
Eur. Phys. J. Spec. Top. (2023) 232:461–468
https://doi.org/10.1140/epjs/s11734-023-00790-z

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

Wave propagation in a circular channel: sloshing
and resonance
Ion Dan Borcia1,a , Sebastian Richter1,b, Rodica Borcia1,c, Franz-Theo Schön2,d, Uwe Harlander2,e,
and Michael Bestehorn1,f

1 Institute of Physics, BTU Cottbus-Senftenberg, Erich-Weinert-Str. 1, 03046 Cottbus, Germany
2 Department of Aerodynamics and Fluid Mechanics, BTU Cottbus-Senftenberg, Siemens-Halske-Ring 15a, 03046 Cottbus,

Germany

Received 12 October 2022 / Accepted 30 January 2023 / Published online 22 February 2023
© The Author(s) 2023

Abstract Surface wave resonance of a liquid (water) layer confined in a circular channel is studied both
experimentally and numerically. For the experiment, eight unevenly distributed ultrasonic distance sensors
measure the local height of the wave surface. The resonance curves show maxima only for odd multiples of
the fundamental resonance frequency f0. We explained this behavior using a simple intuitive “ping-pong”
like model. Collision of wave fronts can be observed for higher frequencies. Also, the wave reflection on
the walls can be treated as wave collision with itself. The non-linearity seems to be weak in our study so
the delay in the wave propagation before and after the collision is small. Time-space plots show localized
propagating waves with high amplitudes for frequencies near resonance. Between the peaks low amplitude
and harmonic patterns are observed. However, for higher frequencies, the frequency band for localized waves
becomes wider. In the Fourier space-time plane, this can be observed as a point for the harmonic patterns
or a superposition of two lines: one line parallel to wave-vector k axis corresponding to the excitation
frequency f0 and a second line with inclination given by wave propagation velocity

√
gh. For planned

future work, this result will help us to reconstruct the whole water surface elevation using time-series from
only a few measurement points

1 Introduction

Oscillatory excitation is often encountered in fluid
dynamics. This kind of excitation for liquids is of
interest in engineering applications [1], biology [2, 3],
microfluidics and controlled motion [4–6]. Oscillatory
fluid behavior can occur not only due to external per-
turbation but also to self-induced flow [7, 8].
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Over the last decades, scientists have been fascinated
by liquid surface waves [9–15] and Faraday instabili-
ties [16, 17], phenomena induced by oscillatory excita-
tion, too. For the surface wave problem in the above-
mentioned papers, wave propagation, dispersion, slosh-
ing, and resonance have been mainly investigated.

The natural frequency of sloshing can be calculated
starting from the phase speed formula v =

√
gh0, where

h0 represents the undisturbed water depth and g is
the gravity acceleration. This formula is valid for h
much smaller than the wavelength (shallow water) and
small wave amplitudes [17]. Otherwise, we need higher
approximations, for example those given in [12] and [13]
and in references therein. For sloshing resonances, there
are papers which interpret the resonance frequencies
using mass-spring models (Duffing equation) [15]. We
will interpret the resonances in harmonic excited water
channels using ping-pong models [18, 19].

The present paper analyzes the resonance related to
sloshing phenomena in a circular channel. Our channel
has a high ratio L/D , where L is the channel length
and D is the width, and also a relatively low ratio
h0/L. In Sect. 2, we present the experimental device
and methods, in Sect. 3, the theoretical model used for
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performing the numerical simulations. We discuss and
compare the results in Sect. 4. We gather the conclu-
sions in Sect. 5.

2 Experimental setup

For our investigation, we use a circular horizontal chan-
nel placed on a rotating table (Fig. 1). The rotation and
the channel symmetry axes coincide. This is a part of
an experimental device initially designed for studying
baroclinic waves in a wide gap. In contrast, the narrow
gap marked with a red arrow in Fig. 1a and usually
used to heat the fluid in the wide gap, is the working
area for the present experiment. For the sloshing exper-
iments, we use a fluid depth of h0 = 4 cm. The channel
is approximately 476 cm long (75.75 cm radius in the
middle of the gap) and 8.5 cm wide. Eight ultrasonic
distance sensors are placed above the liquid surface.
The sensors are unevenly distributed, as can be seen
in Fig. 1b, to avoid that they are preferentially located
above the wave nodes or bellies. The sensors positions
are given in table 1.

In [13], the authors plotted the resonance curve as
function of the frequency using constant amplitude A.
However, to construct a resonance curve, there are sev-
eral reasons to choose not A but the velocity (or angular
velocity) to be constant. One of the reasons is that the
kinetic energy pumped per unit time will be almost the
same for all frequencies. The second one is of more tech-
nical nature: if one maintains the oscillation amplitude
constant, the mechanical parts of the rotating table and
of the tank will be heavily loaded at high frequencies
and the experiment would work either at very small
amplitudes or stop for safety reasons before the higher
resonance peaks can be reached.

3 Numerical solutions

For the numerical calculations, we consider the sys-
tem in simplified two-dimensional form with the same
length as the circumference of the circular channel
from the experiment. We compute the evolution of the
incompressible Navier–Stokes equations (NSE) using
the method presented in [6], according to which the
time-dependent, arbitrarily shaped surface h = h(x, t)
is mapped onto a constant rectangular domain (Fig. 2).
The nonlinear coordinate transformation z = hz̃ obvi-
ates the need for tracking the surface and reduces the
necessary interpolations. Applying this to the scaled
NSE and to the continuity equation yields
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respectively, where �f(t) comprises all gravitational
forces including the time-periodic excitation, �v = (u,w)
denotes the velocity field and
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is the transformed Laplacian with ξ(x, t) = lnh(x, t).
In the above equations, the common abbreviation q′ is
used to denote the derivative of an arbitrary quantity q

Fig. 1 The experimental setup. General view of the tank placed on a rotating table. For the actual setup, the outer channel
marked with a red arrow is used to study surface waves (a). View of the rotating tank equipped with ultrasonic distance
sensors (blue/chrome housing and red display) (b)

Table 1 Sensors (S) and barrier (B) positions in the experimental setup

Sensor B S1 S2 S3 S4 S5 S6 S 7 S8 B

Position (cm) 0 3.7 64.6 102 129.9 237.2 268.8 345.9 475 476
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Fig. 2 A nonlinear
transformation eliminates
the time dependence of the
surface z = h(x, t) by
mapping region (A) to
rectangular domain (B)
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Fig. 3 Resonance curves for h0 = 4 cm water height and
0.35 RPM amplitude. 〈h2〉 of each sensor—symbols joined
by a thin line—and the envelope of 〈h2〉 for all simulation
points—thick line. The first resonance frequency can be cal-

culated as f0 = v
2L

=
√
gh0
2L

= 0.067 Hz. The following res-
onances take place at around 3f0, 5f0, 7f0, namely at 0.2,
0.34 and 0.47 Hz

(h or ξ) with respect to x . Its time derivative is abbre-
viated as q̇. Pressure is computed by deriving a sparse
linear system for P from the discretized form of Eq. (1)
and (2) whose solution satisfies the conservation of mass
and momentum. To prevent odd–even oscillations dur-
ing the computations, the discretization is performed
on a staggered grid.

Due to the reduction to two spatial dimensions, we
find that the loss of kinetic energy through viscous dis-
sipation in the fluid bulk is lower in the simulation than
in the experiment. Also, in two dimensions, there are
no lateral sidewalls producing additional friction. These
effects can be approximately taken into account by tun-
ing the (kinematic) viscosity ν. For this purpose, the
maximum amplitude at the first resonance is measured
and ν is adjusted to match the amplitude observed in
the experiment.

The centrifugal force has been neglected, because
the ratio between the maximal value of the centrifugal

acceleration and the gravity acceleration is very small
(see also [14]).

The simplest model which can explain the resonance
appearing in the sloshing channel is the “ping-pong
ball” model, as one can further see in Sect. 4.

4 Discussion

We perform experiments and numerical simulations
for different excitation frequencies. The angular veloc-
ity amplitude is 0.35 rotations per minute (maximum
velocity 2.8 cm/s). This means amplitudes in the order
of 8 mm for the highest frequencies to 88 mm for the
lowest ones. If we compare with [13], in our experiment,
the channel length is larger and the excitation frequen-
cies are smaller. Each time, we wait until the signal
becomes periodic. For a given excitation frequency we
compare for each sensor the mean value of (h − h0)2,

〈(h − h0)2〉(x) =
1
T

∫ T

0

(h − h0)2(x, t)dt, (3)

where h is the liquid height measured by the sensor at
position x . For our experimental setup, we can measure
only at eight sensor points. For the simulations, we can
consider values at all grid points. Due to discretization
in both experiment and numerical simulations, the inte-
gral is replaced by the corresponding sum. In Fig. 3, we
plot the measured quantities for each sensor and only
the envelope of all curves from the numerical data. We
find a very good agreement between the simulations and
the experiment. Because the space resolution is much
higher for the numerical simulation, we will discuss in
the following our findings mainly based on the numeri-
cal results. We prefer to use 〈(h − h0)2〉 in place of the
maximal height of the surface elevation as was consid-
ered in [13]. Our choice has two reasons: this quantity
〈(h − h0)2〉 can be put into relation with the system
energy and also it is less susceptible to errors.

To explain why only odd multiples of the first mode
f0 appear in the resonance curves (Fig. 3), one can use
the similarity within the wave front propagation and a
ping-pong ball movement. The wave front is reflected
at the two barriers like in Fig. 4a, the ball is reflected
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Fig. 4 Wave strengthening or weakening explained using an intuitive “ping-pong” model: for a frequency close to the first
resonance the wave front arrives simultaneously with the returning of the whole tank, including the barrier (a); in the left
side of the sketch, the ping-pong ball is synchronized with the paddle and therefore the ball is returned and accelerated;
for the right side, the paddle moves back when the ball arrives and the ball is decelerated (b)

Fig. 5 Space-time plots of the water surface height for different excitation frequencies
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Fig. 6 2D time-space Fourier transform of the signal plotted in Fig. 5. We plot only modes for lower frequencies and wave
numbers because only those have significant values. The labels are normalized to the excitation frequency ω0 and the channel
characteristic wave number k0 = 1

L
. Note that the excitation frequency is different for each subfigure. In dimensional units,

the oblique line plotted in some cases corresponds with the front wave velocity
√

gh

by the paddles like in Fig. 4b. If the paddle and the ball
are synchronized and move in opposite direction when
the ball arrives at the paddle, it is returned and receives
enough energy to compensate friction. In the right side
of Fig. 4b, the ball and paddle are anti-synchronized
and they move in the same direction in the moment of
collision. The ball will not receive enough energy for a
back-and-forth “travel” between the paddles.

From the shallow water equations, one can calculate
the velocity of the wave front: v =

√
gh [17]. For very

small surface deflections, one can consider h ≈ constant,
i.e. the wave front moves with constant velocity. Assum-
ing (as we did in the numerical model) that the channel
is straight, let us suppose that the wave starts its prop-
agation to the right at the left barrier. The first res-
onance frequency f1 corresponds to the case when the
left barrier moves to the left when the front arrives. This
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Fig. 7 Transient phase of the bore formation at f = 0.07 Hz near the first resonance—numerical simulations

will happen first after a half of period t = T0/2 = 1
2f0

.
During the time t , the wave travels the length L of the
tank:

L = vt =
√

gh0

2f0
, (4)

and thus the first resonance is f0 =
√
gh0
2L . For our

experiment this is 0.066 Hz. Due to the periodicity of
the excitation, a synchronization of the wave and bar-
rier will occur again after another period T0 or mul-
tiples of T0. Generally, for obtaining the resonance,
the time necessary for the wave to travel along the
channel length is t = nT0 + T0

2 = (2n + 1)T0
2 , with

n = 0, 1, 2, . . . . It follows that the corresponding fre-
quencies are fn = (2n + 1)

√
gh0
2L = (2n + 1)f0. For the

frequencies 2nf0, a wave front generated at one of the
barriers will arrive at the other barrier when this is
moving in the same direction. This corresponds to the
situation represented in the left side of the Fig. 4b.

If we imagine an experiment where the two barriers
are moving in opposite direction, following the same
logic, the even multiple of f0 =

√
gh0
2L will correspond to

the maxima of the wave–wave interaction response.
In Fig. 5, we plot for several frequencies the time-

space diagram of the numerically calculated water sur-
face corresponding to a whole excitation period. One
can distinguish between two different main patterns.
For cases close to the maxima in the resonance curve,
propagation of the wave fronts can be observed. The
inclination is always the same, given by the front wave
velocity v =

√
gh0, although in the plots, it looks to

be different due to time scaling related to the excita-
tion period (increasing from subfigure (a) to (i)). Far

away from resonance (for anti-resonance cases), har-
monic patterns are present (standing waves with nodes
and anti-nodes). Note that also the amplitude in these
cases is much smaller. We observe that near the first
resonance only one wave can be seen in the system.
For the other resonances 3, 5, and so on, waves coexist.
For the second resonance, two collision regions can be
observed at about one third and two thirds of the tank
length. For the third resonance, four such points where
waves collide exist. If we interpret the wave reflection
as a collision with itself then the number of evenly dis-
tributed points where collisions take place is f/f0: only
reflection for the first resonance, reflection plus two col-
lision points for the second one and so on. As can be
seen in Fig. 5, the wave travels with the same veloc-
ity after the collision. The phase shift is rather small,
indicating small nonlinear effects.

For a better understanding, we plot in Fig. 6 also the
2D time-space Fourier spectra corresponding to each
subplot of Fig. 5. Also, here one can observe that the
pattern is dominated by the fundamental mode (k0, ω0)
for frequencies close to 2nf0 and the modes along the
line (2n + 1)/2 are present near the resonance peaks.
In addition, modes corresponding to the excitation fre-
quency and low wave numbers are also discerned. This
can be put into relation with the peaks width. The first
two resonance peaks are narrow so that the focus of
the energy happens only for frequency near f0 or 2f0.
The localization of the energy near the wave front hap-
pens only for a narrow frequency interval. In the regions
between peaks, the energy is distributed so only steady
waves are dominant. For higher resonance frequencies,
the intervals where the energy is confined by a wave
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front are brighter so that propagation patterns are vis-
ible in the time-space plots and consequently in the
corresponding Fourier 2D spectra.

Also of interest is to investigate numerically the tran-
sient phase from the start of the excitation until the
fully development of the periodic water wave. The most
interesting cases are near the resonances when periodic
traveling bores are formed. The simplest example is the
formation of the bore for a frequency f = 0.07 Hz near
the first resonance as shown in Fig. 7. In the early stage
(see Fig. 7a), a steady wave with the wavelength equal
to the tank length L is formed. The wave elevation is
increasing leading to the formation of a traveling front
(Fig. 7b). Due to non-linearity, the front is starting to
form ripples, which corresponds to higher wave numbers
(Fig. 7c). In the fully developed state, these ripples have
higher amplitudes and the wave looks very similar to a
bore (Fig. 7d) [17].

5 Conclusion

In conclusion, wave development, collision, and reso-
nance have been investigated in a circular tank follow-
ing an oscillating movement around its symmetry axis
with an harmonic angular velocity of constant ampli-
tude and different frequencies. Surprisingly, at the res-
onance frequencies, we do not find steady waves as
main pattern as we will expect if we compare with
the resonance of a string, but strongly localized waves.
Also, the lack of the even modes is an important differ-
ence in comparison with string resonance. This can be
explained to the anti-symmetrical way of the excitation.
If one can imagine the experiment with pumping barri-
ers which moves always in the opposite directions, only
even modes (at frequencies f = 2nf0) can be expected.
This task will be investigated in the future with barriers
where the wave will be partially reflected and partially
transmitted. In this case, the advantage of having a cir-
cular channel allowing for periodic boundary conditions
will be obvious.
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