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Abstract Constructions of the (global) fractal interpolation functions on standard function spaces got a lot
of attention in the last centuries. Motivated by the newly introduced local fractal functions corresponding
to a local iterated functions system which is the generalization of the traditional iterated functions system
we construct the local non-affine α- fractal functions in this article. A few examples of the graphs of these
functions are provided. A fractal operator which takes the classical function to its local fractal counterpart
is defined and some of its properties are also studied.

1 Introduction

Fractal functions are used as an alternative tool for
interpolation and approximation purposes. It was first
introduced by Barnsley [1] such that the graph of
this function is the attractor of some iterated func-
tion system (IFS). Fractal functions usually are non-
smooth functions and they interpolate a set of given
data, for example, { (xi, yi) ∈ R

2 : xi < xi+1, i =
1, 2, . . . , K }, which is quite different from the tradi-
tional interpolation techniques, where one can only pro-
duce piece-wise differentiable interpolation functions.
Fractal interpolation functions are used in many diverse
areas, like data analysis, image compression, signal pro-
cessing etc [17–21]. For instance, in [19] Fractal func-
tions are used to predict the seven-day moving aver-
age of daily positive cases due to COVID-19, for the
upcoming three months from December 13, 2021, of six
countries including India.

Motivated by the work of Barnsley [1], Navascués [3]
defined a special kind of fractal function known as α-
fractal function. These functions not only interpolate
but also approximate any continuous function defined
on compact intervals of R. By choosing the base func-
tion (see Sect. 2.3) as a nowhere differentiable function
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( like, a Weierstrass function [16]) one can have non-
smooth analogues of a continuous function. In consecu-
tive papers [9–14], fractal dimension of α-fractal func-
tion is also studied.

In a more general and flexible setting Masssopust [6]
defined local fractal functions, which are fixed points of
a particular class of Read-Bajactarević (RB) opera-
tors defined on the space of all bounded functions. The
author also showed that the graphs of these local fractal
functions are attractors of a specific local IFS. Masso-
pust also defined local fractal functions on unbounded
domains and derived conditions so that local fractal
functions are elements of various standard function
spaces like Lebesgue spaces, the smoothness spaces, the
homogeneous Hölder spaces, the Sobolev spaces, Besov
and Triebel-Lizorkin spaces (see [6–8]).

In this paper, we construct a generalised version of
α-fractal functions through the lens of local fractal func-
tions. These local α-fractal functions interpolate as well
as approximate bounded functions on compact intervals
of R.

This paper is structured as the following. In Sect. 2
first, we introduce iterated function systems and define
the attractor of an IFS, then we provide the construc-
tion of fractal interpolation functions and α-fractal
functions, also a brief summary of local fractal func-
tions is given. In Sect. 3, we give the construction of
the local α-fractal function, provide some examples and
also define an operator attached to local α-fractal func-
tions and study some properties of this operator.
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2 Preliminaries

2.1 Iterated function system

Let X be a topological space and βi : X → X
(i = 1, 2, . . . ,K;K ∈ N) are continuous functions.
The space X with the functions βi is called an iter-
ated function system or IFS and it is denoted by
{X;βi : i = 1, 2, . . . , K }. Let HX be the set of all non-
empty compact subsets of X . Define the Hutchinson
operator Q : HX → HX by

Q(S) =
K⋃

i=1

βi(S) (1)

S ∈ HX . When X is a metric space with metric dX , we
can define a metric dH on the space HX by,

dH(S1, S2) = inf{ ε ≥ 0 : S1 ⊂ N(S2, ε), S2 ⊂ N(S1, ε) }
(2)

for S1, S2 ∈ HX , where

N(S, ε) = {x ∈ X : dX(x, s) ≤ ε for some s ∈ S }.
(3)

When (X, dX) is complete then (HX , dH) is also com-
plete. The IFS {X;βi : i = 1, 2, . . . ,K } is called hyper-
bolic if the maps βi’s are contractions, that is, there
exists θi ∈ [0, 1) such that

dX(βi(x), βi(y)) ≤ θidX(x, y) (4)

And in that case, Q is also a contraction map on the
complete metric space (HX , dH) [15]. A set B ∈ HX is
called an attractor of the IFS {X;βi : i = 1, 2, . . . ,K },
if

Q(B) = B. (5)

When Q is a contraction on the complete metric space
(HX , dH) by the Banach fixed point theorem there
exists a unique set B ∈ HX such that Q(B) = B
i.e. B is the unique attractor of the associated IFS
{X;βi : i = 1, 2, . . . , K }.

2.2 Fractal interpolation function

Let {xi : i = 0, 1, . . . ,K } ⊂ R, where K ∈ N, be
such that xi < xi+1, ∀i ∈ { 0, 1, . . . ,K − 1 }. Let A =
[x0, xK ] be a closed and bounded interval. Let { (xi, yi) :
i = 0, 1, . . . ,K } be a set of data points. Setting Ji =
[xi−1, xi], define Li : A → Ji be such that,

Li(x0) = xi−1, Li(xK) = xi (6)

and

|Li(c) − Li(d)|≤ l|c − d| (7)

where l ∈ [0, 1) and for all c, d ∈ A and i = 1, 2, . . . ,K.
Let αi ∈ (−1, 1) and continuous maps Fi : A × R → R

be such that

Fi(x0, y0) = yi−1, Fi(xK , yK) = yi (8)

and

|Fi(c, d1) − Fi(c, d2)|≤ |αi||d1 − d2| (9)

for all i = 1, 2, . . . ,K and c ∈ A and d1, d2 ∈ R. Define
the maps wi : A × R → Ji × R by

wi(x, y) = (Li(x), Fi(x, y)), (x, y) ∈ A × R. (10)

Let G = { g : A → R | g is continuous and g(x0) =
y0, g(xN ) = yN }. G forms a complete metric space
with respect to the sup metric

d∞(g1, g2) = sup{ |g1(x) − g2(x)|: x ∈ A }.

Theorem 1 [Barnsley [1]] The IFS
{ A × R;wi : i = 1, 2, . . . ,K } has a unique attrac-
tor G, which is the graph of a continuous function
f̂ : A → R such that f̂(xi) = yi, i = 0, 1, . . . , K.

Following is an example of a fractal interpolation
function.

Example 1 Let {(i, sin (6 ∗ i)) | i = 0, 1/2, 1} be a data
set. A FIF corresponding to this data set is given in
Fig. 1.

Define an operator T : G → G by,

(11)
Tg(x) = Fi(L−1

i (x), g ◦ L−1
i (x)), x

∈ Ji, where i = 1, 2, . . . ,K.

Then T is a contraction on G, i.e for g1, g2 ∈ G

‖Tg1(x) − Tg2(x)‖≤ |α|∞‖g1(x) − g2(x)‖, for all x ∈ A,
(12)

Fig. 1 FIF corresponding to the data set {(i, sin (6 ∗ i)) |
i = 0, 1/2, 1}
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Fig. 2 α-Fractal function corresponding to sin (6x)

where |α|∞:= max{ |αi|: i = 1, 2, . . . ,K }. Since αi ∈
(−1, 1), |α|∞∈ [0, 1).

Again by Banach fixed point theorem, T being a con-
traction on the complete metric space G, has a unique
fixed point which is f̂ itself, i.e. T (f̂) = f̂ . f̂ is called
a FIF corresponding to the data set { (xi, yi) : i =
0, 1, . . . ,K }.

One of the widely popular ways of defining a FIF is
by choosing the maps Li’s and Fi’s as the following,

Li(x) = aix + di, Fi(x, y) = αiy + qi(x), i = 1, 2, . . . , K
(13)

where the constants ai, di are determined by (6) and
the maps qi : A → R are chosen continuous functions
such that (8) holds. If we choose qi(x) to be linear then
the corresponding FIF is called an Affine FIF (cf. [1,
2]).

2.3 Construction of α-fractal function

Set C(A) as the space of all real valued continuous
functions on A equipped with the sup norm ‖g‖∞=
sup{ |g(x)|: x ∈ A }. Let g ∈ C(A). Navascués in [3, 4]
took

qi(x) = g(Li(x)) − αi · b(x), i = 1, 2, . . . ,K (14)

where b ∈ C(A) with b(x0) = f(x0), b(xK) = f(xK)
and b 
= g. b is known as the base function.

Definition 1 [4] Let gα be the continuous function
whose graph is the attractor of the IFS (10), (13) and
(14). Then, the function gα is called the α-fractal func-
tion associated to g with respect to the base function
b(x ) and the partition Δ = (x0 < x1 < . . . < xK).

Following is an example of a α-fractal function.

Example 2 The Fig. 2 represents a α-fractal function
corresponding to the function sin (6x).

The choices made in (13) and (14), shapes T into a
particular form as the following,

(15)
Tg(x) = f(x) + αi · (g − b) ◦ L−1

i (x), x

∈ Ji, i = 1, 2, . . . ,K.

Hence gα satisfies the following self-referential equation

(16)
gα(x) = f(x) + αi · (g − b) ◦ L−1

i (x), x

∈ Ji, i = 1, 2, . . . ,K.

2.4 Construction of local fractal function

In this section, we introduce the construction, given by
P. R. Massopust [6] of bounded local fractal functions.
These functions are defined as the fixed points of a par-
ticular type of RB operators acting on the complete
metric space of bounded functions.

For this purpose, let {Yi : i = 1, 2, . . . , K }
be a family of nonempty connected subsets of a con-
nected topological space Y . Suppose {λi : Yi → Y |
i = 1, 2, . . . , K } is a family of injective mappings
with the property that {λi(Yi) : i = 1, 2, . . . , K }
forms a partition of Y . Now suppose that (Z, dZ) is
a complete linear metric space and B(Y,Z) := { g :
Y → Z | g is bounded }, endowed with the sup metric
d(g1, g2) = sup{ dY (g1(y), g2(y)) : y ∈ Y }.

For i ∈ { 1, 2, . . . , K }, define γi : Yi × Z → Z
be a mapping such that ∃ r ∈ [0, 1) and ∀ y ∈ Yi and
∀ z1, z2 ∈ Z

dZ(γi(y, z1), γi(y, z2)) ≤ r · dZ(z1, z2). (17)

That is, γi is uniformly contractive in the second vari-
able.

Now we can define a RB operator T : B(Y,Z) → ZY

by

Th(y) :=
K∑

i=1

γi(λ−1
i (y), hi ◦ λ−1

i (y))χλi(Yi)(y)

(18)

where hi := h |Yi
and

χM (y) =
{

1, y ∈ M
0, y /∈ M.

One can check that T is a well-defined contraction on
the complete metric space B(Y , Z ) and hence by the
Banach Fixed Point Theorem T has, therefore, a unique
fixed point g in B(Y , Z ). This unique fixed point is
called a local fractal function g = gΦ (generated by T )
[6].
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3 Local α-fractal function

Let {Ai : i = 1, 2, . . . ,K } be a collection of non-
empty connected subsets of A = [x0, xK ] such that
x0 ∈ Ai,∀i ∈ { 1, 2, . . . ,K } and xK ∈ AK .

Also let, λi : Ai → A be injective maps with the
following properties:

1. {λi(Ai) : i = 1, 2, . . . ,K } forms a partition of A,
i.e.

–
⋃N

i=1 λi(Ai) = A and

– λi(Ai)
⋂

λj(Aj) = ∅.

2. λi(x0) = xi−1,∀i = 1, 2, . . . ,K and λK(xK) = xK

(19)

For i ∈ { 1, 2, . . . ,K }, define γi : Ai × R → R be a
mapping for which ∃ r ∈ [0, 1) such that, ∀ a ∈ Ai and
∀ b1, b2 ∈ R

|γi(a, b1) − γi(a, b2)|≤ r|b1 − b2| (20)

that is, γi is uniformly contractive in the second vari-
able.

Set B(A,R) = { g : A → R | g is bounded } and
define a metric d∞(f, g) = supx∈A |f(x) − g(x)|. Then
(B(A,R), d∞) is a complete metric space.

Define a RB operator T : B(A,R) → R
A by

Th(x) :=
K∑

i=1

γi(λ−1
i (x), hi ◦ λ−1

i (x))χλi(Ai)(x),

(21)

where h ∈ B(A,R), χS(x) =
{

1, x ∈ S
0, x /∈ S.

and

hi := h |Ai
.

Note that T is well-defined and T (B(A,R)) ⊆
B(A,R).

Also, for h, g ∈ B(A,R)

d∞(Th, Tg) = sup
x∈A

|Th − Tg|
= sup

i∈{1,2,...,K}

sup
x∈λi(Ai)

|γi(λ−1
i (x), hi ◦ λ−1

i (x))

−γi(λ−1
i (x), gi ◦ λ−1

i (x))|
≤ sup

i∈{1,2,...,K}

sup
x∈λi(Ai)

r|hi ◦ λ−1
i (x) − gi ◦ λ−1

i (x)|

≤ r sup
i∈{1,2,...,K}

sup
x∈λi(Ai)

|hi ◦ λ−1
i (x) − gi ◦ λ−1

i (x)|

≤ r sup
x∈A

|h(x) − g(x)|

= r d∞(h, g)

which shows that T is a contraction on the complete
metric space B(A,R). Hence by Banach Fixed Point
theorem there exists a unique h ∈ B(A,R) such that
T (h) = h, that is T has a unique fixed point h in
B(A,R). This unique fixed point is called local fractal
function h = hT (generated by T ).

Next, we would like to a particular form of the maps
γi. Let the maps γi : Ai × R → R be defined by the
following,

γi(x, y) := qi(x) + αi(x)y, (22)

where qi, αi ∈ B(Ai,R), i ∈ {1, 2, . . . ,K}.
Now, for a ∈ Ai and b1, b2 ∈ R

|γi(a, b1) − γi(a, b2)|= |αi(a) × (b1 − b2)|
≤ ‖αi‖∞,Ai

|b1 − b2|
≤ |α|∞|b1 − b2|

where ‖αi‖∞,Ai
:= sup{ |αi(x)|: x ∈ Ai } and |α|∞:=

max{ |αi|∞,Ai
: i = 1, 2, . . . ,K }. Hence for γi to satisfy

(20) we need |α|∞∈ [0, 1).
Continuing with this choice of γi’s, the operator T

takes the following form

(23)

Th =
K∑

i=1

(qi ◦ λ−1
i ) · χλi(Ai)

+
K∑

i=1

(αi ◦ λ−1
i ) · (hi ◦ λ−1

i ) · χλi(Ai)

Hence by Theorem 3 in [6] there exist a unique h ∈
B(A,R) such that T (h) = h i.e h satisfies the self-
referential equation

(24)

h =
K∑

i=1

(qi ◦ λ−1
i ) · χλi(Ai)

+
K∑

i=1

(αi ◦ λ−1
i ) · (hi ◦ λ−1

i ) · χλi(Ai)

where hi = h |Ai
.

This unique fixed point h in (24) is called bounded
local fractal function generated by T with respect
to the set of functions { qi | i = 1, 2, . . . ,K } and {αi |
i = 1, 2, . . . ,K }.

Let H := { g ∈ B(A,R) | g(x0) = y0 and g(xK) =
yK }. Then (H, d∞) is a complete metric space.

Now we would like to consider the functions qi in a
special form,

qi(x) := g ◦ λi(x) − αi(x) · b(x) (25)

where g, b ∈ H are such that g 
= b and g(xi) = yi for
i = 0, 1, . . . ,K.
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By this choice, it is clear that qi ∈ B(Ai,R) and hence
the operator in (23) can be written in the following
form,

Th =
K∑

i=1

{g − (αi · b) ◦ λ−1
i } · χλi(Ai)

+
K∑

i=1

(αi ◦ λ−1
i ) · (hi ◦ λ−1

i ) · χλi(Ai)

=
K∑

i=1

g · χλi(Ai)

+
K∑

i=1

{(αi · hi) ◦ λ−1
i − (αi · b) ◦ λ−1

i } · χλi(Ai)

= g +
K∑

i=1

{αi · (hi − b) ◦ λ−1
i } · χλi(Ai)

or, equivalently

(26)
Th = g + αi · (hi − b) ◦ λ−1

i , on λi(Ai), for i

= 1, 2, . . . ,K.

Again by using (26) and (19), for h ∈ H we have

Th(x0) = g(x0) + α1

(
λ−1

1 (x0)
)

·
(

h1

(
λ−1

1 (x0)
)

− b
(
λ−1

1 (x0)
))

= g(x0) + α1(x0) · (h1(x0) − b(x0))
= g(x0) + α1(x0) · (y0 − y0)
= g(x0)
= y0.

Similarly, it can be checked that Th(xK) = yK .
So we can consider T as an operator on H i.e. T :

H → H is given by

(27)
Th = g + αi · (hi − b) ◦ λ−1

i , on λi(Ai), for i

= 1, 2, . . . ,K.

Hence T is a contraction mapping on the complete met-
ric space (H, d∞). So T possesses a unique fixed point
say gα ∈ H.

Hence for fixed g, b ∈ H and for a selected collection
of non-empty connected subsets P := {Ai ⊆ A : i =
1, 2, . . . ,K } and injective maps F := {λi : Ai → A |
i = 1, 2, . . . ,K } there is a unique gα ∈ H such that
T (gα) = gα i.e. gα satisfies the self-referential equation

(28)
gα = g + αi · (gα

i − b) ◦ λ−1
i , on λi(Ai), for i

= 1, 2, . . . ,K.

wheregα
i = gα |Ai

.

gα will be called the local α-fractal function associ-
ated to g with respect to b and P,F.

Using (19) and since gα ∈ H, b ∈ H and g(xi) =
yi, ∀i ∈ { 0, 1, . . . ,K }, we have for i = 0, 1, . . . ,K − 1

gα(xi) = g(xi) + αi+1

(
λ−1

i+1(xi)
)

·
(

gα
i+1

(
λ−1

i+1(xi)
)

− b
(
λ−1

i+1(xi)
))

= g(xi) + αi+1(x0) ·
(
gα

i+1(x0) − b(x0)
)

= g(xi) + αi(x0) · (y0 − y0) = g(xi) = yi

and

gα(xK) = g(xK) + αK

(
λ−1

K (xK)
)

·
(

gα
K

(
λ−1

K (xK)
)

− b
(
λ−1

K (xK)
))

= g(xK) + αK(xK) ·
(
gα

K(xK) − b(xK)
)

= g(xK) + αi(xK) · (yK − yK) = g(xK) = yK .

This shows that gα interpolates g at {xi : i =
0, 1, . . . ,K }.

Remark 1 If for all i ∈ { 1, 2, . . . ,K }, αi ≡ 0 that is
|α|∞= 0, then (28) implies gα = g.

Theorem 2 Let { (xi, yi) ∈ R × R : xi < xi+1, i =
0, 1, . . . , K} be a data set. Let P := {Ai ⊆ A : i =
1, 2, . . . , K } be a collection of non-empty connected
subsets and F := {λi : Ai → A | i = 1, 2, . . . , K }
be a collection of injective maps with properties men-
tioned above. Let g ∈ B(A,R) such that g(xi) = yi, i =
0, 1, . . . , K be fixed. Let

α := (α1, α2, . . . , αK) ∈ ×K
i=1B(Ai,R)

be such that |α|∞∈ [0, 1). Also, let b ∈ H with b 
= g.
Define T : H → H by

Th = g + αi · (hi − b) ◦ λ−1
i , on λi(Ai), for i = 1, 2, . . . , K.

where hi := h |Ai
. Then T is a contraction on the com-

plete metric space H and its unique fixed point gα sat-
isfies the self-referential equation

gα = g + αi · (gα
i − b) ◦ λ−1

i , on λi(Ai), for i = 1, 2, . . . , K.

where gα
i = gα |Ai

. Also gα interpolates g at {xi : i =
0, 1, . . . ,K }.
Proof The proof follows from the previous analysis. �

A Local α-fractal function corresponding to a contin-
uous function is given in the following example.

Example 3 Let the data set be
{

( i
16 , sin 6·i

16 ) :
i = 0, 1, . . . , 16 }. Let A = [0, 1]. Let Ai = [0, i

16 ] and
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Fig. 3 The graph of sin 6x
(black) and its
corresponding local
α-fractal function (orange)

λi = x
i + i−1

16 , i = 1, 2, . . . , 16. Fix g(x) = sin 6x. Then
by choosing b(x) = sin 6 · x the corresponding local α-
fractal function is shown in Fig. 3a and 3b with respect
to the following scale vectors

1. αi =
{

0.2, i = odd
−0.2, i = even;

2. αi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5 · sin 60x, i = 1, 5, 9, 13
exp −2x − 1 · 0.5 · sin 60x, i = 2, 6, 10, 14
0.5 · cos 30x, i = 3, 7, 11, 15
0.5 · sin 40x, i = 4, 8, 12, 16

A Local α-fractal function corresponding to a discon-
tinuous function is given in the following example.

Example 4 Let the data set be
{

( i
16 , � 10.5i

16 �
∗ sin 6i

16 : i = 0, 1, . . . , 16
}
. Let A = [0, 1]. Let

Ai = [0, i
16 ] and λi = x

i + i−1
16 , i = 1, 2, . . . , 16.

Fix g(x) = �10.5x� ∗ sin 6x. Then by choosing
b(x) = 10 · sin 6 ∗ x and the corresponding local
α-fractal function is shown in figure 4a and 4b with
respect to the following scale vectors

1. αi =
{

0.2, i = odd
−0.2, i = even,

2. αi(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0.5 · sin 60x, i = 1, 5, 9, 13
exp −2x − 1 · 0.5 · sin 60x, i = 2, 6, 10, 14
0.5 · cos 30x, i = 3, 7, 11, 15
0.5 · sin 40x, i = 4, 8, 12, 16

Remark 2 As we can see in the above examples that
the local α-fractal functions are discontinuous in both
cases. This is not always the case though, for example,
one simple way of getting a continuous local α-fractal
function is by choosing K = 1 in the corresponding
construction (see Sect. 3).

Again from (28) we have

gα = g + αi · (gα
i − b) ◦ λ−1

i , on λi(Ai),
for i = 1, 2, . . . ,K

Hence gα − g = αi · (gα
i − b) ◦ λ−1

i , on λi(Ai),

for i = 1, 2, . . . ,K

which gives

‖gα − g‖∞,λi(Ai) = ‖αi · (gα
i − b) ◦ λ−1

i ‖∞,λi(Ai)

≤ ‖αi · (gα
i − b)‖∞,Ai

= ‖αi‖∞,Ai
·‖(gα

i − b)‖∞,Ai

≤ |α|∞·‖(gα − b)‖∞,A

since this is true for all i ∈ {1, 2, . . . ,K} we can deduce
that,

‖gα − g‖∞,A ≤ |α|∞·‖(gα − b)‖∞,A

≤ |α|∞(‖gα − g‖∞,A+‖g − b‖∞,A)

and hence

‖ℊα − g‖∞,A≤
( |α|∞

1 − |α|∞

)
‖g − b‖∞,A (29)

Let us define an operator Lα : H → H by g ↪→ gα, that
is Lα associates the local α-fractal function gα with g.
Also, it is clear that Lα = Lα

b,P,F depends on b and P,
F.

Proposition 1 If b and P, F are fixed then for all
g, f ∈ H

‖Lα(g) − Lα(f)‖∞,A≤
(

1
1 − |α|∞

)
‖g − f‖∞,A

(30)

that is Lα satisfies the Lipschitz condition on H.

Proof By the definition of Lα and using (28), we have

Lα(g) = g + αi · (gα
i − b) ◦ λ−1

i on λi(Ai),
for i = 1, 2, . . . ,K

Lα(f) = f + αi · (fα
i − b) ◦ λ−1

i on λi(Ai),
for i = 1, 2, . . . ,K

which gives

Lα(g) − Lα(f)

123



Eur. Phys. J. Spec. Top. (2023) 232:1043–1050 1049

Fig. 4 The graph of
	10.5x
 ∗ sin 6x (black) and
its corresponding local
α-fractal function (orange)

= (g − f) + αi · (gα
i − fα

i ) ◦ λ−1
i on λi(Ai),

for i = 1, 2, . . . ,K

Hence

‖Lα(g) − Lα(f)‖∞,λi(Ai)

≤ ‖g − f‖∞,A+|α|∞·‖gα − fα‖∞,A

for i = 1, 2, . . . ,K

which in turn implies that

‖Lα(g) − Lα(f)‖∞,A≤ ‖g − f‖∞,A+|α|∞·‖gα − fα‖∞,A

Hence

‖Lα(g) − Lα(f)‖∞,A≤
(

1
1 − |α|∞

)
‖g − f‖∞,A

�

Theorem 3 The operator Lα : H → H is continuous
on H.

Proof By proposition 1, we see that Lα satisfies the
Lipschitz condition on H and hence Lα is continuous
on H. �

Now, let us choose b = g ◦ u where u ∈ B(A,A)
and u(x0) = x0, u(xK) = xK , then the operator Lα =
Lα

u,P,F, which assigns the local α-fractal function gα to
g is linear, as g, h ∈ H implies

gα = g + αi · (gα
i − g ◦ u) ◦ λ−1

i , on λi(Ai),
for i = 1, 2, . . . , K

hα = h + αi · (hα
i − h ◦ u) ◦ λ−1

i , on λi(Ai),
for i = 1, 2, . . . , K

and for λ1, λ2 ∈ R, we have

(λ1g
α + λ2h

α) = (λ1g + λ2h)

+ αi · [(λ1g
α + λ2h

α)i − (λ1g
α + λ2h

α) ◦ u] ◦ λ−1
i ,

for i = 1, 2, . . . ,K.

Since the solution of the Eq. (28) is unique, for all
λ1, λ2 ∈ R, we have

(λ1g + λ2h)α = (λ1g
α + λ2h

α). (31)

Again using b = g ◦ u in Eq. (29), we have

‖Lα(g) − g‖∞,A ≤
( |α|∞

1 − |α|∞

)
‖g − g ◦ u‖∞,A

≤
( |α|∞

1 − |α|∞

)
[‖g‖∞,A+‖g ◦ u‖∞,A]

≤
(

2|α|∞
1 − |α|∞

)
‖g‖∞,A

and consequently, we can derive the following

‖Lα(g)‖∞,A ≤
[(

2|α|∞
1 − |α|∞

)
‖g‖∞,A+‖g‖∞,A

]

≤
(

1 + |α|∞
1 − |α|∞

)
‖g‖∞,A

which in turn implies

‖Lα‖∞,A≤
(

1 + |α|∞
1 − |α|∞

)
. (32)

It follows that the operator Lα is a linear and bounded
operator.

Theorem 4 Fixing the base function b = g ◦ u, for
u ∈ B(A,A) and u(x0) = x0, u(xK) = xK , the operator
Lα : H → H becomes linear and bounded.

Proof This statement follows from the above consider-
ations. �

4 Conclusion and future directions

In this paper, we constructed the local α-fractal func-
tion on a closed interval [a, b]. We provided a couple
of examples of the local α-fractal functions correspond-
ing to a continuous function as well as a discontinuous

123



1050 Eur. Phys. J. Spec. Top. (2023) 232:1043–1050

function. Then we studied some properties of the fractal
operator which assigns a function with its correspond-
ing local α-fractal function. By modifying the under-
lying conditions suitably one can define local α-fractal
functions in Lebesgue spaces, Sobolev spaces and other
standard function spaces. One also expects to define
local α-fractal functions for functions defined on non-
compact unbounded domains of R. One might also gen-
eralise this paper by considering the scale-free fractal
interpolation (see [5]). As mentioned in the introduc-
tion, Fractal interpolation functions are used in data
analysis to interpolate real-world data sets that can not
be interpolated by traditional polynomial interpolants.
As the data sets involved are often discontinuous, so
the local α-fractal functions might be more suitable to
study this kind of data as compared to classical fractal
interpolation functions.
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