i.e., Q−1l increases with g.

3.4 Impact of leakage on equipartition in the Earth’s crust

In Figure 6 the impact of energy leakage on the angular distribution of intensity in
the seismic coda is examined in the case of isotropic scattering for two different layer
thicknesses and two kinds of B.C.s. For a moderately thin crust (H∗ = 1), the specific
intensity is only weakly anisotropic. The anisotropy of the energy flow, as quantified
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Fig. 7. Same as Figure 6 for anisotropic scattering. The correlation of the fluctuations is
exponential and the anisotropy factor is g = 0.8.

by the ratio between the maximum and minimum value of the specific intensity, is
of the order of 3/2 only. Like in Figure 3, we remark that the intensity is larger
parallel to the surface than perpendicular to it. In the case of a rough free surface,
the direction of maximum intensity is not exactly aligned with the horizontal direction
but makes a relatively small angle to it. This feature is also noticeable in Figure 3. For
a relatively thin crust (H∗ = 1/5), the imprint of the reflection coefficient at the Moho
is manifest in the lack of energy coming from a cone of directions with an aperture
of about 45 degrees. The direction of maximum intensity tends to align along the
horizontal axis with again a slight deviation in the case of a Lambert reflector at the
surface. The anisotropy of the flow is typically larger than 5 and is more pronounced
in the case of a rough free surface. This paradoxical result is consistent with the fact
that leakage is more efficient in this case (compare the right and left plots in Figure 5).
More precisely, our parametric study reveals that the anisotropy of the intensity field
qualitatively increases with the inverse of the non-dimensional leakage time τl.
In Figure 7 the role of scattering anisotropy is illustrated in the case of a medium

with an exponential correlation function and an anisotropy factor g = 0.8. For com-
parison with Figure 6, the choice has been made to use the same non-dimensionalized
layer thickness. Qualitatively, Figure 7 presents the same characteristics as Figure 6.
The main difference lies in the fact that the pattern of intensity is generally less
anisotropic than in the case of an isotropically scattering medium. In the case of a
relatively thin layer (H∗ = 1/5), the anisotropy of the specific intensity can still be
rather large, approximately equal to 5. The comparison of Figures 6 and 7 reveals
that the transport mean free path alone does not fully determine the intensity pattern
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at long lapse time in the coda in a waveguide geometry. Perhaps surprisingly, for the
same value of the transport mean free path, perfect isotropic illumination is more
severely broken in the case of isotropic scattering in the crustal waveguide geometry.
This result is again consistent with the fact that the anisotropy of the field is controlled
by the non-dimensional leakage time τl. Let me emphasize that the knowledge of Ql
alone does not suffice to characterize quantitatively the anisotropy of the intensity in
the coda. This result is rather obvious from Figure 5, which shows that models sharing
the same Ql correspond to the drastically different propagation regimes H

∗ < 1 and
H∗ > 1. The later case corresponds to a very weakly anisotropic intensity field, well
described by the diffusion approximation, while the former corresponds to a regime
of strongly anisotropic intensity.

4 Conclusion

Many of the recent developments in the field of seismic scattering and ambient noise
rely on the concept of equipartition, which is often formulated as the perfect isotropic
illumination of the target medium. Although it is well understood that this condi-
tion is rarely met in practice, the mechanisms responsible for the observed lack of
equipartition have not been fully elucidated so far. In this study, I have used a ra-
diative transfer model to quantify the impact of B.C.s on the angular distribution
of intensity in the coda. Two propagation regimes have been identified, in which the
leakage time and quality factor show different dependence on the crustal thickness,
scattering anisotropy and B.C.s at the surface. In the usual propagation regime where
the transport mean free path is larger than the crustal thickness, the main conclu-
sion of this work is that the angular intensity pattern can depart very significantly
from isotropy, even at long lapse time in the coda. Furthermore, the anisotropy of
the energy flux is found to increase with the inverse non-dimensionalized leakage time
(i.e., the leakage rate). Because it enhances leakage, surface roughness may result in
a more anisotropic intensity pattern than a flat surface, a result which may seem
counter-intuitive at first. The potential lack of equipartition in body waves implied
by this study may partially explain why these waves have proven more difficult to
reconstruct than surface waves in applications of ambient noise cross-correlations at
local to regional distance.

I would like to thank the referees for their constructive criticism which helped to improve
the presentation of the results. This work was initiated almost 20 years ago during my Ph.D.
work at the University of Grenoble, and benefited from an exceptional, truly interdisciplinary
environment promoted, among others, by Roger Maynard. Roger is also gratefully acknowl-
edged for introducing me to multiple scattering theory during a summer school in Cargèse
in 1995.
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