
Eur. Phys. J. Spec. Top. (2023) 232:375–383
https://doi.org/10.1140/epjs/s11734-023-00792-x

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Instabilities and pattern formation in viscoelastic fluids
Franz-Theo Schön1,2,a and Michael Bestehorn2,b

1 Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology, Siemens-Halske-Ring 15a,
Cottbus 03046, Brandenburg, Germany

2 Institute of Physics, Brandenburg University of Technology, Erich-Weinert Straße 1, Cottbus 03046, Brandenburg,
Germany

Received 11 August 2022 / Accepted 30 January 2023 / Published online 8 March 2023
© The Author(s) 2023

Abstract Instabilities and pattern formation in viscous fluids have been a major topic of non-linear fluid
dynamics for several decades. The study of pattern formation in viscoelastic thin films offers the opportunity
to find new fascinating structures that cannot be observed in viscous fluids. Rayleigh–Taylor and Faraday
instabilities, such as the resulting patterns in thin films of viscoelastic fluids, are investigated. We use
the long-wave approximation and a Karman–Pohlhausen approach to simplify the mass and momentum
equations. The viscoelastic stress tensor is calculated applying the linear Maxwell model. Conditions for
the Faraday instability have been found using Floquet’s theorem. It is shown that viscoelastic films can
exhibit harmonic resonance under external vibration. Moreover, a simulation of the non-linear problem
in 2D and 3D is conducted with a finite difference method. Unstable oscillating Rayleigh–Taylor modes
occur in the 2D numerical solution. Furthermore, we find that the wavenumber changes with the relaxation
time of the fluid. Faraday patterns in viscous films emerge as regular structures of the surface, like squares
or hexagons. Numerical simulations of the viscoelastic fluid also show regular structures. However, they
collapse into a chaotic stripe-like pattern after a certain time.

1 Introduction

This paper discusses instabilities in the case of a
viscoelastic fluid. A pure viscous (Newtonian) fluid
exposed to external stress converts all the stress energy
into heat. A viscoelastic fluid on the other hand is able
to store a part of the energy. To model this behavior,
we choose the linear Maxwell fluid.

One of the instabilities we want to discuss is the
Rayleigh–Taylor instability (RTI). RTI appears if a
more dense liquid is located above (below) a less dense
one and a volume force pointing downward (upward)
exists. Such a constellation is unstable and any small
disturbance of the flat interface between the two liq-
uids will grow exponentially in time. The instabil-
ity is named after Taylor [1] and Strutt, 3rd Baron
Rayleigh [2]. The Rayleigh–Taylor instability appears
quite often, from the structures which are formed by a
collapsing star to the patterns in the billows of cigarette
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smoke. RTI of a Newtonian two-layer system is studied
in [3].

RTI of viscoelastic drops is examined in [4] using the
Oldroyd-B fluid model. Reference [5] discusses gravity
and Rayleigh–Taylor waves with a Jeffrey fluid model.
In Ref. [6], the linear stability analysis is applied on
a Maxwell fluid. Two Maxwell fluid layers are investi-
gated in Ref. [7] in context of tectonics in the upper
mantel, while Ref. [8] assumes a Maxwell fluid over a
Newtonian fluid to describe large-scale processes in the
lithosphere. RTI of linear viscoelastic fluids is investi-
gated by Ref. [9] through a displacement field which
is applied to the stress tensor. Linear and weakly non-
linear results are presented.

We shall also consider the Faraday instability, first
studied by and named after Faraday [10]. The Faraday
instability is caused by an external vertical vibration.
The surface of the fluid starts oscillating after some
time if a critical amplitude is exceeded. Depending on
the vibration amplitude and frequencies, the surface of
a vibrating fluid is organized in regular structures like
triangles, rectangles, or hexagons. Stability analysis of
Faraday waves on viscoelastic fluids is discussed in Ref.
[11]. Experimental results of vibrating viscoelastic flu-
ids are shown in Ref. [12, 13]. Numerical investigations
of Newtonian Faraday instability using a phase field
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model one can find in [14]. Reference [15] studies the
stability of a viscous fluid layer covered with an elas-
tic polymer film under external vibration by usage of
Floquet’s theorem.

A combination of Faraday and Rayleigh–Taylor
instability is studied in [16]. The falling of viscoelas-
tic films down an inclined plane is investigated through
long-wave approximation, linear stability analysis, and
weakly non-linear approaches by [17].

2 Governing equations

Using the linear Maxwell fluid, we have two parame-
ters for the description of the viscoelastic behavior. The
relation between the stress tensor σ̄ and the shear rate
tensor D̄ is given by [18]

Λ∂tσ̄ + σ̄ = 2ηD̄ (1)

where η and Λ are the dynamic viscosity and the relax-
ation time of the fluid. If Λ = 0, Eq. (1) constitutes
the inner stress of the Newtonian fluid. The ratio η/Λ
is equal to Young’s modulus E , so we can find another
special case. For η → ∞ and Λ → ∞, but η/Λ = const.,
the linear Maxwell fluid is equivalent to the elastic solid.
We describe conservation of mass and momentum with
the incompressible Navier–Stokes equations

∂t�v + (�v · ∇)�v =
1
ρ0

∇ · σ̄ − 1
ρ0

∇p + �g (2)

∇ · �v = 0. (3)

A two-dimensional sketch of our system is shown in
Fig. 1. At z = 0, the fluid is in contact with the solid
substrate and no fluid movement is possible

�v = 0. (4)

On the other hand, the boundary at z = h(x, y, t) is
assumed to be a free surface and the tangential stress
must disappear. Thus

t̂ · σ̄ · n̂ = 0. (5)

The normal stress balance on the free surface reads

n̂ · σ̄ · n̂ = p0 − p − γK. (6)

Here, p0 is the pressure of the environment, p the fluid
pressure under the surface, γ the surface tension, and K
the curvature. The free surface is defined by a function
h(x , y , t). This function gives the fluid depth at every
location and time and its temporal evolution is ruled
by the kinematic condition

∂th = vz − vx∂xh − vy∂yh. (7)

In lateral directions, we assume periodic boundaries
with x ∈ [0, L] and y ∈ [0, L].

Equation (1) can be simplified by assuming a vis-
coelastic force field

�F = ∇ · σ̄, (8)

which leads with the use of Eq. (3) to

Λ∂t
�F + �F = ηΔ�v. (9)

One characteristic time scale of the system is the diffu-
sion time

τ =
d2ρ

η
=

d2

ν
, (10)

where ν is the kinematic viscosity. We introduce the
dimensionless quantities (bearing tildes)

p̃ =
d2

ν2ρ0
p, �̃v =

τ

d
�v, Λ̃ =

Λ
τ

, �̃F = ητd�F . (11)

Applying long-wave approximation [19] and the Kar-
man–Pohlhausen method [20], our system (leaving all
tildes) simplifies to (see Appendix A)

6

5

[∂�q

∂t
+ ∇2 · Q̄ − 1

7

�q(∇2 · �q)

h

]
= �Fh + Gh∇2h + Γh∇2(Δ2h)

(12a)

∂th(x, y, t) = −∇2 · �q (12b)

Λ∂t
�F + �F =

−3�q
h3

(12c)

with Qij = 9
7

qiqj
h . A similar approximation of a thin

film is also applied by Ref. [21].
The system variables are the flow rate �q = (qx, qy)T ,

force �F = (Fx, Fy)T and the height h(x , y , t). Here,
the operator ∇2 = (∂x, ∂y)T . Note that all dependent
variables are now 2D instead of the original 3D fields. In
addition to Λ, two new parameters appear, the dimen-
sionless surface tension

Γ =
γd

ν2ρ0
(13)

and the Galileo number G :

G =
gd3

ν2
. (14)

When we apply harmonic oscillations, the Galileo num-
ber becomes time-dependent and reads

G(t) =
gd3

ν2
(1 + a cos(ωt)). (15)
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Fig. 1 A linear Maxwell
Fluid film of mean depth
d . The fluid has a viscosity
η, a density ρ, and a
relaxation time Λ. The
boundary between the
environment and the fluid is
located at z = h(x, y, t).
The surface tension of the
interface is γ

Oscillations are characterized by their frequency ω
and amplitude a. Their dimensional counterparts are
notated with Ω = ω/τ and A = ga/Ω2.

3 Linear stability analysis

3.1 Rayleigh–Taylor instability

First, we investigate the instability of Rayleigh–Taylor
waves. Due to isotropy in the horizontal plane, it is
sufficient to examine the 2D case

q(x, t) =ueλt+ikx, Fx(x, t) = feλt+ikx,

h(x, t) = 1 + ηeλt+ikx. (16)

After linearizing with respect to the small amplitudes
u, f , and η, the resulting eigenvalue problem yields the
characteristic equation

Λλ3
+ λ2

+
5

6

[
3 + Λk2

(
G + Γk2

)]
λ +

5

6
k2

[
G + Γk2

]
= 0.

(17)

The most dangerous mode has the growth rate
max(�(λ)). The system is unstable if max(�(λ)) > 0.
Only with a negative Galileo number, an instability can
be observed. The dependency of max(�(λ)) from k can
be understand as dispersion relation. We notice that
the growth rate has a maximum in k , which is indepen-
dent of Λ. With increasing Λ, the maximum growth rate
increases stagnating. A destabilizing effect of relaxation
time was also found by Ref. [22, 23].

An increase of the surface tension Γ leads to a
decrease of the fastest growing wavenumber in the
unstable RTI domain. A decrease of G shifts the unsta-
ble domain to the short-wave region of the dispersion
spectrum. In Fig. 2, we show dispersion relations for
varying values of Λ. The scaling parameters are cho-
sen Γ = −G = 1, therefore equal forces from surface
tension and gravity. They are equivalent to a fluid with
ρ0 = 999 kg/m3, γ = 0.07 N/m, ν = 4.4·10−4 m2/s and
d = 2.6 mm. These parameters can be achieved, e.g.,
by a viscous water-based polymer solution. It should be

Fig. 2 Dispersion relation of Rayleigh–Taylor waves for dif-
ferent Λ with Γ = 1 and G = −1

mentioned that viscoelastic solutions have higher vis-
cosities than their solvents; therefore, it is acceptable
to assume a viscosity 440 times higher than for water.

3.2 Faraday instability

Under harmonic external excitations, we utilize Flo-
quet’s theorem to estimate the stability condition of
the system. We take

h(x, t) = eikxη(t), q(x, t) = eikxu(t),

Fx(x, t) = eikxf(t). (18)

The time-dependent components build a vector �ξ(t) =
(η(t), u(t), f(t))T , which fulfils the linear system

∂t
�ξ(t) = Ā(t)�ξ(t). (19)

Here, Ā denotes the Jacobian where Ā(t) = Ā(t + T )
with T = 2π/ω due to Eq. (15). A matrix M̄ which
transform the system one period ahead is introduced.
Therefore

�ξ(t + nT ) = M̄n�ξ(t). (20)
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We determine the columns of the monodromy matrix
M̄ by integrating

�Mi =

T∫

0

dtĀ(t)�ξi(t) (21)

for three linearly independent initial conditions i =
1, 2, 3. The vector �ξ can be decomposed into

�ξ(t) =
3∑

i=1

�wi(t) exp(λit), (22)

where wi(t) = wi(t + T ). The λi are the Floquet expo-
nents. According to Floquet’s theorem, it applies

λi =
1
T

ln(σi), (23)

where σi are the eigenvalues of M̄ . Due to Eqs. (22,
23), max|σ| determines the system stability. We com-
pute σi by solving Eq. (21) applying a fourth-order
Runge–Kutta method. As initial condition, we take an
Euclidean base. Figure 3 shows lines of marginal sta-
bility (Arnold tongues), max|σ|= 1. We observe suc-
cessive subharmonic and harmonic unstable solutions.
A change of relaxation time causes also a change of
the position of the marginal lines in amplitude and
wavenumber.

There is a critical amplitude where the system
becomes unstable. This amplitude decreases with
increasing frequency. The decrease in frequency is faster
for higher relaxation times. The wavenumber of this
amplitude is denoted with kcrit. In Fig. 4, the crit-
ical wavenumber is plotted over the frequency. The
kcrit(ω)—curves show a discontinuity, when an Arnold
tongue replaces another one as the most dominant in
the system. In the region where Λω ≈ 1, we observe
a harmonic tongue as critical. Also, the size of the
appointed frequency window (H 2 in (a) and H 1 in (b))
increases compared to the Newtonian fluid (c) in Fig. 4.
Reference [11] also found a harmonic resonance in that
region and a minimum for the critical amplitude.

4 Numerical results

Applying a standard finite difference method [24], solu-
tions in two (2D) and in three dimensions (3D) have
been determined. The code has been developed in C++.
In Fig. 5, a 2D Rayleigh–Taylor wave is shown for differ-
ent time steps. There are two resonances, one at x ≈ 27
and one at x ≈ 66. Two perturbations with nearly the
same amplitudes merge at t = 40 and form a new bigger
RT wave crest at t = 50. After its formation, it begins to
shrink as quickly as it has been formed, and at t = 54,
the drop is not much bigger than the others. This swap-
ping back behavior is a hint to the elastic property of

Fig. 3 The lines of marginal stability in space of a and
k . Parameters are chosen with Γ = G = 40. Above: Λ = 0.
Below: Λ = 0.5. Black solid: ω = 2π. Red dashed: ω = π.
The unstable regions are separated in harmonic (H) and
subharmonic (S) ones, which are numbered with increasing
wave number. The horizontal blue lines correspond to the
numerical solution as shown in Figs. 7 and 8

Fig. 4 The critical wave number kcrit(ω). For various fre-
quencies, different subharmonical (S) and harmonical(H)
Arnold tongues take the critical position. Parameters are
G = 40, Γ = 40, and Λ = 0 (a), 0.159 (b), and 0.5 (c)
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Fig. 5 Rayleigh–Taylor patterns in 2D. Parameters are
Γ = 1, G = −1, and Λ = 10

the film. The second resonance, at x ≈ 66, grows to
such an extent that it finally causes rupture. Figure 6
shows an RTI in 3D. Surface perturbations grow over
time. The flow field has sinks where the surface height
increases and sources where it decreases. Average flow
rates and surface perturbations increase in time.

The 2D Faraday waves of a Newtonian fluid are
shown in Fig. 7. There is a π-phase shift after one
period; the structures are subharmonic. The wavenum-
ber fits to the results from Floquet analysis, where we
expect to be in the 1S and 1H Arnold tongue region.

Fig. 7 Faraday patterns in 2D. Parameters Γ = G = 40,
a = 2.5, ω = 2π, and Λ = 0

Therefore, the harmonic solution is not visible in the
numerics.

In Fig. 8, the height for a viscoelastic fluid with
Λ = 0.5 is illustrated. We observe a fundamental differ-
ence between the patterns of the Newtonian fluid and
the linear Maxwell fluid. In the beginning, the Maxwell
fluid acts quite similar to the Newtonian fluid. It takes
some time before the structures of the surface appear,
and then, they look quite similar to their viscous equiv-
alent. After some time, the repeating structures begin
to change. The surface oscillates almost chaotically, a
full phase repeats only almost the same pattern. The

Fig. 6 Rayleigh–Taylor patterns in 3D. Contour of h(x , y , t) and flow rate �q(x, y, t) with Λ = 10, Γ = 1, and G = −1
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Fig. 8 Faraday patterns in 2D. Parameters are Γ = 40,
G = 40, a = 0.99, ω = 2π, and Λ = 0.5

explanation to this can be that the linear Maxwell fluid
has a memory of every stress to which it was exposed.
This phenomenon is called stress relaxation, it is the
major difference between the Newtonian fluid and the
linear Maxwell fluid and the best explanation for the
appearance of these strange surface patterns. A more
detailed presentation of stress relaxation can be found
in [18].

The Faraday instability of Newtonian fluids in 3D
produces surface patterns like squares or hexagons [21,
25]. In Fig. 9, we can see how the 3D viscoelastic film
develops from the random perturbation in the begin-
ning to a subharmonic stripe structure. At t = 10, we
see a random surface, which becomes a subharmonic
square structure at t = 124. The squares repeat peri-
odically for some time with small changes. At t = 208,
we observe that some of the former squares have devel-
oped into diamonds and connect with their neighbors.
Then, at t = 228, the regular structure begins to col-
lapse. It follows a kind of transition phase where irreg-
ularly changing structures occur, similar to the almost
chaotic surface patterns we also observe in the 2D cal-
culation (t = 252). After the transition phase (t = 320),
the surface ends up in a stripe pattern. This is a similar
behavior as the corresponding 2D solution. The applied
scaling is G = Γ = 40. This can be associated with

ρ0 = 789 kg/m3, γ = 0.022 N/m, ν = 3.4 · 10−5 m2/s
and d = 1.67 mm (e.g., ethanol-based polymer solu-
tion). Vibrating with 12 Hz (ω = π) or 24 Hz (ω = 2π).

Reference [13] studied Faraday waves of viscoelas-
tic fluids experimentally. The authors use a 1.5%
polyacrylamid-co-acid solvent. A similar transition
of hexagonal patterns to a stripe-like structure is
observed.

5 Conclusions

The Rayleigh–Taylor and the Faraday instability for a
viscoelastic Maxwell fluid are examined applying a lin-
ear stability analysis as well as direct numerical sim-
ulations of a recently derived long-wave model. The
results of the numerical solution and the linear analysis
confirm each other. The wave numbers and frequencies
predicted by the linear model are reproduced by the
numerical approach.

The linear stability analysis has shown that the high-
est growth rate λmax of RTI increases with Λ. For high
values of Λ, the increase stagnates. Here, it should be
mentioned that in practice, it is very difficult to increase
a fluids’ relaxation time without increasing its viscosity
too. The corresponding kmax is not influenced by the
relaxation time. Numerical solutions of 2D RTI waves
show elastic behavior and resonance.

The Faraday instability in 2D and 3D creates erratic
surface patterns. The 3D simulation shows a subhar-
monic stripe structure which does not occur in Newto-
nian fluids.

Further research can focus on the implementation of
various viscoelastic models and can clarify how pat-
tern formation in these materials distinguish from each
other. Also, the Faraday instability of viscoelastics
offers many possibilities for further research. For exam-
ple, the characterization of the patterns which are not
observable in Newtonian fluids or a detailed study of
the resonance behavior is conceivable. High-frequency
regions are not considered by our model due to their
short-wave nature.

The long-wave model we developed here can be
extended in several directions. One can add horizontal
vibrations, resulting in another kind of Faraday insta-
bility [27].

Certain combinations of instabilities are possible too.
One can combine RTI and Faraday instability or con-
sider the Faraday instability on an inclined surface.
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Fig. 9 Faraday patterns in 3D. Contour of h(x , y , t) with Λ = 0.5, a = 0.99, ω = 2π, Γ = 40, and G = 40. Solid lines are
height at 0.9 (violet), 1.0 (turquoise), and 1.1 (yellow)

The study of instabilities and pattern formation in
viscoelastic fluids is a complex topic which offers many
possibilities for future research.

Open Access This article is licensed under a Creative
Commons Attribution 4.0 International License, which per-
mits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropri-
ate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third
party material in this article are included in the arti-
cle’s Creative Commons licence, unless indicated other-
wise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and
your intended use is not permitted by statutory regu-
lation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funding Open Access funding enabled and organized by
Projekt DEAL.

Data availability The datasets generated during and anal-
ysed during the current study are available from the corre-
sponding author on reasonable request.

Appendix A: Deviation of Eqs. 12a–12c

The derivation of the y-components look analogous to
the x -components, so only the x -components are pre-
sented in detail. Long-wave approximation is based
on the assumption that the considered system is
much less prominent in one direction of space (z -
direction) than in the others. Rescaling with long-wave
approximation leads to Fz = O(δ), vz = O(δ), ∂y =
O(δ) and ∂x = O(δ), with scaling factor δ = d

l << 1.
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Here, l represents the characteristic length in x - and
y-direction. Neglecting all terms of O(δ2) in Eqs. (2)
and (9) leads to

∂tvx + (�v∇)vx = Fx + ∂xp, (A1)

0 = − ∂zp − G (A2)

and

Λ∂tFx + −Fx = ∂2
zzvx. (A3)

Under application of Eq. (3) to the kinematic boundary
condition (7), it follows:

∂th(x, y, t) = −∂x

⎛
⎜⎝

h(x,y,t)∫

0

dzvx

⎞
⎟⎠ − ∂y

⎛
⎜⎝

h(x,y,t)∫

0

dzvy

⎞
⎟⎠.

(A4)

The pressure gradient can be found by the boundary
condition (6) and Eq. (A2), which yields to

∂xp = −G∂xh(x, y, t) + Γ
(
∂3
xxxh(x, y, t) + ∂3

yyxh(x, y, t)
)
.

(A5)

Karman–Pohlhausen method assumes a flow rate

q(x, y, t) =

h∫

0

dzvx(x, y, z, t) (A6)

and separates the velocity in x-according to

vx(x, y, z, t) = qx(x, y, t)f(z),

with

f(z) =
3
(
zh − z2

2

)

h3
. (A7)

Using this assumption, the z -coordinate can be elimi-
nated in Eqs. (A1, A3) and (A4) by integrating over a
weight function

w(z) = hz − z2

2
. (A8)

The right-hand side of Eq. (A1) is

h∫

0

dzw(z)
[
Fx − G∂xh + Γ

(
∂3

xxxh + ∂3
yyxh

)]

=
h3

3
[
Fx − G∂xh + Γ

(
∂3

xxxh + ∂3
yyxh

)]
.

The left-hand side is1
h∫

0

dzw(z) [∂tvx + vx∂xvx + vy∂yvx + vz∂zvx]

=
6

5

[
∂tqx +

9

7

(
∂x

q2x
h

+ ∂y
qxqy

h

)
− 1

7

qx (∂xqx + ∂yqy)

h

]
.

(A9)

Integrating Eq. (A3) gives

(A10)

h∫

0

dzw(z) (Λ∂tFx + Fx) = −h3

3
(Λ∂tFx + Fx)

=

h∫

0

dzw(z)∂2
zzvx = qx.

Equation (A4) is already

∂th = −(∂xqx + ∂yqy). (A11)

The result of this calculation is the system shown in
12a–12c.
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