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Abstract We give a pedagogical account of noncommutative gauge and gravity theories, where the exterior
product between forms is deformed into a �-product via an abelian twist (e.g. the Groenewold–Moyal
twist). The Seiberg–Witten map between commutative and noncommutative gauge theories is introduced.
It allows to express the action of noncommutative Einstein gravity coupled to spinor fields in terms of
the usual commutative action with commutative fields plus extra interaction terms dependent on the
noncommutativity parameter.

1 Introduction

Noncommutativity of phase space is a core feature
of quantum mechanics. Noncommutativity of space-
time rather than phase space has been considered
since the early days of quantum mechanics as a pos-
sible way to reconcile gravity with quantum theory.
Indeed the dynamical variable in Einstein general rel-
ativity is spacetime itself with its metric structure,
and noncommutativity of spacetime coordinates could
lead to a regularization in the perturbative treatment
of gravity as a quantum field theory. Noncommutativ-
ity of spacetime coordinates is further supported by
Gedanken experiments that aim at probing spacetime
structures at very small distances. They show that due
to gravitational backreaction one cannot test space-
time under the Planck scale. For example, in relativis-
tic quantum mechanics the position of a particle can
be detected with a precision of at most the order of
its Compton wavelength λC = �/mc. Probing space-
time at very short distances implies extremely energetic
particles, that in turn produce high spacetime curva-
ture. When λC is of the order of the Planck length,
the spacetime curvature radius has the same order of
magnitude of the Compton wavelength of the probe
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particle, and the attempt to measure spacetime struc-
ture under the Planck scale fails. Gedanken experiments
of this type show that the description of spacetime as a
continuum of points (a smooth manifold) is an assump-
tion no more justified at the Planck scale. It is hence
natural to relax this assumption and conceive a more
general noncommutative spacetime, where uncertainty
relations and discretization naturally arise. Space and
time are then described by a Noncommutative Geom-
etry. In this way the impossibility of testing spacetime
under the Planck length, a dynamical feature due to
gravitational backreaction, is encoded at a deeper kine-
matical level.

In general spacetime discretization is expected in
quantum gravity theories, see the review [1]. For exam-
ple in string theory the study of string scatterings leads
to generalized uncertainty principles where a minimal
length emerges. In other approaches, e.g. loop quantum
gravity, minimal area and volumes are predicted.

Spacetime noncommutativity also arises by consider-
ing an electron in a strong magnetic field B . In this
regime, due to the minimal coupling with the back-
ground gauge field (Ax, Ay) = (0, Bx) associated to
the flux B , the dynamics takes place in the reduced
phase space q = y, p = Bx. Thus the electron’s coor-
dinates become noncommutative: [x, y] = − i�

B (cf. [2]
for an extended discussion). Hence quantum theory in
the presence of a magnetic field B leads to a non-
commutative spacetime. Similarly, low energy effec-
tive actions of open strings in the presence of a back-
ground Neveu–Schwarz B -field can be described by
gauge theories on noncommutative spaces. The study
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of Yang–Mills (and Born–Infeld) theories on noncom-
mutative spaces has proven very fruitful: it allows to
realize string theory T-duality symmetry within the low
energy physics of noncommutative (super) Yang–Mills
theories [3]. It provides exact low energy D-brane effec-
tive actions, in a given α′ → 0 sector of string theory
where closed strings decouple, see Ref. [4]. In that paper
Seiberg and Witten provided an explicit map (change
of variables) between commutative and noncommuta-
tive gauge theories.

In this paper we study gravity on noncommutative
spacetime as a noncommutative gauge theory of the
above type. The noncommutative geometry is first for-
mulated in a geometric (coordinate independent) lan-
guage, useful for studying diffeomorphism invariant the-
ories. Then the specific gauge theory describing non-
commutative gravity in first order formalism (with
independent vierbein and spin connection fields) is pre-
sented. As we discuss in Sect. 5.2, a generic feature of
noncommutative gauge theories is that they are well
defined for U (N ) or GL(N ) gauge groups in the fun-
damental or the adjoint representation but not for a
generic representation, or for a generic gauge group
G (like e.g. SU (N )). This general feature implies that
the Lorentz gauge invariance of the first order gravity
action becomes a �-gauge invariance that enlarges the
classical SO(1, 3) group to GL(2, C ).

The enlargement of the gauge group corresponds to
an increase in the number of fundamental fields of the
theory. This increase can be mitigated by imposing
charge conjugation constraints on the noncommutative
gauge action and can be fully avoided by the use of the
Seiberg–Witten map [4], that relates the fields in the
deformed action (the “quantum” fields) to the classical
fields, in such a way that the ordinary gauge variations
of the classical fields induce the �-gauge variations on
the quantum fields. We thus obtain a gravity theory
on noncommutative spacetime with the same degrees
of freedom as classical gravity.

Among other approaches to noncommutative gravity
we mention gravity on fuzzy spaces [5, 6], emerging from
matrix theory in the presence of fuzzy extra dimensions
[7], a metric approach [8, 9] where the noncommutative
Levi-Civita connection is constructed and the braided
gauge symmetry approach of [10].

Finally, a noncommutative hamiltonian formalism for
twisted geometric theories has been developed in [11],
and applied to noncommutative vierbein gravity. It
allows an algorithmic construction of the canonical �-
gauge generators.

The plan of the paper is as follows. Section 2 deals
with the origin of twisted products, i.e. Weyl quantiza-
tion and Groenewold–Moyal product. Section 3 trans-
fers noncommutativity of coordinates to noncommuta-
tivity of functions and of exterior forms (via �-wedge
products), and summarizes the basic results of the cor-
responding noncommutative geometry. Section 4 illus-
trates the procedure in the case of Yang–Mills the-
ory, by deforming its classical action. In Sect. 5 the �-
deformation of the gravity action is discussed in detail

reviewing the results of [12]. Section 6 contains a discus-
sion on the Seiberg–Witten map. In Sect. 7 it is shown
how the Seiberg–Witten map allows to construct non-
commutative gauge theories with any gauge group. The
Seiberg–Witten map for the noncommutative gravity
action is then described in detail, providing a noncom-
mutative action with the same degrees of freedom as
the commutative one [13–15]. Expanding this action
in power series of the noncommutative deformation
parameter we obtain an action on commutative space-
time with interaction terms dictated by noncommuta-
tivity of spacetime. We have thus constructed a mod-
ified gravity action that is expected to capture some
quantum gravity aspects.

2 Noncommutative algebras, Weyl
quantization and �-products

The easiest way to describe a noncommutative space-
time is via the noncommutative algebra of its coordi-
nates, i.e., giving a set of generators and relations. We
list three typical examples of commutation relations:

[xμ, xν ] = iθμν canonical (2.1)

[xμ, xν ] = ifμν
σxσ Lie algebra (2.2)

xμxν − qxνxμ = 0 quantum (hyper)plane (2.3)

where θμν (a real antisymmetric matrix), fμν
σ (real

structure constants), q (a complex number, e.g. a
phase) are the respective noncommutativity param-
eters. When the noncommutativity parameters are
turned off, the algebra becomes commutative and is the
algebra of polynomial functions on d-dimensional space
R

d. We can also impose further constraints, for example
periodicity of the coordinates describing the canonical
noncommutative spacetime (2.1). This leads to a non-
commutative torus rather than to a noncommutative
(hyper)plane. Similarly, constraining the coordinates of
the quantum (hyper)plane relations (2.3) we obtain a
quantum (hyper)sphere.

This algebraic description should then be comple-
mented by a topological approach, leading for example
to the notion of continuous functions. This is achieved
by completing the algebra generated by the noncom-
mutative coordinates to a C�-algebra. Typically C�-
algebras arise as algebras of operators on a Hilbert
space. Connes noncommutative geometry [16] starts
from these notions and enriches the C�-algebra struc-
ture and its representation on a Hilbert space, gener-
alizing to the noncommutative case also the notions of
smooth functions and metric structure.

A complementary approach to noncommutative
space is given by the �-product, retaining the usual
space of functions but deforming the pointwise prod-
uct into a noncommutative one. Historically the �-
product originated as a noncommutative product for
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functions on phase space. The quantization of phase
space coordinates q , p with Poisson structure {q, p} = 1
to operators Φ(q) = q̂, Φ(p) = p̂ on Hilbert space with
[q̂, p̂] = i� is extended à la Weyl to functions f(p, q) →
Φ(f)(p̂, q̂). The operator product then induces a �-
product, or Groenewold–Moyal product, on functions
on phase space:

f � g = Φ−1(Φ(f)Φ(g)).

On polynomial functions Weyl quantization amounts to
replace p, q with the operators p̂, q̂ and to symmetrize
in p̂ and q̂: pmqn �→ Φ(pmqn) = Sym(p̂mq̂n) where
Sym(p̂mq̂n) is the symmetrized polynomial in p̂, q̂ nor-
malized so that Sym(pmqn) = pmqn. It is defined by
(p̂ + q̂)� =

∑
m+n=�

(m+n)!
m!n! Sym(p̂mq̂n). For example,

Sym(p̂m) = p̂m, Sym(q̂n) = q̂n, Sym(p̂q̂) = 1
2 (p̂q̂ + q̂p̂),

Sym(p2q) = 1
3 (p̂2q̂ + p̂q̂p̂ + q̂p̂2). The corresponding �-

product explicitly reads

(f � g)(p, q) = e
i
2 �( ∂

∂q
∂

∂p′ − ∂
∂p

∂
∂q′ )f(p, q)g(p′, q′)|p=p′,q=q′ .

Since the operator product is associative so is the �-
product.

More in general (in formal deformation quantization)
a �-product on a manifold M with Poisson structure
{ , } is a noncommutative deformation of the usual
pointwise product. It sends two smooth functions f , g
to a third one f � g and is a differential operator on
both its arguments. It satisfies the associative property

f � (g � h) = (f � g) � h,

the normalization property f � 1 = 1 � f = f and

f � g = fg +
i

2
�{f, g} + O(�2)

so that in the semiclassical limit lim�→0
−i
�

(f � g −
g � f) = {f, g}, realizing the correspondence principle
between quantum and classical mechanics. For further
reading on the topics of this section we refer to [17,
Ch. 2, §3], [18, Ch. 6], [19].

3 �-products from twists
and noncommutative differential geometry

The �-product on phase space of the previous section
generalizes to R

d with coordinates xμ as

(f � g)(x) = e
i
2 θμν ∂

∂xμ ⊗ ∂
∂yν f(x)h(y)|x=y. (3.1)

Here the antisymmetric matrix �θμν has been for short
denoted θμν . Correspondingly, the classical limit � → 0
becomes θ → 0.

Notice that if we set

F−1 = e
i
2 θμν ∂

∂xμ ⊗ ∂
∂yν

then

f � g = μ(F−1(f ⊗ g)) (3.2)

where μ is the usual product of functions μ(f ⊗g) = fg.
The element F = e− i

2 θμν ∂
∂xμ ⊗ ∂

∂yν is an example of a
Drinfeld twist. It is defined by the exponential series in
powers of the noncommutativity parameters θμν ,

F = e− i
2 θμν ∂

∂xμ ⊗ ∂
∂yν

= 1 ⊗ 1 − i

2
θμν∂μ ⊗ ∂ν

− 1
8
θμ1ν1θμ2ν2∂μ1∂μ2 ⊗ ∂ν1∂ν2 + · · ·

It is easy to see that xμ �xν −xν �xμ = iθμν thus recov-
ering the noncommutative algebra abstractly defined in
(2.1).

The method of constructing �-products using Drin-
feld twists [20] (see e.g. [21] for a quick introduction)
is not the most general method (it does not apply to
an arbitrary Poisson manifold [22]), however it is quite
powerful, and the class of �-products obtained is quite
wide. For example choosing the appropriate twist we
can obtain the noncommutative relations (2.1), (2.3)
and also (depending on the explicit expression of the
structure constants) some of the Lie algebra type (2.2).
It is also well adapted to a coordinate free description
of the �-algebra of functions on a manifold M and to
its differential geometry.

Let M be a smooth manifold. A twist is an invert-
ible element F ∈ UΞ ⊗ UΞ where UΞ is the univer-
sal enveloping algebra of vector fields, (i.e. the alge-
bra generated by vector fields on M , where the element
XY − Y X is identified with the vector field [X , Y ]).
The element F must satisfy some further conditions
that we do not write here, but that hold true if we con-
sider abelian twists, i.e., twists of the form

F = e− i
2 θIJXI⊗XJ

= 1 ⊗ 1 − i

2
θIJXI ⊗ XJ

− 1
8
θI1J1θI2J2XI1XI2 ⊗ XJ1XJ2 + · · · (3.3)

where the vector fields XI (I = 1, . . . s with s not nec-
essarily equal to d = dimM) are mutually commuting
[XI ,XJ ] = 0 (hence the name abelian twist).

It is convenient to introduce the following notation

F−1 = 1 ⊗ 1 +
i

2
θIJXI ⊗ XJ

− 1
8
θI1J1θI2J2XI1XI2 ⊗ XJ1XJ2 + · · ·
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= f̄α ⊗ f̄α

where a sum over the multi-index α is understood.
With a twist F we deform the whole differential

geometry of M . Let A be the algebra of smooth func-
tions on the manifold M . We deform A to a noncom-
mutative algebra A� by defining the new product of
functions

f � g = f̄α(f) f̄α(g).

We see that this formula is a generalization of the Groe-
newold–Moyal star product on R

d defined in (3.1) or
(3.2). Since the vector fields XI are mutually commut-
ing, this �-product is associative. Note that only the
algebra structure of A is changed to A� while, as vector
spaces, A and A� are the same. We similarly consider
the algebra of exterior forms Ω• with the wedge prod-
uct ∧, and deform it in the noncommutative exterior
algebra Ω•

� that is characterized by the graded non-
commutative exterior product ∧� given by

τ ∧� τ ′ = f̄α(τ) ∧ f̄α(τ ′),

where τ and τ ′ are arbitrary exterior forms, and each
vector field XI1 ,XI2 ,XJ1 ,XJ2 . . . in (3.4) acts on forms
via the Lie derivative. Only the product is deformed and
hence Ω•

� = Ω• as (graded) vector spaces, in particular
Ωn

� = Ωn for any degree n.
It is easy to show that the usual exterior derivative

is compatible with the new ∧�-product,

d(τ ∧� τ ′) = d(τ) ∧� τ ′ + (−1)deg(τ)τ ∧� dτ ′
(3.4)

since the exterior derivative commutes with the Lie
derivative.

We also have compatibility with the usual unde-
formed integral (graded cyclicity property):

∫

τ ∧� τ ′ = (−1)deg(τ)deg(τ
′)

∫

τ ′ ∧� τ (3.5)

with deg(τ) + deg(τ ′)= d = dimM . In fact we have, up
to boundary terms,

∫

τ ∧� τ ′ =
∫

τ ∧ τ ′ = (−1)deg(τ)deg(τ
′)

∫

τ ′ ∧ τ

= (−1)deg(τ)deg(τ
′)

∫

τ ′ ∧� τ.

For example at first order in θ,

∫

τ ∧� τ ′ =
∫

τ ∧ τ ′ − i

2
θIJ

∫

LXI
(τ ∧ LXJ

τ ′)

=
∫

τ ∧ τ ′ − i

2
θIJ

∫

diXI
(τ ∧ LXJ

τ ′)

where we used the Cartan formula LXI
= diXI

+ iXI
d

and τ ∧LXJ
τ ′ being a d -form so that its exterior deriva-

tive vanishes.
Finally, provided that the commuting vector fields

{XI} defining an abelian twist are all (anti)hermitian,
we have compatibility with the undeformed complex
conjugation

(τ ∧� τ ′)∗ = (−1)deg(τ)deg(τ
′)τ ′∗ ∧� τ∗. (3.6)

Indeed, sending i into −i in the twist (3.3) amounts to
send θIJ into −θIJ = θJI , i.e. to exchange the order of
the factors in the �-product.

4 Noncommutative Yang–Mills actions

It is straightforward to write a U (N ) Yang–Mills theory
on noncommutative space given by Groenewold–Moyal
star product,

SNCYM =
−1
2g2

∫

d4xTr(F̂μν � F̂μν) (4.1)

where the noncommutative field strength F̂ is defined
by

F̂μν = ∂μÂν − ∂νÂμ − i(Âμ � Âν − Âν � Âμ).

This action is invariant under the noncommutative
gauge transformations

δ̂Âμ = ∂με̂ + i(ε̂�Âμ − Âμ � ε̂),

which imply δ̂F̂μν = i(ε̂�F̂μν − F̂μν �ε̂). Using the differ-
ential geometry developed in the previous section this
action can also be rewritten as

SNCYM =
−1
2g2

∫

Tr(F̂ ∧� ∗HF̂ )

where A = Aμ � dxμ, F̂ = dÂ − iÂ ∧� Â and the Hodge
star operator ∗H is the usual commutative one in flat
Minkowski metric (recall that as vector spaces Ω2

� =
Ω2). The noncommutative gauge transformations now
read

δ̂Â = dε̂ + i(ε̂ � Â − Â � ε̂).

and imply δ̂F̂ = i(ε̂ � F̂ − F̂ � ε̂), δ̂(∗H F̂ ) = i(ε̂ �(∗H F̂ )−
(∗H F̂ ) � ε̂).

In this action the gauge potential and the field
strength are valued in n × n hermitian matrices, that
define the Lie algebra of U (N ). Other representations
of U (N ) and gauge groups are in general problematic.
Indeed consider an infinitesimal gauge transformation
ε = εATA, where the generators TA belong to some
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representation of a Lie group G . The commutator of
two infinitesimal gauge transformations is

[ε, ε′]� ≡ ε � ε′ − ε′ � ε =
1
2
{εA, ε′B}� [TA, TB ]

+
1
2
[εA, ε′B ]� {TA, TB}, (4.2)

where {U, V }� := U � V − V � U , [U, V ]� := U � V −
V � U . We see that also the anticommutator {TA, TB}
appears. We thus have two options:

(i) Consider gauge groups like U (N ) or GL(N ) in the
(anti)fundamental or in the adjoint, since in this
case {TA, TB} is again in the Lie algebra.

(ii) Allow for more general representations of U (N )
or GL(N ), or more general Lie algebras (including
all simple Lie algebras) with representations that
do not close under the anticommutator. In this
case we have to enlarge the Lie algebra to include
also anticommutators besides commutators, i.e.,
we have to consider all possible (symmetrized)
products TATB . . . TC of generators. The gauge
potential will correspondingly have components

Â = ÂATA + ÂABTAB + ÂABCTABC + · · ·

and therefore infinite degrees of freedom. The
Seiberg–Witten map discussed in Sect. 6 allows
to reduce them to the classical degrees of free-
dom, and therefore to construct noncommutative
Yang–Mills theories with any gauge group.

5 Noncommutative vierbein gravity
coupled to fermions

5.1 Classical action and symmetries

Here we apply the twist procedure to first order gravity
in d = 4 coupled to fermions and obtain gravity on
noncommutative spacetime. The usual action of first-
order gravity coupled to a spin 1

2 field ψ reads:

S = εabcd

∫

Rab ∧ V c ∧ V d − iψ̄γaV b ∧ V c ∧ V d ∧ Dψ

− i(Dψ̄)γa ∧ V b ∧ V c ∧ V dψ (5.1)

where the vierbein V a and the spin connection ωab are
independent one-forms:

V a = V a
μ dxμ, ωab = ωab

μ dxμ (5.2)

and the two-form (Lorentz) curvature Rab is defined as

Rab = dωab − ωa
c ∧ ωcb. (5.3)

The Dirac conjugate is defined as usual: ψ̄ = ψ†γ0.
This action can be recast in an index-free notation

[12, 24], convenient for generalization to the noncom-
mutative case:

S =
∫

Tr(iR ∧ V ∧ V γ5) + ψ̄V ∧ V ∧ V γ5Dψ

+ Dψ̄ ∧ V ∧ V ∧ V γ5ψ (5.4)

where

R = dΩ − Ω ∧ Ω, Dψ = dψ − Ωψ,

Dψ̄ = Dψ = dψ̄ + ψ̄Ω (5.5)

with

V ≡ V aγa, Ω ≡ 1
4
ωabγab, R ≡ 1

4
Rabγab (5.6)

taking value in Dirac gamma matrices (recalled in
Appendix B). Use of the gamma matrix identities
γabc = iεabcdγ

dγ5, Tr(γabγcγdγ5) = −4iεabcd in com-
puting the trace leads back to the usual action (5.1).
Reality of the component fields V a, ωab, is equivalent
to the hermiticity conditions

γ0V γ0 = V †, −γ0Ωγ0 = Ω†. (5.7)

The action (5.4) is real; for the proof compare it to its
complex conjugate, obtained by taking the Hermitian
conjugate of the 4-form inside the trace in the integral.

The action is invariant under local diffeomorphisms
(it is the integral of a 4-form on a 4-manifold, hence the
infinitesimal diffeomorphism LX = diX + iXd reduces
to diX , a total derivative). It is also invariant under
local Lorentz rotations. These latter read

δεV = − [V, ε], δεΩ = dε − [Ω, ε],

δεψ = εψ, δεψ̄ = −ψ̄ε (5.8)

with ε = 1
4εabγab. The local Lorentz invariance of

the index free action follows from δεR = −[R, ε] and
δεDψ = εDψ, the cyclicity of the trace Tr and the fact
that the gauge parameter ε commutes with γ5.

After substituting (5.6) and ε = 1
4εabγab into (5.8),

simple gamma algebra yields the gauge variations of the
component fields:

δεV
a = εa

bV
b, δεω

ab = dεab − ωa
cε

cb + ωb
cε

ca ≡ Dεab.
(5.9)

Similarly, the variation of the curvature components is
found to be

δεR
ab = εa

cR
cb − εb

cR
ca, (5.10)

while δε(ψ̄γaDψ) = εa
bψ̄γbDψ. Thus all quantities

in the action (5.4) transform homogeneously under
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Lorentz local rotations, and since εabcd is an invariant
tensor of SO(1, 3), the action is likewise invariant. Here
the proof of invariance looks simple both in the index-
free and in the component formulation. Note however
that in general the index-free proof is much simpler.

5.2 Noncommutative gauge theory and Lorentz
group

Before presenting the noncommutative version of the
action (5.4), we discuss the �-deformation of the
Lorentz symmetry variations (5.8). These are generated
by the gamma matrices 1

4γab, and the gauge parame-
ter is ε = 1

4εabγab. The commutator of two Lorentz
transformations is again a Lorentz transformation, cor-
responding to the fact that the commutator of two
γab matrices contains only γab matrices. The situa-
tion changes when considering the �-deformation of this
symmetry: as discussed in Sect. 4, the commutator of
two �-gauge transformations contains also anticommu-
tators of the generators. The anticommutator of two
1
4γab matrices yields the identity and the γ5 matrices,
so that the gauge parameter must now include them in
its expansion:

ε =
1
4
εabγab + iε11 + ε̃γ5.

The extra gauge parameters ε, ε̃ can be chosen to be real
(like εab). Indeed the reality of εab, ε, ε̃ is equivalent to
the hermiticity condition

−γ0εγ0 = ε† (5.11)

and if the gauge parameters ε, ε′ satisfy this condition
then also [ε �, ε′] is easily seen to satisfy this hermiticity
condition.

Thus we have centrally extended the Lorentz group
to

SO(3, 1) → SO(3, 1) × U(1) × R+,

or more precisely, (since our manifold M has a spin
structure and we have a gauge theory of the spin group
SL(2, C ))

SL(2, C) → GL(2, C).

The Lie algebra generator i11 is the anti-hermitian gen-
erator corresponding to the U (1) extension, while γ5 is
the hermitian generator corresponding to the noncom-
pact R+ extension.

Since under noncommutative gauge transformations
we have

δεΩ = dε − Ω � ε + ε � Ω (5.12)

also the spin connection and the curvature will be val-
ued in the GL(2, C ) Lie algebra representation given

by all the even gamma matrices,

Ω =
1
4
ωabγab + iω11 + ω̃γ5,

R =
1
4
Rabγab + ir11 + r̃γ5. (5.13)

Similarly the gauge transformation of the vierbein,

δεV = −V � ε + ε � V, (5.14)

closes in the vector space of odd gamma matrices (i.e.
the vector space linearly generated by γa, γaγ5) and
not in the subspace of just the γa matrices. Hence the
noncommutative vierbein are valued in the odd gamma
matrices

V = V aγa + Ṽ aγaγ5. (5.15)

Reality of the component fields V a, Ṽ a, ωab, ω, and ω̃
is equivalent to the hermiticity conditions

γ0V γ0 = V †, −γ0Ωγ0 = Ω†. (5.16)

These hermiticity conditions are consistent with the
gauge variations.

Finally, the infinitesimal gauge transformations of the
fields considered close the Lie algebra of GL(2, C ),

[δε1 , δε2 ]� = −δ[ε1,ε2]� . (5.17)

5.3 Noncommutative gravity action and its
symmetries

The abelian twist, defining the star products and com-
patible with usual integration on M , leads to the exten-
sion of the Lorentz gauge group to GL(2, C ). It allows
to generalize to the noncommutative case the gravity
action (5.4). The noncommutative action reads

S =
∫

Tr(iR ∧�V ∧�V γ5) + ψ̄ � V ∧�V ∧�V ∧�γ5Dψ

+ Dψ̄ ∧� V ∧�V ∧�V � γ5ψ (5.18)

with

R = dΩ − Ω ∧� Ω, Dψ = dψ − Ω � ψ,

Dψ̄ = dψ̄ + ψ̄ � Ω. (5.19)

Reality of this noncommutative action follows by com-
paring it to its complex conjugate (obtained by taking
the Hermitian conjugate of the 4-form inside the trace
in the integral).

Gauge invariance of the noncommutative action
(5.18) under the �-variations is proved in the same way
as for the commutative case, noting that all the fields in
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the action transform homogeneously, cf. (5.12), (5.14)
and

δεψ = ε � ψ, δεψ̄ = −ψ̄ � ε, δεDψ = ε � Dψ,

δεDψ̄ = − Dψ̄ � ε, δεR = −R � ε + ε � R. (5.20)

Using that ε commutes with γ5, and the cyclicity of the
trace together with the graded cyclicity of the integral,
the invariance of (5.18) follows.

Diffeomorphisms invariance. It is straightforward
to prove that under an infinitesimal diffeomorphism LX

generated by a vector field X we have LXS = 0. For
this we can use the Cartan identity LX = iXd + diX
and recall that the action S in (5.18) is the integral
of a 4-form. Under these diffeomorphisms the vector
fields XI defining the �-product transform covariantly:
δXXI = LXXI = [X,XI ], hence also the �-product
transforms.

For a fixed ∗-product (i.e., for fixed background fields
XI that do not transform under diffeomorphisms) the
action is no more invariant under diffeomorphisms. The
case of a ∗-product defined by vector fields XI that are
not fixed, but are dynamical thanks to an associated
kinetic term, is discussed e.g. in [25].

Considering noncommutativity as a fixed background
we are led to introduce �-infinitesimal diffeomorphisms
L∗

X , satisfying a deformed Leibniz rule ([21], Sect. 4,
eq. (4.13)). They also satisfy the Cartan identity L∗

X =
i∗Xd + di∗X where i∗X is the �-contraction operator [21,
23]. Then as before L∗

XS = 0. These deformed diffeo-
morphisms leave invariant the �-product and the vector
fields XI (i.e., L∗

XXI = 0), therefore the action S with
fixed noncommutativity background is invariant under
�-diffeomorphisms, cf. [18], Sect. 8.2.4.

Charge conjugation invariance. Noncommutative
charge conjugation reads:

ψ → ψ C ≡ C(ψ̄)T = −γ0Cψ∗, V → V C ≡ C V TC,

Ω → ΩC ≡ CΩTC (5.21)

with �θ → �C
θ = �−θ and consequently ∧�θ

→ ∧C
�θ

=
∧�−θ

, (see Appendix B for the properties of the charge
conjugation matrix C ). The action (5.18) is invariant
under charge conjugation.

SC
bosonic= i

∫

Tr(RC ∧−θ V C ∧−θ V Cγ5)T

= − i

∫

Tr(RT ∧−θ V T ∧−θ V TCγ5C
−1)T

= − i

∫

Tr
(
(V T ∧−θ V TγT

5 )T ∧� R
)

= − i

∫

Tr
(−(V TγT

5 )T ∧� V ∧� R
)

= i

∫

Tr(γ5V ∧� V ∧� R)

= i

∫

Tr(R ∧� γ5V ∧� V ) = i

∫

Tr(R ∧� V ∧� V γ5)

= Sbosonic. (5.22)

A similar proof holds for the fermionic part of the
action: SC

fermionic = Sfermionic.

Noncommutative action and gauge variations
for the component fields. Finally, we give the
bosonic noncommutative action in terms of the compo-
nent fields V a, ωab, Ṽ a, ω, and ω̃, and write the gauge
variations of these fields.

Sbosonic =
∫

Rab ∧� (V c ∧� V d − Ṽ c ∧� Ṽ d)εabcd

− 2i Rab ∧� (Va ∧� Ṽb − Ṽa ∧� Vb)

− 4 r ∧� (V a ∧� Ṽa − Ṽ a ∧� Va)

+ 4i r̃ ∧� (V a ∧� Va − Ṽ a ∧� Ṽa) (5.23)

with

Rab = dωab − 1
2
ωa

c ∧� ωcb +
1
2
ωb

c ∧� ωca

− i(ωab ∧� ω + ω ∧� ωab)−
− i

2
εab

cd(ω
cd ∧� ω̃ + ω̃ ∧� ωcd)

r = dω − i

8
ωab ∧� ωab − i(ω ∧� ω − ω̃ ∧� ω̃)

r̃ = dω̃ +
i

16
εabcdω

ab ∧� ωcd − i(ω ∧� ω̃ + ω̃ ∧� ω).

The noncommutative gauge variations read

δεV
a =

1
2
(εa

b � V b + V b � εa
b)

+
i

4
εa

bcd(Ṽ
b � εcd − εcd � Ṽ b)

+ i(ε � V a − V a � ε) − ε̃ � Ṽ a − Ṽ a � ε̃

δεṼ
a =

1
2
(εa

b � Ṽ b + Ṽ b � εa
b)

+
i

4
εa

bcd(V
b � εcd − εcd � V b)

+ i(ε � Ṽ a − Ṽ a � ε) − ε̃ � V a − V a � ε̃

δεω
ab = dεab +

1
2
(εa

c � ωcb − εb
c � ωca

+ ωcb � εa
c − ωca � εb

c)

+ i(εab � ω − ω � εab)

+
i

2
εab

cd(ε
cd � ω̃ − ω̃ � εcd)

+ i(ε � ωab − ωab � ε)

+
i

2
εab

cd(ε̃ � ωcd − ωcd � ε̃)

δεω = dε − i

8
(ωab � εab − εab � ωab)

+ i(ε � ω − ω � ε − ε̃ � ω̃ + ω̃ � ε̃)
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δεω̃ = dε̃ +
i

16
εabcd(ωab � εcd − εcd � ωab)

+ i(ε � ω̃ − ω̃ � ε + ε̃ � ω − ω � ε̃).

5.4 Classical limit and charge conjugation
constraints

In the classical limit θ → 0 the �-product becomes the
usual pointwise product. The noncommutative gauge
symmetry becomes a usual gauge symmetry with gauge
group GL(2, C ) and the noncommutative vierbein in
the classical limit leads to two independent vierbeins:
V a and Ṽ a transforming both only under the SL(2, C )
subgroup of GL(2, C ). As observed in [24] this is prob-
lematic because we obtain two massless gravitons and
only one local Lorentz symmetry. That is not enough
to kill the unphysical degrees of freedom. Either we
concoct a mechanism such that the second graviton
becomes massive or we further constrain the noncom-
mutative theory so that in the classical limit the extra
vierbein vanishes.

We present two methods of constraining the noncom-
mutative fields. The first one is based on charge conju-
gation conditions. The second one will be presented in
Sect. 7; it has a wider application and is based on the
Seiberg–Witten map.

The fields in the noncommutative gravity action are
in general θ-dependent as is clear by observing that
the �-gauge transformation of a field is θ dependent
(because of the θ dependence of the �-product). The
vanishing of the Ṽ a components in the classical limit
is achieved by imposing charge conjugation constraints
on the fields [12]:

CVθ(x)C = V−θ(x)T, CΩθ(x)C = Ω−θ(x)T,

Cεθ(x)C = ε−θ(x)T (5.24)

where we have explicitly written the θ-dependence of
the fields. Conditions (5.24) are consistent with �-gauge
transformations. For example, the field CVθ(x)TC can
be shown to transform in the same way as V−θ(x).

These charge conjugation constraints imply that the
fields and gauge parameter components V a, ωab, εab are
even in θ, while the components Ṽ a, ω, ω̃, ε, ε̃ are odd.

We then conclude that the noncommutative grav-
ity action in (5.18) with fields satisfying the charge
conjugation constraints (5.24) is real, diffeomorphisms
invariant, invariant under GL(2, C ) �-gauge transfor-
mations and in the classical limit reduces to the usual
gravity action with usual SL(2, C ) gauge invariance.
Indeed, only the fields and gauge parameter compo-
nents V a, ωab, εab differ from zero in the classical limit.

As already observed the action is also charge conjuga-
tion invariant. In the presence of the charge conjugation
constraints (5.24) the bosonic gravity action is further-
more even in θ. Indeed (5.24) implies V C = V−θ, ΩC =
Ω−θ, R C = R−θ. From the first equality in (5.22) we
see that the bosonic action Sbosonic(θ) is mapped into

Sbosonic(−θ) under charge conjugation, and since it is
also invariant we conclude that it is even in θ.

6 Seiberg–Witten map

We first study the Seiberg–Witten map between com-
mutative and noncommutative gauge theories with non-
commutativity given by the Groenewold–Moyal prod-
uct.

In a gauge theory physical quantities are gauge
invariant: they do not depend on the gauge potential
but on the gauge equivalence class of the potential
given. The Seiberg–Witten map relates the noncommu-
tative gauge fields to the commutative ones by requir-
ing the noncommutative fields to have the same gauge
equivalence classes as the commutative ones [4]. Explic-
itly, the noncommutative gauge potential Â = Aμdxμ

and the noncommutative gauge parameters ε̂ depend
on the ordinary A and ε so to satisfy:

Â(A + δεA) = Â(A) + δ̂ε̂Â(A) (6.1)

with

δεAμ = ∂με − iAμε + iεAμ, (6.2)

δ̂ε̂Âμ = ∂με̂ − iÂμ � ε̂ + iε̂ � Âμ. (6.3)

This equation can be solved order by order in powers
of the noncommutativity parameter θ yielding Â and ε̂
as power series in θ:

Â(A) = A + A1(A) + A2(A) + · · · + An(A) + · · ·
(6.4)

ε̂(ε, A) = ε + ε1(ε, A) + ε2(ε, A) + · · · + εn(ε, A) + · · ·
(6.5)

where An(A) and εn(ε, A) are of order n in θ. Note that
ε̂ depends on the ordinary ε and also on A. For example,
up to first order it is readily checked that

Âκ =Aκ + A1
κ(A) + O(θ2)

=Aκ − θμν

4
{Aμ, ∂νAκ + Fνκ} + O(θ2) (6.6)

ε̂ = ε + ε1 + O(θ2) = ε − θμν

4
{Aμ, ∂νε} + O(θ2)

(6.7)

with Fμν := ∂μAν −∂νAμ − iAμAν + iAνAμ and where
{U, V } = UV +V U is the anticommutator of two oper-
ators.

The Seiberg–Witten condition (6.1) holds for any
value of the noncommutativity parameter θ. If we con-
sider it at θ′ and at θ we easily obtain that gauge
equivalence classes of the θ′-noncommutative theory
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have to correspond to gauge equivalent classes of the
θ-noncommutative theory, i.e., we generalize (6.1) to

Â
′
(Â + δ̂ε̂Â) = Â

′
(Â) − δ̂

′

ε̂′ Â
′
(Â), (6.8)

where we denoted by �′, Â
′
, ε̂

′
, δ̂

′

ε̂′ the star product,
the gauge potential, the gauge parameter and the gauge
variation: δ̂

′

ε̂′ Â
′
κ = ∂κε̂

′−iÂ
′
κ�′ε̂

′
+iε̂

′
�′Â

′
κ at noncommu-

tativity parameter θ′. By considering θ and θ′ infinites-
imally close, so that θ′ = θ+ δθ and Â

′
= Â+ δθμν ∂Â

∂θμν

(we consider ∂
∂θμν independent from ∂

∂θνμ and hence
sum over all μ,ν indices) a rather straightforward com-
putation, generalizing that for (6.6) and (6.7), shows
that if Â and ε̂ solve the differential equations

∂

∂θμν
Âκ = − 1

8

(
{Âμ, ∂νÂκ + F̂νκ}�

− {Âν , ∂μÂκ + F̂μκ}�

)
(6.9)

∂

∂θμν
ε̂ = − 1

8

(
{Âμ, ∂ν ε̂}� − {Âν , ∂με̂}�

)
(6.10)

where {U, V }� = U � V + V � U and

F̂μν := ∂μÂν − ∂νÂμ − iÂμ � Âν + iÂν � Âμ,
(6.11)

then Â
′
(Â) and ε̂

′
(ε̂, Â) satisfy also the Seiberg–Witten

condition (6.8) for arbitrary values of θ′ and θ. In partic-
ular, therefore, they solve the Seiberg–Witten condition
(6.1).

The differential equations (6.9) and (6.10) admit
solutions in terms of formal power series in θ. These
are given recursively by

An+1
μ = − 1

4(n + 1)
θρσ{Âρ, ∂σÂμ + F̂σμ}n

� ,

(6.12)

εn+1 = − 1
4(n + 1)

θρσ{Âρ, ∂σ ε̂}n
� , (6.13)

where {f̂ , ĝ}n
� is the n-th order term in {f̂ , ĝ}�, so that

for example

{Âρ, ∂σ ε̂}n
� ≡

∑

r+s+t=n

(Ar
ρ �s ∂σεt + ∂σεt �s Ar

ρ).

(6.14)

Here �s indicates the s-th order term in the star product
expansion [26]. There is a simple proof of (6.12), (6.13)
[12]: multiplying the differential equations by θμν and
analysing them order by order yields

θμν ∂

∂θμν
An+1

ρ = (n + 1)An+1
ρ

= − 1
4
θμν{Âμ, ∂νÂρ + F̂νρ}n

� ,

θμν ∂

∂θμν
εn+1 = (n + 1)εn+1 = −1

4
θμν{Âμ, ∂ν ε̂}n

�

since An+1
ρ and εn+1 are homogeneous functions of θ of

order n + 1.
Similar considerations hold for matter fields φ trans-

forming in the fundamental or in the adjoint representa-
tion of the gauge group. The Seiberg–Witten condition
reads, cf. [27],

φ̂(A + δεA,φ + δεφ) = φ̂(A,φ) + δ̂ε̂φ̂(A,φ),
(6.15)

or more generally,

φ̂
′
(Â + δε̂Â, φ̂ + δε̂φ̂) = φ̂

′
(Â, φ̂) + δ̂

′

ε̂′ φ̂
′
(Â, φ̂),

(6.16)

and it is satisfied if the matter fields solve the differen-
tial equation

δθμν ∂φ̂

∂θμν
= −1

4
δθμνÂμ � (∂ν φ̂ + Dν φ̂)

fundamental rep., i.e., δ̂ε̂φ̂ = iε̂ � φ̂,

δθμν ∂Ψ̂
∂θμν

= −1
4
δθμν{Âμ, (∂νΨ̂ + DνΨ̂)}�

adjoint rep., i.e., δ̂ε̂Ψ̂ = iε̂ � Ψ̂ − iΨ̂ � ε̂. (6.17)

The explicit solutions order by order in θ are

φn+1 = − 1
4(n + 1)

θμν(Âμ � (∂ν φ̂ + Dν φ̂))n

(fundamental) (6.18)

Ψn+1 = − 1
4(n + 1)

θμν{Âμ, ∂νΨ̂ + DνΨ̂}n
�

(adjoint) (6.19)

where

Dν φ̂ = ∂ν φ̂ − iÂν � φ̂, DνΨ̂ = ∂νΨ̂ − i[Âν , Ψ̂]�

are the covariant derivative in the fundamental and in
the adjoint, with [S, T ]� := S � T − T � S.

The Seiberg–Witten differential equations (6.9),
(6.10), (6.17) are not the most general solutions to the
gauge equivalence condition (6.1). For example, from
the differential equation for the gauge potential it is
easy to see that the field strength F̂μν satisfies the dif-
ferential equation

δθρσ ∂F̂μν

∂θρσ
= − 1

4
θρσ({Âρ, ∂σF̂μν + DσF̂μν}�

− 2{F̂μρ, F̂νσ}�)

which has an extra addend with respect to the dif-
ferential equation (6.17) for fields transforming in the
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adjoint. The most general Seiberg–Witten differential
equations are presented in Appendix A. The freedom in
the Seiberg–Witten differential equations may be useful
for their integration, see e.g. Appendix A.

6.1 Geometric Seiberg–Witten map

The Seiberg–Witten map considered for Groe-
newold–Moyal noncommutativity can be generalized to
the case of an abelian twist

F = e− i
2 θIJXI⊗XJ (6.20)

where {XI} is a set of mutually commuting vector
fields globally defined on a manifold M and θIJ is
a constant antisymmetric matrix. The corresponding
�-product is obtained composing the usual pointwise
multiplication μ(f ⊗ g) = fg with the inverse twist
F−1 = e

i
2 θIJXI⊗XJ ,

f � g = μ(F−1(f ⊗ g)). (6.21)

This �-product is in general position dependent because
the vector fields XI are in general x -dependent. Asso-
ciativity of the �-product is guaranteed by mutual com-
mutativity of the vector fields XI . In the special case
that M = R

d and XI = ∂
∂xI , I = 1, . . . , d we recover

the Groenewold–Moyal �-product (3.1).
The use of vector fields {XI} on a manifold M

suggests a coordinate independent approach to the
Seiberg–Witten map. The resulting NC gauge potential
Â is then a 1-form that depends on A, on the mutu-
ally commuting vector fields XI and on the deforma-
tion matrix θ = (θIJ )I,J=1,...,d. The coordinate inde-
pendent expression of the Seiberg–Witten differential
eqs. (6.6),(6.10) reads

∂

∂θIJ
Â = −1

4
{iX[I Â,LXJ]Â + iXJ] F̂}� (6.22)

∂

∂θIJ
ε̂ = −1

4
{iX[I Â,LXJ] ε̂}� (6.23)

where F̂ ≡ dÂ − iÂ ∧� Â is a two-form, iXI
and LXI

are respectively the contraction and the Lie derivative
along the mutually commuting vector fields XI . When
the abelian twist reduces to the Groenewold–Moyal case
of the preceding section, the curvature becomes F̂ =
1
2 F̂μνdxμ ∧ dxν , where the F̂μν components are given
in (6.11). Note that in the Groenewold–Moyal case
dxμ ∧� dxν = dxμ ∧ dxν since LXI

dxμ = dLXI
xμ = 0.

Proceeding as in the Groenewold–Moyal case the recur-
sive solutions are given by:

An+1 = − 1
4(n + 1)

θIJ{iXI
Â,LXJ

Â + iXJ
F̂}n

�

(6.24)

εn+1 = − 1
4(n + 1)

θIJ{iXI
Â,LXJ

ε̂}n
� . (6.25)

Similarly one proves the generalization of
Eqs. (6.18)–(6.19):

φn+1 = − 1
4(n + 1)

θIJ
(
iXI

Â � (2LXJ
φ̂ − i(iXJ

Â) � φ̂)
)n

,

δ̂ε̂φ̂ = iε̂ � φ̂ (6.26)

Ψn+1 = − 1
4(n + 1)

θIJ{iXI
Â, 2LXJ

ψ̂ − i(iXJ
Â) � Ψ̂

+ iΨ̂ � (iXJ
Â)}n

� ,

δ̂ε̂Ψ̂ = iε̂ � Ψ̂ − iΨ̂ � ε̂. (6.27)

In this subsection we have constructed the geometric
Seiberg–Witten map for noncommutative gauge the-
ories with gauge group U (N ) or GL(N ) (or prod-
ucts thereof) and with �-product given by a general
abelian twist (6.20). For abelian gauge groups the
Seiberg–Witten map can be constructed for any �-
product associated with an arbitrary Poisson tensor.
The map is obtained in [28] using Kontsevich formality
theorem [29]. The study of its global geometric aspects
shows that the Seiberg–Witten map quantizes line bun-
dles with connections on a Poisson manifold to quan-
tum (noncommutative) line bundles with noncommu-
tative connections [30] The Seiberg–Witten map for
nonabelian gauge groups and with arbitrary Poisson
tensors is in general an open problem, we refer to [31]
for interesting insights. The global geometric aspects
of the Seiberg–Witten map are well understood for
nonabelian U (n)-gauge fields on noncommutative tori:
the Seiberg–Witten map defined in (A.9), (A.10), with
γ = −3, ρ = i, quantizes vector bundles on tori with
connections to vector bundles on noncommutative tori
with noncommutative connections and the results are
nonformal in the sense that they do not rely on power
series expansion in the noncommutativity parameter θ.

We also mention that the Seiberg–Witten map for
Chern–Simons gauge theories can be studied to all
orders in the noncommutativity parameter θ [32, 33].

7 Noncommutative gauge theories
with any gauge group

Up to now we have considered noncommutative gauge
theories with gauge group U (N ) or GL(N ) in the fun-
damental or adjoint, and more generally representations
of gauge groups such that the generators TA of the Lie
algebra close also in the usual matrix product. This is
needed for the closure of infinitesimal gauge transfor-
mations, cf. (4.2). If on the other hand we consider an
arbitrary gauge group G , Eq. (4.2) shows that infinites-
imal gauge transformations do not close in the Lie alge-
bra Lie(G), but in the universal enveloping algebra
U(Lie(G)). This latter is the product of all generators
TA modulo the relations TATB − TBTA = [TA, TB ].
When considering an arbitrary gauge group G the
noncommutative gauge potential is therefore universal
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enveloping algebra valued

Â = ÂATA + ÂABTATB + ÂABCTATBTC + · · ·

and hence with infinitely many (symmetric) compo-
nents ÂA, ÂAB , ÂABC , . . . . The Seiberg–Witten map is
well defined also in this case. It then constrains these
infinite components to depend on the commutative ones
AA = AA

μ dxμ in A = AATA. Similarly, the gauge
parameters and the matter fields depend on the com-
mutative gauge parameters and matter fields, besides
the commutative gauge potential.

This Seiberg–Witten map approach to noncommuta-
tive gauge theories is called universal enveloping alge-
bra valued approach [27]. It has been used to propose
noncommutative standard and grand unified particle
physics models [34, 35] having the same degrees of free-
dom as in the commutative models. Renormalizabil-
ity and scattering amplitudes using the Seiberg–Witten
map have been studied e.g. in [36–39], either consider-
ing a power series expansion in θ or a θ-exact approach
(i.e. to all orders in θ) [37, 40], where the power series
is instead in the gauge coupling constant. For recent
literature on scattering amplitudes of noncommutative
particle models using the Seiberg–Witten map see [41,
42] and references therein.

7.1 Expansion of gauge and matter fields to first
order in θ

Up to first order in θ the solution to the Seiberg–Witten
conditions for the gauge potential, the infinitesimal
gauge transformation parameter, the matter fields and
the field strength reads:

Â = A − 1
4
θIJ{AI ,LJA + FJ} + O(θ2) (7.1)

ε̂ = ε − 1
4
θIJ{AI ,LJε} + O(θ2) (7.2)

ψ̂ = ψ − 1
4
θIJAI(LJ + LJ)ψ + O(θ2) (7.3)

F̂ = F − 1
4
θIJ({AI , (LJ + LJ )F} − [FI , FJ ]) + O(θ2)

(7.4)

where AI , FI are defined as the contraction along the
tangent vector XI of the exterior forms A, F , i.e., AI ≡
iIA, FI ≡ iIF , (iI being the contraction along XI).
We have also introduced the Lie derivative LI along
the vector field XI , and the covariant Lie derivative
LI along the vector field XI . LI acts on F and ψ as
LIF = LIF − iAIF + iFAI and LIψ = LIψ − AIψ.
The covariant Lie derivative LI has the Cartan form:

LI = iID + DiI

where D is the covariant derivative. We refer to [13] for
higher order in θ expressions.

The Seiberg–Witten map (7.1)–(7.4), and its higher
order in θ terms, allows to expand noncommutative
gauge theory actions in terms of commutative fields.
Noncommutative gauge theories are therefore seen as
commutative ones with specific interaction terms due
to noncommutativity of spacetime.

We exemplify this general procedure by studying the
Seiberg–Witten map for the gravity action (5.18).

7.2 Expansion of noncommutative gravity action
at first order in θ

As usual in this case we use the notation Ω = A,
R = F . The Seiberg–Witten solutions (7.1)–(7.4) are
not SO(1, 3) -gauge covariant, due to the presence of
the “naked” connection Ω and the non-covariant Lie
derivative LI = iId+diI . However, when inserted in the
NC action the resulting action is gauge invariant order
by order in θ. Indeed usual gauge variations induce
the �-gauge variations under which the noncommuta-
tive action is invariant. Therefore the NC action, re-
expressed in terms of ordinary fields via the SW map,
is invariant under usual gauge transformations. More-
over the action, once re-expressed in terms of ordinary
fields remains geometric, and hence invariant under dif-
feomorphisms. This is the case because the noncommu-
tative action and the SW map are geometric: indeed
only coordinate independent operations like the con-
traction iI and the Lie derivatives LI and LI appear in
the Seiberg–Witten map.

We replace the noncommutative fields appearing in
the action with their expansions (7.1)–(7.4) in commu-
tative fields, and integrating by parts we obtain the
following gravity action coupled to spinors

S =
∫

Tr(iRV V γ5) + ψ̄V 3γ5Dψ + Dψ̄V 3γ5ψ

+
i

4
θIJ

(
ψ̄{V 3, RIJ}γ5Dψ + Dψ̄{V 3, RIJ}γ5ψ

)

+
i

2
θIJ

(
2LI ψ̄RJV 3γ5ψ − 2ψ̄V 3RIγ5LJψ

− LI ψ̄V 3γ5LJDψ − LIDψ̄ V 3γ5LJψ

+ ψ̄({LIV LJV, V } + LIV V LJV )γ5Dψ

+ Dψ̄({LIV LJV, V } + LIV V LJV )γ5ψ
)

+ O(θ2)
(7.5)

where we have omitted writing the wedge product, and
V 3 = V ∧V ∧V . The expression of the gravity action, up
to second order in θ, in terms of the commutative fields
has been given in [14], after a propaedeutical study of
the Seiberg–Witten map for �-products of fields.

In conclusion, we have constructed a gravity action
in noncommutative spacetime—an expected feature of
quantum spacetime—and shown its equivalence to the
usual gravity action (in the first order formalism) on
commutative spacetime with extra interaction terms.
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These are obtained from spacetime noncommutativ-
ity using the Seiberg–Witten map between commuta-
tive and noncommutative gauge theories. This extended
gravity action is invariant under local Lorentz trans-
formations because it is expressed solely in terms of
gauge covariant operators LI , iI ,D, curvature R, vier-
bein V , spinor fields ψ, invariant vector fields {XI}
and noncommutativity parameter θ. It is diffeomorphic
invariant and charge conjugation invariant. This non-
commutative gravity action can also be coupled to non-
commutative scalar and gauge fields [25, 43]. Choos-
ing an appropriate kinetic term, the vector fields {XI}
can become dynamical, the idea being that both space-
time curvature and noncommutativity should depend
on matter distribution. It would be interesting to study
cosmological models as solutions of these extended
gravity actions.
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Appendix A: Ambiguities
in the Seiberg–Witten map

The solution to the Seiberg–Witten conditions (6.1),
(6.15) is not unique. For example if Âμ is a solu-
tion, any noncommutative gauge transformation of Âμ

gives another solution. Another source of ambiguities
is that of field redefinitions of the gauge potential
(e.g., if Âμ is a solution then so is Âμ + θρσθληF̂ρλ �

DσF̂ημ). We generalize the Seiberg–Witten equations

(6.6), (6.10) and (6.17) allowing for three extra terms
D̂μνρ(Â), Êμν(Â, ε̂), Ĉμν(Â, φ̂) and Ĉμν(Â, Ψ̂) that are
a priori arbitrary functions of their arguments and
derivatives thereof, that are (formal) power series in
θ and that are antisymmetric in the μ, ν indices. We
consider the equations

δθÂκ = δθμν ∂Âκ

∂θμν

= − 1
4
δθμν

(
{Âμ, ∂νÂκ + F̂νκ}� + D̂μνκ(Â)

)
,

(A.1)

δθ ε̂ = δθμν ∂ε̂

∂θμν

= − 1
4
δθμν

(
{∂με̂, Âν}� + Êμν(Â, ε̂)

)
, (A.2)

δθφ̂ = δθμν ∂φ̂

∂θμν

= − 1
4
δθμν

(
Âμ � ∂ν φ̂ + Âμ � Dν φ̂ + Ĉμν(Â, φ̂)

)
,

(A.3)

δθΨ̂ = δθμν ∂Ψ̂
∂θμν

= − 1
4
δθμν

(
{Âμ, ∂νΨ̂ + DνΨ̂}� + Ĉμν(Â, Ψ̂)

)

(A.4)

and observe that Êμν must be linear in ε̂ since all terms
in (A.2) but Êμν are linear in ε̂, similarly Ĉμν must be
linear in φ̂ because of the linearity in φ̂ of all other terms
in (A.3), and similarly for Ĉμν(Â, Ψ̂) in (A.4). Imposing
the Seiberg–Witten conditions (6.8), (6.16) we obtain
the conditions

D̂μνκ(Â + δ̂ε̂Â) − D̂μνκ(Â) − i[ε̂, D̂μνκ(Â)]�

= −DκÊμν(Â, ε̂),

Ĉμν(Â + δ̂ε̂Â, φ̂ + δ̂ε̂φ̂) − Ĉμν(Â, φ̂) − iε̂ � Ĉμν(Â, φ̂)

= −iÊμν(Â, ε̂) � φ̂,

Ĉμν(Â + δ̂ε̂Â, Ψ̂ + δ̂ε̂Ψ̂) − Ĉμν(Â, Ψ̂) − i[ε̂, Ĉμν(Â, Ψ̂)]�

= −i[Êμν(Â, ε̂), Ψ̂]�. (A.5)

In particular we notice that any D̂μνκ and Ĉμν covari-
ant under gauge transformations solve (A.5) with
Êμν = 0.

In summary, as discussed in [44], the most gen-
eral solution Â(A), ε̂(A, ε), φ̂(A,φ), Ψ̂(A,Ψ) of the
Seiberg–Witten conditions (6.1), (6.15) is given by
the differential equations (A.1)–(A.4) where D̂, Ê, Ĉ
are constrained by (A.5). Further constraints on the
D̂, Ê, Ĉ terms are obtained by requiring that the
Seiberg–Witten map respects hermiticity and charge
conjugation in the sense that the hermiticity and charge
conjugation properties of the commutative fields imply
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those of the noncommutative fields [13, 35]. If we ask
D̂, Ê, Ĉ to have no explicit dependence on θ and to
be covariant under constant GL(d, R) coordinate trans-
formations (the star product f � g is itself invariant
under constant GL(d, R) coordinate transformations:
xμ → Mμ

ρx
ρ, θμν → Mμ

ρM
ν

σθρσ) we recover the
results in [45] and in [46]:

D̂μνκ = αDκF̂μν + βDκ[Âμ, Âν ]�, Êμν = 2β[∂με̂, Âν ]�,
(A.6)

Ĉμν = −2iβ[Âμ, Âν ]� � φ̂ + γF̂μν � φ̂

(fundamental) (A.7)

Ĉμν = −2iβ[[Âμ, Âν ]�, Ψ̂]� + γ′F̂μν � Ψ̂ + γ̃Ψ̂ � F̂μν

(adjoint) (A.8)

with α, β, γ, γ′ and γ̃ arbitrary constants.
An interesting Seiberg–Witten differential equation

is obtained considering (A.1)–(A.4) with D̂μνκ = 0,
Êμν = 0 and

Ĉμν(Â, φ̂) = γF̂μν � φ̂ + ρDμDν φ̂

for μ < ν, and Ĉνμ := −Ĉμν (A.9)

Ĉμν(Â, Ψ̂) = γ[F̂μν , Ψ̂]� + ρDμDνΨ̂

for μ < ν, and Ĉνμ := −Ĉμν . (A.10)

Here ρ is a constant and GL(d, R) covariance is bro-
ken because DμDνΨ̂ is not antisymmetric in the
μ, ν indices, i.e., Ĉνμ does not contain also the term
ρDνDμφ. This choice, with γ = −3 and ρ = i, allows
to solve the Seiberg–Witten map on noncommutative
tori (obtained from the Groenewold–Moyal noncommu-
tative plane) to all orders in θ for topologically nontriv-
ial U (N )-gauge potentials with constant field strengths
[44].

Appendix B: Gamma matrices in D = 4

We summarize in this Appendix our gamma matrix
conventions in D = 4.

ηab = (1,−1,−1,−1), {γa, γb} = 2ηab, [γa, γb] = 2γab,
(B.1)

γ5 ≡ iγ0γ1γ2γ3, γ5γ5 = 1, ε0123 = −ε0123 = 1,
(B.2)

γ†
a = γ0γaγ0, γ†

5 = γ5 (B.3)

γT
a = −CγaC−1, γT

5 = Cγ5C
−1,

C2 = −1, C† = CT = −C. (B.4)

Useful identities

γaγb = γab + ηab (B.5)

γabγ5 =
i

2
εabcdγ

cd (B.6)

γabγc = ηbcγa − ηacγb − iεabcdγ5γ
d (B.7)

γcγab = ηacγb − ηbcγa − iεabcdγ5γ
d (B.8)

γaγbγc = ηabγc + ηbcγa − ηacγb − iεabcdγ5γ
d

(B.9)

γabγcd = −iεab
cdγ5 − 4δ

[a
[c γ

b]
d] − 2δab

cd (B.10)

Tr(γaγbcγd) = 8 δbc
ad (B.11)

Tr(γ5γaγbcγd) = −4i εabcd (B.12)

where δab
cd ≡ 1

2 (δa
c δb

d−δb
cδ

a
d) and indices antisymmetriza-

tion in square brackets has total weight 1.
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