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Abstract Here we present an overview on the various works, in which many collaborators have contributed,
regarding the interesting dipole of noncommutativity and physics. In brief, we present the features that
noncommutativity triggers both in the fields of gravity and particle physics, from a matrix-realized per-
spective, with the notion of noncommutative gauge theories to play the most central role in the whole
picture. Also, under the framework of noncommutativity, we examine the possibility of unifying the two
fields (gravity-particle physics) in a single configuration.

1 Introduction

An ultimate anticipation of many theoretical physicists
is the existence of a unification picture in which all
fundamental interactions are involved. To this end, a
huge amount of serious research activity has been car-
ried out, including works that elaborate the very inter-
esting notion of extra dimensions. Superstring theories
[1] consist a solid framework, with the heterotic string
theory [2] (defined in ten dimensions) being the most
promising, in the sense that it potentially admits exper-
imental compatibility, due to the fact that the Standard
Model (SM) gauge group can be accommodated into the
gauge groups of the grand unified theories (GUTs) that
emerge after the dimensional reduction of the initial
E8 × E8. Besides the superstring theories, a few years
before their formulation, an alternative approach of
generalized dimensional reduction, as compared to the
simple one of higher-dimensional gauge theories was for-
mulated. This insightful and significant project which
shared common goals with one of the superstring theo-
ries, was initially explored by Forgacs–Manton and then
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by Scherk–Schwartz studying the coset space dimen-
sional reduction (CSDR) [3–6] and the group manifold
reduction [7], respectively.

Besides the above, a very interesting framework
which could be a competitive candidate in accommo-
dating a gravitational theory but also particle physics
models at high energy scale (Planck scale) is that of
noncommutative geometry [8–50], in which the com-
mutativity of the coordinates is not an inherent prop-
erty of spacetime. An interesting virtue of the above
framework is the regularization of quantum field theo-
ries, or, even better, the construction of finite ones. Of
course, such an undertaking is rather complicated and,
furthermore, it has presented unwelcome issues regard-
ing its ultraviolet behavior [12–15] (see also [16–18,
90]). Despite that, noncommutative geometry is consid-
ered as a solid framework regarding the accommodation
of particle physics models, formulated as in the famil-
iar way, that is as gauge theories on noncommutative
spaces [19–21] (see also [22–27]).

It is remarkable that superstring theories and non-
commutative geometry share a common ground, since,
in M-theory and open string theory, the effective
physics on D-branes can be expressed as a noncom-
mutative gauge theory, in the presence of a nowhere-
vanishing background antisymmetric field [28, 29]. In
addition, the type IIB superstring theory (and those
related to it through dualities), in its non-perturbative
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formulation as a matrix model [30], consists a noncom-
mutative theory. A major contribution in the frame-
work of noncommutativity was that of Seiberg and Wit-
ten [29], who devised a mapping mechanism between
commutative and noncommutative gauge theories, cor-
relating the noncommutative degrees of freedom of a
gauge theory to their commutative counterparts. Based
on the above mapping, important developments have
been done [31–35], for instance the construction of a
noncommutative version of the SM [36–38]. Unfortu-
nately, the main problem of this approach was not
solved, that is the free parameters of the model could
not get further reduced by extensions of this type (con-
trary to supersymmetric theories [51]).

Delving a little deeper in the notion of noncommu-
tative geometry, since coordinates are not commuta-
tive quantities, it can be linked to a potential quan-
tum structure, which can be supposed that it occurs at
very small distances (Planck length), since the behav-
ior of the spacetime fabric at these scales is effectively
unknown. According to the above line of thoughts, it
is a rather natural step to examine the noncommuta-
tive version of general theory of relativity (GR), with
aspirations that the latter would provide new insights
particularly in regions that a spacetime singularity is
encountered in the conventional GR framework. This
noncommutative gravitational theory would consist a
generalization of GR, ideal for examining higher cur-
vature scales (than a critical one), in which, localiza-
tion of a point would be impossible to occur. There-
fore, in case of high-scales phenomena, the conventional
notion of coordinates breaks down and should be sub-
stituted by elements of a noncommutative algebra. On
the contrary, at less extreme energy scales (e.g. LHC)
the rest of the interactions are successfully formulated
using gauge theories, while at higher scales (but not
of Planck level) a very attractive unification picture
of these three interactions is provided by the GUTs.
The gravitational interaction does not join this picture,
since, in principle, it is formulated geometrically accord-
ing to GR. Nevertheless, besides the geometric one,
there exists an alternative, gauge-theoretic approach to
gravity [52–64], which started with Utiyama’s pioneer-
ing study [52] and was subsequently evolved as a gauge
theory of the de Sitter SO(1,4) group, spontaneously
broken by a scalar field to the Lorentz SO(1,3) group
[54]. Apart from GR, Weyl gravity has also been for-
mulated as a gauge theory of the conformal group in
four dimensions [59, 60]. In this case, part of the gauge
fields spectrum is identified as the vielbein and the spin
connection, which guarantees the interplay between the
gauge-theoretic and geometric approaches through the
(equivalent to the regular—second order—) first order
formulation of GR. Now, taking into consideration the
aforementioned gauge-theoretic formulation of gravity
and integrating it to the noncommutative framework
in which gauge theories are well-formulated has led to
the construction of models of noncommutative gravity
[66–75]. In these works, the Moyal–Weyl type of non-
commutativity is used, the star-product approach is fol-
lowed (in which the noncommutative quantities are still

ordinary functions but with an upgraded product) and,
last, the Seiberg–Witten map is used [29]. Furthermore,
there exists an alternative approach to the construction
of noncommutative gravitational models, which makes
use of the matrix-realization of the noncommutative
quantities [30, 76–87] (see also [11, 88, 89]).

Here, due to length restrictions of our article, instead
of outlining our approach in the introduction, we have
chosen to develop it step-by-step in the next chapters,
accompanied by more detailed references on the sub-
ject.

2 Gauge theories on noncommutative space

As explained in the introduction, in order to accommo-
date the gravitational interaction into the framework of
noncommutative geometry, following [65], it is meaning-
ful to recall how gauge theories are rephrased in it.

Let a scalar field, φ(X), where X consists the coordi-
nate system of the noncommutative space. The scalar
field transforms non-trivially under a local (infinitesi-
mal) gauge transformation as:

δφ(X) = ε(X)φ(X), (1)

where ε(X) is the coordinate-dependent parameter of
the transformation. Contrary to the scalar field, the
coordinates transform trivially under gauge transfor-
mation (as expected), therefore the product Xμφ(X)
transforms as:

δ(Xμφ(X)) = Xμε(X)φ(X). (2)

By observation and taking into consideration that the
underlying framework is the noncommutative one, it
is understood that the above transformation is not
a covariant one. In order to covariantize it, drawing
lessons from the conventional gauge theories, the covari-
ant coordinate is utilized (in analogy to the covariant
derivative), the definition of which is given through its
transformation:

δXμ = [ε(X), Xμ], (3)

which is obtained by the requirement of the quantity
δ(Xμφ(X)) to transform covariantly, that is

δ(Xμφ(X)) ≡ ε(X)Xμφ(X). (4)

From the above configuration, in order to relate the
noncommutative coordinate, Xμ, to the noncommuta-
tive covariant coordinate, Xμ, a field Aμ with transfor-
mation

δAμ(X) = −[Xμ, ε(X)] + [ε(X), Aμ(X)] (5)

has to be introduced, specifically according to the rela-
tion Xμ = Xμ + Aμ. It is clear from the latter that the
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introduced field Aμ admits the interpretation of the
noncommutative gauge connection. In turn, due to the
above interpretation of the Aμ, a noncommutative ver-
sion of a field strength tensor is corresponded in accor-
dance to the ordinary gauge theories (including an extra
term to its definition for reasons of covariance), which
is dependent on the kind of noncommutative space on
which the gauge theory is constructed.

A rather important feature of the noncommutative
gauge theories, in discordance to the conventional gauge
theories, is that the anticommutators of the various
operators related to the gauge algebra become relevant.
This feature is designated when one considers the com-
mutator of two elements which belong to the gauge alge-
bra, ε(X) = εa(X)Ta and φ(X) = φa(X)Ta:

[ε, φ] =
1
2
{
εa, φb

}
[Ta, Tb] +

1
2
[
εa, φb

]
{Ta, Tb},

(6)

where Ta denote the algebra generators. The quantities
εa and φb are functions of the spacetime coordinates,
which means that, in the commutative case, their cor-
responding commutator vanishes, and subsequently so
does the product of the last term in the above relation.
Nevertheless, in the noncommutative case, by defini-
tion, the coordinates do not commute with each other
and thus so do functions that depend on them. There-
fore, the aforementioned last term of the above relation
becomes non-vanishing giving the anticommutators an
essential role in the construction of gauge theories in the
noncommutative setting, contrary to the conventional
ones. This discrepancy gives rise to terms that originate
from the anticommutators, which, in principle, are not
members of the gauge algebra. Consequently the clo-
sure property of the initial algebra holds no more. One
way out is to extend the algebra perpetually including
all operators that pop from the anticommutators, with
this extension leading to the universal enveloping alge-
bra, which, although useful in other contexts (e.g., in
[31, 70, 91]), in ours it is not the appropriate way to
proceed. Another way out is to restrict the number of
the newly-added operators to a finite (minimum) num-
ber by choosing a specific representation, which is the
one preferred.

Now, let us briefly emphasize on the category of the
covariant noncommutative spaces on which we focus
[10, 92–97], which have the property that Lorentz
covariance is preserved [98–101]. Moreover, another
property of the noncommutative spaces is the preser-
vation of the isometries of the corresponding commu-
tative space. The noncommutative spaces forming this
special subclass are called fuzzy and the most typi-
cal example is the fuzzy 2-sphere [10] (see also [102,
103]) which shares the same isometry group, SO(3),
with its commutative analogue, i.e. the ordinary sphere.
The fuzzy sphere admits a construction through finite-
dimensional matrices, the size of which is interpreted
as the number of the quanta of the space. The coordi-
nates of the fuzzy sphere with N − 1 level of fuzziness
are N × N matrices which are multiples of the SU(2)

generators in the N−dimensional representations. The
aforementioned construction is deployed through the
truncation of the angular momentum by the introduc-
tion of a cut-off parameter N − 1 and therefore leaving
N2 independent functions. Thus, the above functions
may be represented by N × N matrices leading to a
noncommutative algebra of the sphere.

Attempting to generalize the above argument to the
four-dimensional case, i.e. the one that interests us, it is
seen that such a mapping of functions to matrices can-
not be achieved, as the number of independent func-
tions does not coincide with the square of some inte-
ger number. Therefore, the construction of the fuzzy 4-
sphere and field theories on it is a more subtle task. For
alternative constructions see [99] and referenced studies
in it (see also [104, 105]).

Overall, it has already become clear that, according
to our (and others’) perspective and approach, gauge
theories play an important role in the construction of
both particle physics models as well as gravitational
ones in the framework of noncommutativity. In the
ensuing, we will present constructions that are related
to both, starting with the particle physics side followed
by the gravitational one.

3 Fuzzy particle physics model

In this section we describe a fuzzy particle physics
model in which fuzziness is introduced through the
notion of extra dimensions. The latter are not sup-
posed to be in an arbitrary form but they rather con-
sist specific (extra-dimensional) manifolds, particularly
noncommutative analogues (fuzzy) of the well-defined
and well-studied coset spaces. Before we move on with
the discussion of the specific model, it is rather con-
siderate first to write down some information of the
backbone of the whole construction, that is the dimen-
sional reduction of a higher-dimensional gauge theory
with fuzzy extra dimensions, in the most general case,
in which the extra dimensions consist an arbitrary fuzzy
coset space.

3.1 Dimensional reduction of a higher-dimensional
theory with fuzzy extra dimensions

Suppose a higher-dimensional theory defined on the
spacetime M4 × (S/R)F of D = d + 4 dimensions,
where (S/R)F is a fuzzy coset space. Let this theory be
gauge invariant under the transformations of the group
G = U(P ), with generators T I and be described by the
following action of Yang–Mills type:

SYM =
1

4g2

∫
d4x kTr trGFMNFMN , (7)

where trG is the trace related to the generators of
the algebra of the gauge group G and kTr. Also,
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although the theory is higher-dimensional, the integra-
tion is written in such a way as it is performed on the
four-dimensional component. The correct dimensions
regarding the integration are restored by the presence
of the Tr which is effectively the integration operator
referring to the coordinates of the extra dimensions,
since they now are represented by matrices. Moreover,
k is a parameter related to the volume of the fuzzy
coset space (see [106] for the case of the fuzzy sphere)
and FMN is the field strength tensor of the gauge the-
ory with M , N = 0, . . . , D − 1. That means that the
tensor FMN consists of components which lie only on
the four-dimensional space, components that lie only
on the extra-dimensional one, as well as mixed com-
ponents of the two spaces, that is FMN = (Fμν , Fμb,
Faν , Fab), where μ, ν = 0, . . . 3 and a, b = 4, . . . D − 1.
Specifically, the mixed and fuzzy parts of the tensor are:

Fμa =∂μφa + [Aμ, φa] = Dμφa

Fab =[Xa, Ab] − [Xb, Aa] + [Aa, Ab] − Cc
baAac,

where φa stands for the covariant coordinate, that is
the noncommutative analogue of the covariant deriva-
tive (see Sect. 4 for a more detailed discussion). The
initial action (7), after taking into consideration the
above two expressions of the components of the field
strength tensor, takes the following form:

SYM =
∫

d4xTrtrG

(
k

4g2
F 2

μν +
k

2g2
(Dμφa)2 − V (φ)

)
,

(8)

where V (φ) is a function that involves the terms that
originate from the F 2

ab one:

V (φ) = − k

4g2
TrtrG

∑

ab

FabFab

= − k

4g2
TrtrG

(
[φa, φb][φ

a, φb]−4Cabcφaφbφc+2R−2φ2
)
.

(9)

Due to its expression, the above is identified as the
potential of the theory. The form in which the action
arrives after the above substitutions of the field strength
tensor according to the splitting we considered in its
components, (8), manifestly lets us naturally interpret
it as a four-dimensional action. The above interpreta-
tion is also possible at the level of the gauge trans-
formation; let λ(xμ, Xa) be an infinitesimal parame-
ter of a local transformation of the initial gauge group,
G = U(P ). It admits the interpretation of a local trans-
formation of another group on a gauge theory exclu-
sively on M4, if treated in the following way:

λ(xμ, Xa) = λI(xμ, Xa)T I = λh, I(xμ)T hT I ,
(10)

where, as mentioned already, T I are the (Hermitian)
generators of the gauge group U (P) of the initial

higher-dimensional theory and λI(xμ, Xa) are N × N
anti-Hermitian matrices, i.e. functions of the matrix-
realized coordinates. Since we are now dealing with
N × N antisymmetric matrices, λI(xμ, Xa), they can
be thought as an element of the U (N ) group and,
as such, they can be written down as decomposi-
tions on the corresponding generators, T h, as λI(xμ,
Xa) = λh, I(xμ)T h, where λh, I(xμ) being merely func-
tions of the four-dimensional coordinates identified as
the Kaluza–Klein modes of λI(xμ, Xa) and, they can
be further understood as a field that takes values in the
Lie algebra of the U(N) × U(P ) group, which is equiv-
alently the algebra of the U (NP) group. Also, under
same treatment, the gauge connection of the initial
gauge theory can be viewed from a four-dimensional
perspective as a four-dimensional one of the U (NP)
group. Last, the same applies on the scalars as well.

The above reduction, although straightforward and
rather simple, gives rise to a very important and anti-
intuitional feature (which can also be encountered in
more complicated ones), that is the gauge symmetry
of the four-dimensional theory is larger than that of
the initial, higher-dimensional one. In other words, one
may start with a higher-dimensional Abelian gauge the-
ory and end up with a non-Abelian in four dimensions.
Again from the above reduction, it is also understood
that the scalars belong to the adjoint representation
of the four-dimensional gauge group, as relics of the
initial gauge fields which are also in the correspond-
ing adjoint, fact that leads to the understanding that
they cannot trigger the electroweak symmetry break-
ing. This is a crucial reason why the above simple model
cannot be evolved into a more complicated and promis-
ing one and consequently, another more elaborate one
has to be sought.

Following the above consideration, an improved four-
dimensional model may be obtained by employing a
fuzzy version [40, 41, 107] of the CSDR [108]. Due to the
fuzziness, the fuzzy CSDR will enjoy the above welcome
feature that was noted above, that of the enlargement
of the gauge symmetry as the number of dimensions
drops to four, contrary to the conventional CSDR in
which this feature is absent. An important observation
is that in the fuzzy case choosing an Abelian gauge
theory in high dimensions one is led to non-Abelian
gauge symmetry in four dimensions. Another virtue the
fuzzy CSDR inherits from the fuzziness is that both the
higher-dimensional and the resulting four-dimensional
theories are renormalizable.

The matter of renormalizability was initially argued
in [40, 107] but an even more convincing argument came
after the whole problem was examined from another
perspective. In a few words, instead of beginning with
a higher-dimensional theory and performing a dimen-
sional reduction to approach a four-dimensional theory,
the starting point was overturned, in the sense that
one may begin with a renormalizable four-dimensional
gauge theory of SU(N) with scalars populating a mul-
tiplet in such a way that fuzzy extra dimensions form-
ing a fuzzy sphere can be developed dynamically [42].
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Such a theory can be interpreted as a six-dimensional
gauge theory since it develops non-trivial vacua, with
the geometrical and gauge symmetry determined by the
parameters of the initial Lagrangian. Also, the tower of
(massive) Kaluza–Klein modes that emerges is finite,
in consistency with the view of a compactified gauge
theory in higher dimensions. Briefly, the virtues of the
above model are, first, that, avoiding supersymmetry or
fine tuning, extra dimensions emerge dynamically due
to the fact that fuzzy spaces consist solutions of matrix
models. Second, the four-dimensional gauge group is
SU(n1) × SU(n2) × U(1) or SU(n), while gauge groups
consisting of more than two simple groups are not
observed in this kind of models. Third, the induction
of a magnetic flux occurs in a rather natural manner in
the case of vacua having non-simple gauge symmetry.

Subsequently, these nice features of the above mech-
anism suggest that it is worth attempting to accom-
modate particle physics models with phenomenological
orientation. To this end, chiral fermions are included
and relevant studies have shown that, without impos-
ing any additional constraints, best case scenario is
that of obtaining four-dimensional theories populating
bi-fundamental representations (mirror fermions) [44,
45]. Although having mirror fermions is not a killing
result for phenomenological compatibility [109], chiral
fermions are significantly preferred. Such an outcome
occurs after an additional mechanism is applied in the
above, specifically that of a Z3 orbifold projection of
an N = 4 supersymmetric SU(3N) gauge theory which
eventually leads to an N = 1 SU(N)3 gauge theory [46].
The case of N = 3 (trinification group) is of particular
interest (see [110–112]).

Let us see in some detail the above concepts through
a particle physics model in which fuzzy extra dimen-
sions are dynamically generated to form fuzzy spheres
and chiral fermions are involved due to the orbifold pro-
jection mechanism [46].

As mentioned earlier, let us consider an N = 4 Super-
symmetric Yang–Mills (SYM) theory in four dimen-
sions with gauge symmetry parametrized by SU(3N).
The particle spectrum consists of the gauge field, Aμ,
three complex scalars, φi, and four Majorana fermions
ψp all in the adjoint representation of the gauge group.
The orbifold projection is parametrized by the action of
a Z3 discrete group and is realized through its embed-
ding into the R-symmetry, that is SU(4)R. The choice
of the embedding is not unique and this choice deter-
mines the amount of the resulting sypersymmetry [113].
Here, the discrete group is considered to get embedded
into the SU(3) subgroup of the R-symmetry, a choice
which leads to N = 1 remnant supersymmetry, breaks
the gauge symmetry to SU(N) × SU(N) × SU(N) and
the only fields that make it to the resulting SYM theory
are the ones that are Z3 invariant. It should be noted
that the fermions reside in chiral representation of the
resulting group and come in three identical copies, that
is three chiral families.

At the level of the initial N SYM theory the F-part
of the scalar potential is:

VF (φ) =
1
4
Tr

(
[φi, φj ]†[φi, φj ]

)
(11)

and its form remains the same after the orbifold projec-
tion filters the spectrum. The D-part of the potential
is VD = 1

2D2 = 1
2DIDI , where DI = φ†

iT
Iφi with T I

the generators of the gauge group in chiral represen-
tations. Minimization of the total potential gives [φi,
φj ] = 0. However, the introduction of soft supersym-
metric breaking terms with scalar part which respects
the orbifold symmetry:

VSSB =
1
2

∑

i

m2
i φ

i†φi +
1
2

∑

i, j, k

hijkφiφjφk + h.c.,

(12)

contributes in such a way to the minimization of the
potential that leads to different kind of vacua. The
potential of the combination of all three contributions
is given in the following form:

V =
1
4
(F ij)

†
F ij + VD, (13)

for suitable parameters, where:

F ij = [φi, φj ] − iεijk(φk)
†
. (14)

The first term of the above potential is positive definite,
therefore its global minimum is obtained if the following
equations hold:

[φi, φj ] = iεijk(φk)
†
,

[(φi)
†
, (φj)

†
] = iεijkφk, φi(φi)

†
= R2, (15)

where (φi)† is the hermitian conjugate of φi and it holds
that [R2, φi] = 0. The above relations point towards
the fuzzy sphere defining relation, which becomes even
more transparent by considering the (untwisted) com-
plex scalar fields, φ̃i, which are defined as φi = Ωφi, for
Ω �= 1, Ω3 = 1, [Ω, φi] = 0, Ω† = Ω−1 and (φ̃i)

†
= φ̃i,

i.e. (φi)† = Ωφi.
To conclude, fuzzy extra dimensions equipped with

orbifold projection consist a valuable asset when it
comes to particle physics models attaching importance
to them in the aspects of chirality, renormalizability
and phenomenological viability.
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4 Noncommutative gravity

As mentioned in the introduction, gauge theories in
the noncommutative framework are employed for con-
structing both particle physics and gravitational mod-
els. Having reviewed the first part, from now on we will
examine the second one in two cases, that of three and
four dimensions.

4.1 Fuzzy gravity in three dimensions on the R
3
λ

space

First we review a matrix-realized description of a
gauge-theoretic construction of noncommutative grav-
ity in three dimensions. For that to occur, a three-
dimensional noncommutative space is required as a
background in order to accommodate the whole con-
struction. Therefore, we start our discussion with the
description of that three-dimensional space.

4.1.1 The R
3
λ space

The path of the description of the noncommutative
space that is used in this case passes through the fuzzy
sphere, which is a very fundamental and well-defined
fuzzy space that is also equipped with the property of
covariance [10, 114]. A glimpse at its properties has
already been given in the setup of the particle models
of the previous section as it had a very important role in
the corresponding construction as well. Moreover, the
definition of the fuzzy sphere is given by the commu-
tation relation the coordinates satisfy and the radius
constraint, that is:

[Xi, Xj ] = iλεijkXk,
3∑

i=1

XiXi = λ2j(j + 1) := r2.

(16)

The first relation is actually a rescaled version of the
algebra the angular momentum operators satisfy due
to the identification Xi = λJi, where λ fixes the dimen-
sions and Ji operators are in a unitary irreducible
(high) representation of SU(2). The second relation is a
rescaled version of the Casimir operator which is man-
ifestly interpreted as the radius constraint of the fuzzy
sphere. The above definition of the fuzzy sphere leads
smoothly to the definition of the space that is used
as background for the construction of the gauge the-
ory, namely R

3
λ [115–118], if the radius constraint is

switched off by considering unitary reducible represen-
tations for the generators. As known, a reducible rep-
resentation may be written in a block diagonal form
of irreducible representations, or to rephrase, a block
diagonal form of fuzzy spheres. This property of R

3
λ

gives rise to a very illustrative view, that is the visu-
alization of the above space as a foliation of the three-
dimensional Euclidean space by multiple fuzzy spheres
of all possible radii, according to the number of the
fuzziness level [119].

4.1.2 Gauge theory of three-dimensional gravity on R
3
λ

Now, having determined the background three-
dimensional space, a gravitational model can be real-
ized by considering the gauge theory of a suitable group
on it [120, 121].

The above methodology is a loan from the formula-
tion of three-dimensional GR as a Chern–Simons gauge
theory on the three-dimensional Minkowski spacetime
background. Specifically, the gauge group that suc-
cessfully fits in the above configuration is the isome-
try group of the background space, that is the three-
dimensional Poincaré group, ISO(1, 2) [64]. As noted
in the introduction, the above translation of GR to the
gauge-theoretic setting is achieved by considering the
first order formulation of gravity, that is the formulation
in which dynamics is described by the vielbein and the
spin connection instead of the metric. A very important
consideration is that the latter two dynamical quan-
tities are integrated in the gauge-theoretic setting as
gauge fields related to the translational and Lorentz
part of the Poincaré group, respectively.

Back in the noncommutative framework, the first
thing that has to be determined, as understood by
the above information, is the gauge group. Along the
lines of the commutative case, the one that is employed
is again the isometry group of the background space
R

3
λ, that is SO(4), which leads to the construction of a

non-Abelian noncommutative gauge theory. As pointed
out in Sect. 2, such theories complicate things as anti-
commutators become important and the way out is to
fix the representation and extend the group by those
operators that the anticommutators give. The resulting
gauge theory is that of the U(2) × U(2) and the cor-
responding generators are represented by 4 × 4 matri-
ces (for details but also for the manipulation of the
Lorentzian case see the original publication [120]).

The set of the eight generators of the resulting gauge
group is: {Pa, Ma, I, γ5}, where a = 1, 2, 3 and their
specific form is given after employing the Pauli matrices
of which the commutation and anticommutation rela-
tions are known and therefore the commutation and
anti-commutation relations of the generators are calcu-
lated straightforwardly to be:

[Pa, Pb]=iεabcMc, [Pa, Mb]=iεabcPc, [Ma, Mb]=iεabcMc,

{Pa, Pb}=
1

2
δabI, {Pa, Mb}=

1

2
δabγ5, {Ma, Mb} =

1

2
δabI,

[γ5, Pa] = [γ5, Ma] = 0, {γ5, Pa} = 2Ma, {γ5, Ma} = 2Pa.

(17)

In turn, having at hand the above relations, one may
proceed with the construction of the noncommutative
gauge theory by considering the covariant coordinate1:

Xμ = δμ
aXa + Aμ, (18)

1In the particle models setting it was denoted by φa

while now Xa is used.
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where Aμ is the gauge connection which expands on
the various generators as Aμ = AI

μ(X) ⊗ T I , where T I

denotes an arbitrary generator, therefore I = 1, . . . ,
8. Also, AI

μ are the gauge fields taking values in the
algebra of U(2) × U(2) but also they depend on the
matrix-represented coordinates of the underlying space,
that is why in the following decomposition of the gauge
connection:

(19)

Aμ(X) = eμ
a(X) ⊗ Pa + ωμ

a(X) ⊗ Ma

+ Aμ(X) ⊗ iI + Ãμ(X) ⊗ γ5

and therefore of the covariant coordinate:

(20)

Xμ = Xμ ⊗ iI + eμ
a(X) ⊗ Pa + ωμ

a(X)

⊗ Ma + Aμ(X) ⊗ iI + Ãμ(X) ⊗ γ5,

the tensor product is present. In a similar way, the
parameter of the gauge parameter, ε(X), expands on
the generators as an element of the gauge algebra:

(21)

ε(X) = ξa(X) ⊗ Pa + λa(X) ⊗ Ma

+ ε0(X) ⊗ iI + ε̃0(X) ⊗ γ5.

Having the necessary information at hand, the transfor-
mation rules of the various gauge fields are calculated
in a straightforward way, taking also into consideration
Eqs. (5) and (6):

δeμ
a = − i[Xμ + Aμ, ξa] +

i

2
{ξb, ωμc}εabc

+
i

2
{λb, eμc}εabc

+ i[ε0, eμ
a] +

[
λa, Ãμ

]
+ [ε̃0, ωμ

a],

δωμ
a = − i[Xμ + Aμ, λa]

+
i

2
{ξb, eμc}εabc +

i

2
{λb, ωμc}εabc

+ i[ε0, ωμ
a] +

[
ξa, Ãμ

]
+ [ε̃0, eμ

a],

δAμ = − i[Xμ + Aμ, ε0]

− i

4
[ξa, eμa] − i

4
[λa, ωμa] − i

[
ε̃0, Ãμ

]
,

δÃμ = − i[Xμ + Aμ, ε̃0] +
1
4
[ξa, ωμa]

+
1
4
[λa, eμa] + i

[
ε0, Ãμ

]
. (22)

Before we move on to the dynamics of the theory, it
is meaningful to make a small detour commenting on
the above transformations and what happens when a
commutative limit is considered. In this condition, the
two Abelian gauge fields introduced for reasons of non-
commutativity are taken out of the picture, the conven-
tional derivation is recovered [Xμ, f ] → −i∂μf and the
commutators vanish leading to:

δeμ
a = −∂μξa − εabc(−iξbωμc − iλbeμc) (23)

δωμ
a = −∂μλa − εabc(−iλbωμc − iξbeμc). (24)

The above results are identical to the ones obtained
in the conventional gauge-theoretic approach of three-
dimensional GR up to some rescalings of generators,
gauge fields and parameters in the case that a cos-
mological constant is present, therefore, switching off
noncommutativity leads to recovering the results of the
corresponding gauge-theoretic approach in the commu-
tative case.

Getting back in track, in order to propose an action,
the corresponding field strength (curvature) tensor of
the theory has to be written down. This is achieved
by considering the anticipated formula of the commu-
tator of the covariant coordinates but augmented by an
extra term, that is linear as the right hand side of the
commutation relation of the coordinates (16), the pres-
ence of which is necessary in order that it transforms
covariantly:

Rμν(X) = [Xμ, Xν ] − iλεμνρX ρ. (25)

The above tensor expands on the various generators of
the algebra as:

Rμν(X) =Tμν
a(X) ⊗ Pa + Rμν

a(X) ⊗ Ma

+ Fμν(X) ⊗ iI + F̃μν(X) ⊗ γ5. (26)

Relating the various relations and definitions, (20), (25)
and (26), the components of the curvature tensor are
obtained and the commutative limit leads to the corre-
sponding relations of the conventional gauge-theoretic
approach (see the detailed expressions and discussion
in Ref. [120]).

4.1.3 The action for a three-dimensional fuzzy gravity

To conclude the study of the three-dimensional case,
the action that is proposed is aligned to the ordinary
case, in which a Chern–Simons type is employed, that
is:

S0 =
1
g2

Tr
(

i

3
εμνρXμXνXρ − m2XμXμ

)
, (27)

which, following its variation, leads to the field equa-
tion:

[Xμ, Xν ] + 2im2εμνρX
ρ = 0. (28)

Variation gives the field equations which admit the
background space as a solution for 2m2 = −λ, as
expected. Introducing the gauge fields into the above
picture by replacing the coordinates with their covari-
ant counterparts, one ends up with:

S =
1
g2

Tr tr
(

i

3
εμνρXμXνXρ +

λ

2
XμX μ

)
, (29)
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in which Tr is effectively the integration operator coor-
dinates and tr acts on the generators. Taking into con-
sideration the non-vanishing traces tr(PaPb) = δab,
tr(MaMb) = δab and, finally, performing the variation
with respect to the various gauge fields, the field equa-
tions are obtained:

Tμν
a = 0, Rμν

a = 0, Fμν = 0, F̃μν = 0.
(30)

5 Fuzzy gravity in four dimensions

In this section a four-dimensional noncommutative
gravitational model as a (noncommutative) gauge the-
ory is constructed. Besides the fact that the four-
dimensional case is rather more interesting than the
three-dimensional one, the general setting and the
methodology that are encountered in the former will
be essentially an extension of those of the latter. In this
case too, the starting point is the determination of the
background space.

5.1 An approach to the fuzzy four-sphere

The background noncommutative space that has been
chosen to accommodate the construction of the gauge
theory is the four-dimensional version of the fuzzy
sphere, that is the fuzzy four-sphere, S4

F .2 In order to
find the definition of the space in this four-dimensional
case, it would be tempting to attempt a straightfor-
ward translation of the fuzzy two-sphere defining rela-
tions (commutation and radius) to the four dimensions.
Quickly recalling, the coordinates in the fuzzy sphere
case came from rescaling the angular momentum oper-
ators, i.e. the generators of the isometry group SO(3).
If we tried, in the four-dimensional case, to identify four
out of the ten generators of the corresponding isometry
group SO(6) to the coordinates, we would fall into a
dead end because there is no subalgebra that would be
nicely closing, or, in other words, the virtue the fuzzy
two-sphere had but the four-sphere does not is that of
covariance. However, covariance is an essential prop-
erty of the background fuzzy space, therefore either it
should be abandoned or find a way and restore covari-
ance. Selecting the second option, a way to achieve the
restoration of the covariance is to consider the coordi-
nates as a subset of a larger group in which the corre-
sponding subalgebra will close [95]. The minimal cost
one would pay to achieve that is to go to SO(6) [122,
123] with its generators obeying the following algebra:

[JAB , JCD] = i(δACJBD + δBDJAC − δBCJAD

− δADJBC). (31)

2In this case too, the signature of the space is Euclidean
but a construction for the Lorentzian case in which the fuzzy
de Sitter space, dS4

F , is employed is possible.

Adopting an SO(4) notation, after the introduction
of a length parameter, λ, the generators become:

Jμν =
1
�
Θμν , Jμ5 =

1
λ

X5,

Jμ6 =
λ

2�
Pμ, J56 =

1
2
h, (32)

where μ, ν = 1, . . . , 4, Xμ, Pμ and Θμν denote the
coordinates, momenta and noncommutativity tensor,
respectively, and h is an operator bearing information
of the radius constraint [123]. Taking these redefinitions
into consideration, the above commutation relation con-
sisting the algebra of SO(6) becomes:

[Xμ, Xν ]=i
λ2

�
Θμν , [Pμ, Pν ]=4i

�

λ2
Θμν [Pμ, h]=4i

�

λ2
Xμ,

[Xμ, Pν ] = i�δμνh, [Xμ, h] = i
λ2

�
Pμ. (33)

The first commutation relation in the above set of rela-
tions corresponds to the defining one of the background
fuzzy space, obviously closing into an SO(4) subalgebra
of the total SO(6), as aimed. The rest of the commuta-
tion relations that come from the decomposition of the
initial commutation relation of the SO(6) algebra are
the spacetime transformations:

[Θμν , Θρσ]
= i�(δμρΘνσ + δνσΘμρ − δνρΘμσ − δμσΘνρ),

(34)
[h, Θμν ] = 0,

= i�(δμρXν − δμνXρ), [Pμ, Θνρ] = i�(δμρPν − δμνPρ),
(35)

where the first one is the SO(4) subalgebra (four-
dimensional rotations) and the second one shows how
the coordinate vector transforms under these rotations,
that is as vectors, validating the covariance property in
a rather pronounced way.

5.2 On the gauge group

As noted throughout the text so far, when construct-
ing a noncommutative gauge theory, the anticommuta-
tors become important and, therefore, the initial alge-
bra of the gauge group, here the isometry group SO(5),
expands. For the sake of a finite enlargement of the
algebra, the representation of the generators gets fixed
and, furthermore, for a minimal one, that representa-
tion is chosen to be the four-dimensional one and, con-
sequently, the algebra of the gauge group extends to
SO(6)×U(1). The four-dimensional matrices represent-
ing the sixteen generators are given in terms of combi-
nations of the the (Euclidean) 4 × 4 gamma matrices
as:

Mab = − i

4
[Γa, Γb], Ka =

1
2
Γa,
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Pa = − i

2
ΓaΓ5, D = −1

2
Γ5, I4, (36)

which, satisfy the well-known anticommutation rela-
tion {Γa, Γb} = 2δabI4, where a, b = 1, ..., 4 and
Γ5 = Γ1Γ2Γ3Γ4. Therefore, one can now write down
a complete list of commutation and anticommutation
relations of all the generators:

[Ka, Kb] = iMab, [Pa, Pb] = iMab, [Pa, D] = iKa,
[Ka, Pb] = iδabD, [Ka, D] = −iPa, [D, Mab] = 0,
[Ka, Mbc] = i(δacKb − δabKc),

[Pa, Mbc] = i(δacPb − δabPc),

{Pa, Kb} = {Mab, D} = −
√

2
2

εabcdMcd,

[Mab, Mcd] = i(δacMbd + δbdMac − δbcMad − δadMbc),

{Mab, Mcd} =
1
8
(δacδbd − δbcδad)I4 −

√
2

4
εabcdD,

{Mab, Kc} =
√

2εabcdPd, {Mab, Pc} = −
√

2
4

εabcdKd,

{Ka, Kb} =
1
2
δabI4, {Pa, Pb} =

1
8
δabI4,

{Ka, D} = {Pa, D} = 0. (37)

Having determined the gauge group, the representation
and, therefore, the above relations, it is now possible
to move on with the construction of the corresponding
gauge theory.

5.3 Action and equations of motion

From here on, there are two equivalent ways to proceed,
the first one is to follow the straightforward methodol-
ogy, that is the introduction of the covariant coordinate
and the gauge fields, the calculation of the field strength
tensor and then the determination of an action. Here,
we choose the alternative route, in which an initial topo-
logical action is proposed and the gauge fields, covariant
coordinate and field strength tensor are involved as a
consequence of the introduction of dynamics. According
to the above, the starting action is3:

S = Tr
(
[Xμ, Xν ] − κ2Θμν

)(
[Xρ, Xσ] − κ2Θρσ

)
εμνρσ,

(38)

with the following field equations:

(39)

εμνρσ
[
Xν , [Xρ, Xσ] − κ2Θρσ

]

= 0, εμνρσ
(
[Xρ, Xσ] − κ2Θρσ

)
= 0,

which are obtained after varying with respect to X and
Θ. From the second equation, in case κ2 = iλ2

�
, the

3Despite the first term of this action, Eq. (38), Tr[Xμ,
Xν ][Xρ, Xσ]εμνρσ vanishes identically, it remains present for
later use.

defining relation of noncommutativity of the space is
recovered and, therefore, the first equation is automat-
ically satisfied. Dynamics to the above action are intro-
duced after the consideration of gauge fields as fluctu-
ations of X and Θ:

S =Trtrεμνρσ
(
[Xμ + Aμ, Xν + Aν ] − κ2(Θμν + Bμν)

)

·
(
[Xρ + Aρ, Xσ + Aσ] − κ2(Θρσ + Bρσ)

)
, (40)

where tr denotes the trace over the generators of the
algebra of the gauge group. The above expression of
the action can resemble formally the (ordinary) four-
dimensional Chern–Simons action, after the following
identifications:

• The covariant coordinate: Xμ ≡ Xμ + Aμ, where Aμ

is identified as the gauge connection:

Aμ = e a
μ ⊗Pa+ω ab

μ ⊗Mab+b a
μ ⊗Ka+ãμ⊗D+aμ⊗I4

• The covariant noncommutative tensor Θ̂μν ≡ Θμν +
Bμν , where Bμν is a 2-form field

• The (covariant) field strength tensor of the theory:
Rμν ≡ [Xμ, Xν ]−κ2Θ̂μν , which, as an element of the
gauge algebra, can be decomposed in various compo-
nent tensors4:

(41)

Rμν(X) = R̃μν
a ⊗Pa +Rμν

ab ⊗Mab +Rμν
a

⊗ Ka + R̃μν ⊗ D + Rμν ⊗ I4.

In turn, using κ2 = iλ2

�
, the expression of the action

becomes:

S = Trtr
(

[Xμ, Xν ] − iλ2

�
Θ̂μν

)

(
[Xρ, Xσ] − iλ2

�
Θ̂ρσ

)
εμνρσ := TrtrRμνRρσεμνρσ

(42)

and variations lead once again to two kinds of field
equations:

εμνρσRρσ = 0, εμνρσ[Xν , Rρσ] = 0, (43)

which are understood as the vanishing of the field
strength tensor and a noncommutative analogue of the
Bianchi identity, respectively.

5.4 Symmetry breaking of the action

The above action of Chern–Simons type (42), is invari-
ant under SO(6) × U(1) gauge symmetry which is a
rather big amount of symmetry as a result of the

4The detailed expressions of the components of the field
strength tensors as well as the transformations of the gauge
fields can be found in the original papers [122, 123].
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enlargement of the group. For reasons of compatibility
of the two frameworks (commutative-noncommutative),
especially when the commutative limit is considered,
the above gauge group can break down to a smaller one
either by imposing certain constraints [122] or by intro-
ducing an auxiliary gauge field and letting it acquire
a vev [123]. According to the second recipe, the action
(42) becomes:

(44)

S = TrtrGλΦ(X)RμνRρσεμνρσ

+ η
(
Φ(X)2 − λ−2IN ⊗ I4

)
,

where η is a Lagrange multiplier and λ is a parameter
of dimension of length. On-shell it holds that:

Φ2(X) = λ−2
IN ⊗ I4, (45)

which means that the initial action remains effectively
untouched. Now, let the scalar field, Φ, consist exclu-
sively of the symmetric component, therefore it is
expressed as:

Φ(X) = φ̃a(X) ⊗ Pa + φa(X) ⊗ Ka

+ φ(X) ⊗ I4 + φ̃(X) ⊗ D.

The symmetry breaking takes place when the scalar
field is gauge-fixed along the direction of the D gener-
ator, that is:

Φ(X) = φ̃(X) ⊗ D|φ̃=−2λ−1= −2λ−1IN ⊗ D.

Putting the above value of the scalar field into the
action (44) and perform the trace over the generators,
the action becomes:

Sbr = Tr

(√
2

4
εabcdRμν

abRρσ
cd − 4RμνR̃ρσ

)

εμνρσ.

(46)

The consideration that the scalar field consists only of
the symmetric part of the algebra of SO(6) and imply-
ing at the same time that it is not charged under the
U (1), the gauge symmetry of the resulting action is the
SO(4) × U(1). Specifically, the generators that remain
unbroken in the above mechanism are: a) Pa which leads
to the torsionless condition which, in turn results to
relation between the gauge fields ω, e and ã, b) Ka

which lead to the condition Rμν
a = 0, which in turn

implies a relation of proportionality between e, b gauge
fields and c) D which requires ãμ = 0 [124]. There-
fore, the remnant symmetry of the spontaneously bro-
ken theory is SO(4) × U(1) and the independent fields
are e and a. Last, the resulting expression of the compo-
nent tensor Rμν

ab, after taking into consideration the
following results of the conditions from the breaking
ãμ = 0 and bμ

a = i
2eμ

a, is:

Rμν
ab =

[
Xμ + aμ, ων

ab
]
−

[
Xν + aν , ωμ

ab
]

+ i
{
ωμ

ac, ω b
ν c

}
− i

{
ωμ

bc, ωνc
a
}

(47)

+
3i

8
{
eμ

a, eν
b
}

− iλ2

�
Bμν

ab. (48)

6 A quick glimpse of the metric

Working with the (noncommutative) gauge-theoretic
approach to gravity, the notion of the metric is not
explicitly present. Instead, the quantity that relates
the above with the geometric approach is the vier-
bein which has been introduced in the construction as
a gauge field related to the generators of the transla-
tions. In the conventional framework, the above two are
related through the well-known “square root of the met-
ric” equation which, according to Ref. [124], in the non-
commutative regime and specifically in the star-product
realization, it reads:

gμν = e a
μ � eνa,

where, in the same source, it is argued that the above
relation leads to theories of complex gravity. In order
to translate the above to the matrix realization of non-
commutativity which is of our interest, we consider the
following version of the above relation:

gμν =(e a
μ ⊗ Pa)(e b

ν ⊗ Pb) =
1
2
e a
μe b

ν ⊗ iMab

+
1
2
e a
μe b

ν ⊗ 1
8
δabI4 ≡ Gμν + iBμν , (49)

where the commutation and anticommutation relations
of the P generators as found in Eq. (37) have been
used. By inspection, both real and imaginary parts are
encountered, therefore it can be deduced that the met-
ric is complex in this case as well. Also, considering the
gμν to be hermitian leads to the understanding that Gμν

is symmetric while the Bμν is antisymmetric under the
exchange of the spacetime indices μ, ν. Therefore, com-
paring to the above expression of the metric, (49), the
following identification is achieved:

Gμν =
1
16

e a
μeνa ⊗ I4 =

1
32

{e a
μ , eνa} ⊗ I4, (50)

Bμν =
1
2
e a
μe b

ν ⊗ Mab =
1
4
[e a

μ , e b
ν ] ⊗ Mab. (51)

It has been routed for future projects to delve more into
the above observations regarding the metric.
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7 Noncommutative gravity on fuzzy
3-sphere

Although the three-dimensional case was examined ear-
lier, here is the right place to examine the case of a non-
commutative gravitational model in three-dimensions
in case the background space in not R

3
λ like in the pre-

vious three-dimensional case but the fuzzy 3-sphere,
S3

F . It is examined now because the methodology of
building this version of the fuzzy 3-sphere is a lower-
dimensional analogue of the construction of the fuzzy
four-sphere as it got realized in the previous section.
Like the four-dimensional fuzzy sphere, this space is
also both of Lie and Moyal type since the noncommu-
tative tensor is both constant and at the same time
a generator of the isometry group. So, following the
same methodology as in [123], starting from the isom-
etry group SO(4) an extension is required for reasons
of covariance, therefore the SO(5) is eventually used.
Then, a 2-step procedure is followed in which, in the
first step, the space is manifested as an embedding in
the four-dimensional Euclidean spacetime, while in the
second step in the three-dimensional one. The result-
ing space will be a realization of the fuzzy 3-sphere and
will finally be employed for the construction of a gravity
model on it.

7.1 First step: SO(5) ⊃ SO(4)

We start with the SO(5) group which has 10 hermitian
generators, JMN , where M , N = 0, . . . , 4 which obey:

(52)

[JMN , JPΣ] = i (δMP JNΣ + δNΣJMP − δNP JMΣ

− δMΣJNP ) ,

where δMN is the 5-dim Kronecker delta. The SO(5) ⊃
SO(4) decomposition yields:

• For M = m, N = m, P = r, Σ = s: [Jmn, Jrs] =
i(δmrJns + δnsJmr − δnrJms − δmsJnr).

• For M = m, N = 4, P = r, Σ = 4: [Jm4, Jn4] =
iJmn.

• For M = m, N = n, P = r, Σ = 4: [Jmn, Jr4] =
i(δmrJn4 − δnrJm4),

where m, n, r, s = 0, . . . , 3. Setting Θmn ≡ �Jmn,
Xm ≡ λJm4, where λ is a parameter of dimension of
length, the above commutation relations become:

[Θmn, Θrs] = i�(δmrΘns + δnsΘmr − δnrΘms − δmsΘnr),

[Θmn, Xr] = i�(δmrXn − δnrXm), [Xm, Xn] = i
λ2

�
Θmn.

(53)

Also, along the lines of the fuzzy 2-sphere, the
quadratic Casimir element is related to the radius con-
straint:

C
SO(5)
2 = −1

2
TrJ2 =

1

2
JMNJMN =

1

2
JmnJmn + Jm4Jm4 ⇒

XmXm = λ2
(
C

SO(5)
2 − C

SO(4)
2

)
≡ r2,

(54)

where r2 ≡ λ2L, and where it has been assumed that
the SO(5) and SO(4)generators are of the same spin
representation, L.

7.2 Second step: SO(4) ⊃ SO(3)

From the first equation of (53), if μ, ν, ρ, σ = 0, . . . , 2:

• For m = μ, n = ν, r = ρ, s = σ, where μ, ν, ρ, σ = 0,
. . . , 2:

[Θμν , Θρσ] = i�(δμρΘνσ + δνσΘμρ − δνρΘμσ − δμσΘνρ).

• For m = μ, n = ν, r = ρ, s = 3: [Θμν , Θρ3] =
i�(δμρΘν3 − δνρΘμ3).

• For m = μ, n = 3, r = ρ, s = 3: [Θμ3, Θρ3] = i�Θμρ.

From the second equation of (53):

• For m = μ, n = ν, r = ρ: [Θμν , Xρ] =
i�(δμρXν − δνρXμ).

• For m = μ, n = ν, r = 3: [Θμν , X3] = 0.
• For m = μ, n = 3, r = 3: [Θμ3, X3] = −i�Xμ.
• For m = μ, n = 3, r = ρ: [Θμ3, Xρ] = i�δμρX3.

From the third equation of (53):

• For m = μ, n = ν: [Xμ, Xν ] = iλ2

�
Θμν .

• For m = μ, n = 3: [Xμ, X3] = iλ2

�
Θμ3.

Setting Pμ ≡ 1
λΘμ3, h ≡ 1

λX3, the commutation rela-
tions regarding all the operators Θμν , Xμ, Pμ, h are:

[Θμν , Θρσ] = i�(δμρΘνσ + δνσΘμρ − δνρΘμσ − δμσΘνρ),

[Pμ, Pν ] = i
�

λ2
Θμν , [Xμ, Xν ] = i

λ2

�
Θμν ,

[Pμ, h] = −i
�

λ2
Xμ, [Xμ, h] = i

λ2

�
Pμ,

[Θμν , Pρ] = i�(δμρPν − δνρPμ),

[Θμν , Xρ] = i�(δμρXν − δνρXμ),

[Pμ, Xν ] = i�δμνh, [Θμν , h] = 0. (55)

The embedding relation, (54), in SO(3)notation,
becomes:
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XmXm =r2 ⇒ XμXμ + X3X
3 = r2 ⇒ h

= ±
√

1
λ2

(XμXμ − r2), (56)

where just like in the case of the fuzzy 4-sphere, h is
an operator related to the radius constraint. Also, it
is worth noting that in the limit where h → 0, a new
realization of the fuzzy 2-sphere, S2

F emerges.

7.3 Determination of the action

This noncommutative space, as a fuzzy version of the
3-sphere, has its isometries parametrized by the SO(4)
group, therefore the construction of the corresponding
noncommutative gauge theory will coincide to the one
presented above in the R

3
λ case. So, according to the

results of Sect. 4, the minimum expansion of this group,
in order that the resulting operators of the anticommu-
tators to be contained, is again U(2)×U(2) which con-
sists of the same set of generators satisfying the same
algebra as it is written in (17). The difference between
the two cases of S3

F and R
3
λ emerges when consider-

ing the action. Although, in this case too, an action
of three-dimensional Chern–Simons type is used, com-
pared to (27), the second term that is related to the
kind of noncommutativity is different:

S = Tr
[
εμνρ

(
i

3
XμXνXρ + κ2{Xμ, Θνρ}

)]
(57)

Variation of the above action will lead to the corre-
sponding field equations. It is expected that our back-
ground space should satisfy the derived equations. We
consider that, in principle, X and Θ are independent
fields. Variation with respect to Θ and X respectively
gives:

εμνρXμ = 0, εμνρ
(
[Xμ, Xν ] − 2iκ2Θμν

)
= 0.

(58)

Despite the second field equation is satisfied by the S3
F

when κ2 = λ2

4�
, meaning that the background space is

indeed a solution, the first one, Xμ = 0, is effectively
a trivialization. If we move on to examine the case in
which gauge fields are introduced as fluctuations, set-
ting κ2 = λ2

4�
, introducing a trace over the gauge algebra

and making use of similar definitions as the ones above
Eq. (41), the action given in Eq. (57) will become:

S = Trtr
[
εμνρσ

(
i

6
XμRνρ +

λ2

4�
{Xμ, Θ̂νρ}

)]

(59)

and, in turn, will give the following field equations:

εμνρXμ = 0, εμνρRμν = 0. (60)

Again, the second equation is the vanishing of the field
strength tensor, Rμν = [Xμ, Xν ]− iλ2

2�
Θ̂μν , which would

be an acceptable field equation, but the first one trivi-
alizes the model.

Summing up, the above construction of a three-
dimensional noncommutative gravity on a fuzzy 3-
sphere has a lot in common with the one constructed
in Sect. 3 on the R

3
λ space. Nevertheless, there are

some differences in the two gauge theories that become
manifest when the kind of space manifestly enters
in the calculations. The action is again of three-
dimensional Chern–Simons type, but involves the Θ
operator instead of only the X , (57). This consideration
led to the field equations of Eq. (60), which, due to the
first one, imply that no interesting physical conclusions
are achieved by this model. Maybe the employment of
an alternative action would produce more interesting
results, leaving this task for a future study.

8 Unification of conventional and fuzzy
four-dimensional gravity with gauge
interactions

As it has been already discussed in the introduc-
tion there exists a gauge theoretic construction of GR
[52–64] in addition to the geometric one, namely the
description of GR as a gauge theory of the Lorentz
group with the spin connection as the corresponding
gauge field which would enter in the action through the
corresponding field strength. Usually the dimension of
the tangent space is taken to be equal to the dimen-
sion of the curved manifold. However the dimension of
the tangent group is not necessarily the same as the
dimension of the manifold [125].

In Ref. [126] (see also [127]) the authors have consid-
ered higher-dimensional tangent spaces in four dimen-
sional space-time and managed in this way to achieve
unification of gauge interactions with gravity. The geo-
metric unification of gravity and gauge interactions is
realized by writing the action of the full theory in terms
only of the curvature invariants of the tangent group,
which contain the Yang–Mills actions corresponding to
the gauge groups describing in this way together the
GR and the internal GUT in a unified manner. The
best model found so far that unifies gravity and a chiral
GUT is based on SO(1, 13) in a 14-dimensional tangent
space.

In order to make clear the specific model let us con-
sider the decomposition of SO(14) under the maximal
subgroup:

SO(14) ⊃ SU(2) × SU(2) × SO(10),

where the compact isomorphic image of SO(1, 3),
SO(4) = SU(2) × SU(2) is used for convenience. The
decomposition of the adjoint representation under the
above subgroups is given by:
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91 = (3, 1, 1) = (1, 3, 1) + (1, 1, 45) + (2, 2, 10)

and of the spinor by:

64 = (2, 1, 16) + (1, 2, 1̄6).

Noting that the (2, 1), (1, 2) under SU(2) × SU(2)
are the L, R handed fermions respectively, one finds
that the spinor of SO(1, 13) describes two chiral 16L

fermionic families (since the 1̄6R = 16L). Without going
further in the analysis the result is that it is indeed pos-
sible to achieve unification of GR with internal symme-
tries expressed as an SO(10) GUT in this case and the
number of families will be even, if more 64 are added.
In Ref. [126] in their analysis preferred to make heavy
one of the families by suitable spontaneous symmetry
breaking.

Let us first note that the above analysis can be
extended using the SO(18) and then consider the
decompositions under the following maximal sub-
groups:

SO(18) ⊃ SO(8) × SO(10)

and then

SO(8) ⊃ SU(2) × SP (4) and SP(4) ⊃ SU(2) × SU(2).

In turn choosing one SU(2) from the SO(8) decomposi-
tion and another from the Sp(4) decomposition to form
the gauging of the Lorentz group that produces the GR,
one can obtain again SO(10) unification with 4 families
from the spinor, 256 of SO(18).

A similar procedure can be applied starting with
SO(22) and the decompositions under the following
maximal subgroups:

SO(22) ⊃ SO(12) × SO(10)

with the decomposition of the adjoint:

231 = (1, 45) + (66, 1) + (12, 10)

and then:

SO(12) ⊃ SU(2) × SU(2) × SU(2),

with decomposition of the adjoint:

66 = (3, 1, 1) + (1, 3, 1) + (1, 1,

3) + (3, 3, 3) + (5, 3, 1) + (5, 1, 3)

and of the spinor:

1024 = (32, 16) + (32′, 1̄6).

Then choosing the last two SU(2)s of the above decom-
position to be gauged and produce GR, under which
the decomposition of the spinors is:

32 =(1, 4, 1) + (3, 2, 3) + (5, 2, 1)

32′ =(1, 1, 4) + (3, 3, 2) + (5, 1, 2)

one can find that from the spinor of of SO(22), 1024 chi-
ral 16L are obtained but with a multiplicity 10, which
is far too high to become realistic and can be excluded
on this basis.

With the above procedure considered as a possible
way to unify gravity with gauge internal interactions,
we naturally tried to extend it in our four-dimensional
construction of fuzzy gravity in which we had to enlarge
the tangent space to SO(6) with the SO(4) taken as
the maximal subgroup of SO(5), which in turn was the
maximal subgroup of SO(6), i.e. the SO(4) was taken
from the following chain of maximal subgroups:

SO(6) ⊃ SO(5) ⊃ SO(4). (61)

In turn the gauging procedure to construct fuzzy grav-
ity led us to consider the SO(6) × U(1) as the appro-
priate gauge group. A possible way to proceed in the
unification of fuzzy gravity with internal gauge symme-
tries, as in the previous examples, would be to consider
the SO(16) as the unifying group. Then the taking the
the maximal subgroups

SO(16) ⊃ SO(6) × SO(10)

under which the adjoint is decomposed as:

120 = (15, 1) + (1, 45) + (6, 10)

and the spinor as:

128 = (4, 16) + (4̄, 1̄6)

we could consider in the gauging of SO(6) × U(1) to
identify e.g. the U (1) with the one resulting from the
maximal decomposition of

SO(10) ⊃ SU(5) × U(1)

with decomposition of the adjoint as:

45 = 1(0) + 10(4) + 1̄0(−4) + 24(0).

The problem arises from the fact that according to the
decomposition chain (61) we have that the spinor (anti-
spinor) of SO(6) decomposes as follows:

SO(6) ⊃ SO(5) ⊃ SO(4) = SU(2) × SU(2)
4 = 4 = (2, 1) + (1, 2),

which means that from the decomposition of the spinor
128 of SO(16) we obtain:

SO(16) ⊃ SO(6) × SO(10),
128 = (4, 16) + (4̄, 1̄6),
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which in turn under SO(4) = SU(2) × SU(2) becomes:

SO(16) ⊃ SU(2) × SU(2) × SO(10)
128 = ([(2, 1) + (1, 2)], 16) + ([(2, 1) + (1, 2)], 1̄6),

which unfortunately is not a chiral theory. It seems that
this is a general feature of our construction, which orig-
inates from the chosen chain (3) in our construction.
Therefore, this very interesting way of unifying four-
dimensional gravity and internal interactions of parti-
cle physics does not work in the case of the constructed
four-dimensional fuzzy gravity.

9 Conclusions

In this review, we presented a panoramic view of the
studies on the physical perspective of ours on non-
commutative geometry, which have been carried out
by various collaborators over the years, updated by
meaningful comments and extensions. First, we pre-
sented the general approach on how gauge theories
are formulated in the noncommutative setting, then,
a particle physics model in which noncommutativity
becomes manifest through fuzzy extra dimensions and,
last, gravitational models in three and four dimensions
constructed on background fuzzy spaces as gauge theo-
ries. At the end, an attempt of unification between the
gravity and GUTs was made, which although successful
in the commutative case, it failed to result to a fruitful
outcome in the noncommutative (fuzzy) one. Overall,
intertwining noncommutativity with physics consists a
very promising initiative leading to interesting features
and models, as in the quantum gravity realm, as in par-
ticle physics and extra dimensions.
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