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Abstract A thin liquid film located on the underside of a horizontal solid substrate can be stabilized
by the Marangoni effect if the liquid is heated at its free surface. Applying long-wave approximation and
projecting the velocity and temperature fields onto a basis of low-order polynomials, we derive a dimension-
reduced set of three coupled evolution equations where nonlinearities of both the Navier–Stokes and the
heat equation are included. We find that in a certain range of fluid parameters and layer depth, the first
bifurcation from the motionless state is oscillatory which sets in with a finite but small wave number. The
oscillatory branch is determined using a linear stability analysis of the long-wave model, but also by solving
the linearized original hydrodynamic equations. Finally, numerical solutions of the reduced nonlinear model
equations in three spatial dimensions are presented.

1 Introduction

The full mathematical description of the dynamics
of nonisothermal incompressible fluids is well known
for a long time. The fluid velocity field is described
by the Navier–Stokes equations, the temperature field
is governed by the heat equation, and the location
of the interface and its spatio-temporal evolution are
determined by the kinematic boundary condition. All
these equations are amended with suitable boundary
conditions. As a result, a complex nonlinear dynamic
boundary-value problem emerges and even nowadays,
at the age of supercomputers, its further treatment,
especially in three spatial dimensions, presents a great
challenge.

On the other hand, a direct numerical solution of the
set of governing equations mentioned above, may be
considered merely as another experiment. To achieve a
deeper insight into the physics behind pattern forma-
tion, other methods have been devised, for an overview,
see [1]. Very often one of the three spatial dimensions
is singled out due to the geometry of the system. A
good example for this case provide thin viscous films
on a solid substrate. Here, the behavior of the solutions
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in the vertical direction (z ) is very different from that
in the other two horizontal ones, and the 3D fields of
dependent variables can be projected as a good approx-
imation onto rather simple low-order polynomials in
z . This approach is successfully applied in the long-
wave theory, where upon this simplification, 2D thin-
film equations describing 3D fluid flow in the system
arise [2]. Normally in these theories, vertical velocities
are small and inertia is neglected, referred to as the
zero Reynolds number (Re) limit. A similar approxi-
mation for the heat equation (zero Péclet number (Pe)
limit) results in a linear temperature profile and in a
linear coupling between the local film thickness and
the local temperature gradient. Using these approxima-
tions, both long-wave Marangoni and Rayleigh–Taylor
instabilities as well as their combination were success-
fully described [3].

In the present paper, we shall develop a reduced
description where the nonlinear terms in both the
Navier–Stokes and the heat equation are kept, i.e.,
where Re and Pe are considered to be both non-zero.
The reduction is accomplished by projection onto dis-
tinct 2nd-order polynomials that satisfy the bound-
ary conditions exactly, in the tradition of the Galerkin
method. This procedure is also known as the weighted-
residual integral boundary layer (WRIBL) technique
or the Karman–Pohlhausen method for both isother-
mal [4–6] and nonisothermal problems [7, 8]. It has
been recently found that the Faraday instability can be
described in this way also in its nonlinear regime [9, 10].
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Projecting the temperature field onto polynomials, the
method was then recently extended to the nonisother-
mal case [8] to study the impact of the Marangoni effect
on the Rayleigh–Taylor instability.

It is a purpose of the present paper to show that the
extended model with non-zero Pe is able to describe an
oscillatory first instability in the case of a fluid located
on the underside of a solid planar substrate stabilized
by the Marangoni effect originating from heating at the
gas side. This instability has a finite band of growing
wave numbers that is bounded also from below away
from zero, contrary to the monotonic long-wave insta-
bility found for Re = Pe = 0. The reduction to a
low-dimensional system has the advantage that both
the Hopf frequency and the critical Marangoni number
can be derived analytically. A codimension-two point
is determined where the oscillatory and the monotonic
instabilities reverse their dominance. The results of the
linearized reduced system are compared and checked
with computations based on the linearized long-wave
hydrodynamic basic equations and a good agreement is
achieved. Finally, we present nonlinear simulations of
the reduced system in 3D, showing persistent oscillat-
ing waves of the free surface over a long time terminated
by rupture. To the best of our knowledge, this oscilla-
tory instability was not reported before.

2 Derivation of the model

2.1 Governing equations

We consider a three-dimensional thin film of an incom-
pressible fluid, see Fig. 1, with the deformable inter-
face separating between the film and the ambient gas
phase deposited on the underside of a horizontal, solid
substrate in the gravity field g . The reference frame
used in what follows is Cartesian with the x and y axes
located in the plane of the substrate, whereas the z-
axis is normal to the latter and points into the film.
The location of the interface is a priori unknown and
given by z = h(x, y, t).

In the long-wave approximation (LWA), the govern-
ing equations are written as [9]

Re[∂t�υH + (�υ · ∇) �υH ] = ∂zz�υH − ∇2P (1a)

Pe[∂tT + (�υ · ∇) T ] = ∂zzT . (1b)

Here, �υH = (vx, vy) denotes the horizontal compo-
nent of the velocity field vector �υ, T is the tempera-
ture field, the subscripts to ∂ denote the variables with
respect to which partial differentiation is taken, and
∇2 = (∂x, ∂y). All variables were made dimensionless
by applying the following scaling:

�t =τ t, (x̃, ỹ, z̃) = d (x, y, z),

P̃ =
ν2ρ

d2
P, ˜�υ = U0 �υ, T̃ = T̃e + ΔT̃ T

Fig. 1 A sketch of the problem. A thin film of an incom-
pressible fluid of density ρ, kinematic viscosity ν and ther-
mal diffusivity κ is placed on the underside of a solid and
uniformly cooled horizontal planar substrate with the tem-
perature T̃0 with respect to the ambient

where τ = d/U0, U0 stands for a certain characteristic
velocity, d for the mean depth of the film, and T̃e is the
constant environment temperature (variables with tilde
bear a dimension). The temperature difference

ΔT̃ = T̃0 − T̃e < 0 (2)

represents the difference between the uniformly cooled
substrate and the warmer environment. Reynolds and
Péclet numbers are defined via

Re =
U0d

ν
, Pe = RePr

with the Prandtl number

Pr =
ν

κ
. (3)

2.2 Boundary conditions

In LWA, the boundary conditions for the velocity field
are

�υH = 0 at z = 0, ∂z�υH = −Ma∇2θ at z = h.
(4)

Here, we have introduced the new 2D variable

θ(x, y) = T (x, y, z = h) (5)

as the temperature along the free surface. The
Marangoni number Ma is defined as

Ma =
γTΔT̃

ρνU0
(6)

where γT = −dσ/dT and σ is the surface tension
between the liquid and the ambient gas. In what fol-
lows, the Marangoni number Ma is negative.

For the temperature, we find

T = 1 at z = 0, ∂zT = −B θ at z = h
(7)
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with the Biot number B

B =
qd

α
(8)

where q is the rate of heat transfer from the liquid to
the ambient gas at the interface and α is the thermal
conductivity of the liquid.

The location of the free surface is determined by the
kinematic boundary condition

∂th = vz − �vH · ∇2 h (9)

at z = h. Note that in convection problems, the
Marangoni number is sometimes defined as M =
Ma PeB/(1 + B).

2.3 Hydrostatic pressure

In LWA, the pressure consists of components, namely,
the hydrostatic and the capillary ones [9], so its gradient
reads

∇2P (x, y) = G ∇2h − Γ∇2∇2
2 h (10)

with the dimensionless groups Galileo and inverse
Crispation number

G = − gd2

νU0
< 0, Γ =

σ

ρνU0
, (11)

respectively.
Thus, the six groups

Re, G, Γ, Ma, Pe, B

define our problem. Since U0 can be chosen arbitrarily,
one of the first five parameters can be put to one, in
what follows we shall use viscous scaling U0 = ν/d,
leading to Re = 1 and Pe = Pr. g.

2.4 Polynomials and 2D variables

In addition to the surface temperature (5), we introduce
next the 2D vector field

�q(x, y, t) =
∫ h(x,y,t)

0

dz �υH(x, y, z, t) (12)

which represents the horizontal flow rate. We now use
the following representation for the horizontal velocity
field

�υH(x, y, z, t) =g1(z;h) �q(x, y, t)
− Ma g2(z;h)∇2θ(x, y, t) (13)

with the polynomials

g1 = 3
zh − z2/2

h3
, g2 = −zh − 3z2/2

2h
. (14)

Note that
∫ h

0

dz g1 = 1,

∫ h

0

dz g2 = 0,

and for z = h

∂zg1 = 0, ∂zg2 = 1.

Thus, the representation (13) satisfies the boundary
conditions (4) for arbitrary �q and θ. For the temper-
ature, we take also a quadratic dependence on z and
write

T (x, y, z, t) =g23(z;h)(1 − θ(x, y, t))
+ (1 + Bzg3(z;h)) θ(x, y, t) (15)

with

g3 = 1 − z

h
. (16)

Since g3(0) = 1, g3(h) = 0 and ∂z(zg3) = −1 at z = h,
the representation (15) fulfills (5) and the boundary
conditions (7) for arbitrary θ. The boundary condition
(9) can be reformulated with (12) as

∂th = −∇2 · �q. (17)

2.5 The dimension-reduced model

To derive a set of evolution equations for h, �q and θ, we
insert Eqs. (13,15) into Eqs. (1a,1b), multiply Eqs. (1a)
and (1b) by the weight functions W1(z;h) and W2(z;h),
respectively, and integrate them over 0 ≤ z ≤ h.
After some algebra, a set of 2D evolution equations is
obtained with the numerical values of the coefficients
depending on the choice of Wi. Choosing

W1 = g1, W2 = 1

we obtain the following set complemented by Eq. (17):

6
5

Re

(

∂t�q +
9
7

∇2 ·
(

�q ⊗ �q

h

)

− 1
7

�q ∇2 · �q
h

)

= − 3
h2

�q + h∇2

(

Γ∇2
2 h − Gh

) − 3
2

Ma∇2θ,

(18a)
(Bh + 4)

6
∂tθ +

2
15

(∇2 · �q) (θ − 1)
h

− 19B

120
θ ∇2 · �q

+
7B

40
θ �q · ∇2h

h
+

7Bh + 32
40h

�q · ∇2θ

= − 2
Pe

Bhθ + θ − 1
h2

, (18b)

∂th = −∇2 · �q. (18c)
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Following the LWA, only first-order terms in the deriva-
tives are included in the left-hand sides of Eqs. (18).

For B � 1, Eq. (18b) takes a much simpler form

2
3

∂tθ +
2
15

(∇2 · �q) (θ − 1)
h

+
4
5

�q · ∇2θ

h

= − 2
Pe

Bhθ + θ − 1
h2

, (19)

which can be compared directly to the expansions given
by Trevelyan et al. [11] and Sterman-Cohen and Oron
[8]. As mentioned above, the coefficients depend on the
choice of the weight function W2 and are slightly differ-
ent in all the three works. Taking, for instance, W2 = z,
we find for the case B � 1

5
6

∂tθ +
1
10

(∇2 · �q) (θ − 1)
h

+
11
10

�q · ∇2θ

h

= − 2
Pe

Bhθ + θ − 1
h2

. (20)

Note that in both limits Eqs. (19) and (20), we retain
B in the right-hand side of the equations. Then it is
possible to approximate the solution if the convective
terms are absent in the heat equation what formally
corresponds to κ → ∞ or Pe → 0 with the well-known
result, e.g., [2, 8]

θ =
1

1 + Bh
.

3 Linear stability analysis

It is easy to identify the base state for Eqs. (18) in
the form of the quiescent conductive state with a flat
interface that reads

�q0 = 0, h0 = 1, θ0 =
1

1 + B
. (21)

Due to isotropy of the laterally unbounded system in
the x-y plane, the linear analysis may be performed in
just one horizontal spatial dimension, say x . Substitut-
ing

h = h0 + ikη exp(ikx + λt),
θ = θ0 + ikϑ exp(ikx + λt),
qx = q exp(ikx + λt)

into Eq. (18), results after linearization in the real-
valued linear set of algebraic equations

Reλ q =
5
6

(

−3 q + k2(G + Γk2) η +
3
2
k2Ma ϑ

)

,

(22a)

Pe

(

λϑ − 7
16

B q

)

= −3 (ϑ + Bη) (22b)

λη = −q. (22c)

For the sake of simplicity, we assume in this section
from here on a physically relevant case of a small Biot
number B � 1, according to the limits of Eq. (19). The
solvability condition for Eqs. (22) represents a cubic
polynomial equation

Reλ3 + a2 λ2 + a1 λ + a0 = 0 (23)

with

a0 =
5k2

2Pe

(

G + Γk2 − 3
2

B Ma

)

, (24a)

a1 =
15

2Pe
+

5
6
k2(G + Γk2) − 35

64
B Ma k2,

(24b)

a2 =
5
2

+
3Re

Pe
. (24c)

At the threshold of a monotonic instability λ = 0, lead-
ing thus to a0 = 0, and the system is monotonically
unstable if a0 < 0, leading to

B Ma > B MaM
c =

2
3

(

G + Γk2
)

. (25)

Equation (25) yields the threshold of the monotonic
instability as

BMaM
c,min =

2G

3
(26)

taking place at k = 0. For Marangoni numbers larger
than MaM

c.min the stabilizing Marangoni effect becomes
too small, and the Rayleigh–Taylor instability emerges.
This is the well-known condition for the long-wave
Marangoni instability in a thin film that is not affected
by inertia and thermal convection (Re = Pe = 0).

For the onset of an oscillatory (Hopf) instability,
λ = iωc with a real ωc, we obtain ωc =

√

a0/a2 and,
since a2 > 0, one must have a0 > 0. The latter is pos-
sible for Ma < MaM

c , i.e. where the monotonic insta-
bility does not emerge, and, therefore, occurs then as
a first instability increasing Ma if Pe exceeds a certain
critical value. The critical Marangoni number Maos

c for
the Hopf instability is found from Eq. (23) equating
a0 Re = a1a2, ω2

c = a0/a2 and turns out as

BMa > BMos
c =

1
35
32 − 27Re

16Pe

(
15 + 18Re

Pe

Pe k2
+

5

3
(G + Γk2)

)
,

(27a)

ω2
c =

5
2

k2 2(G + Γk2) − 3B Ma

5Pe + 6Re
> 0. (27b)
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Fig. 2 Left: variation of the critical BMos
c with k based on Eq. (27a) for the fluid parameters ν = 5 · 10−6 m2/s , ρ =

920 kg /m3, σ = 0.019 N/m , d = 0.5 mm , B = 0.1, Re = 1 and different Prandtl (Péclet) numbers. The black solid
line denotes the onset of the monotonic instability (a0 = 0 in Eq. (24)). Above the solid line, ω2

c < 0 in Eq. (27b) and,
therefore, the dashed part of the lines are fictitious. Right: the same for the basic hydrodynamic equations in LWA

The critical value Mos
c is a convex function of k and

has a minimum at (Fig. 2)

kos
c =

[

9
ΓPe

(

1 +
6Re

5Pe

)]1/4

. (28)

Assuming Re/Pe = 1/Pr � 1, which may materialize
via either Pe � 1 or Re � 1, both equivalent to Pr �
1, we find that at the lowest order of 1/Pe or for Re = 0,
respectively, the minimal value of Maos

c is

BMos
c,min =

32
7

(

2

√

Γ
Pe

+
1
3
G

)

. (29)

If this value becomes lower than the monotonic insta-
bility threshold BMaM

c given by Eq. (25), an oscillatory
instability sets in first with a finite wave number given
by Eq. (28) if Ma reaches the value Mos

c,min , see Fig. 2.
For Pe → ∞, one finds

BMos
c,min =

32
21

G, (30)

which is always smaller than the expression in Eq. (25),
since G is negative. However for this case, kc → 0 and
the wave length of the critical modes would become
very long and the Hopf frequency (27b) tends to zero.

A codimension-two point where both types of insta-
bility set in at the same value of the Marangoni number

is found from MM
c = Mos

c,min and yields the condition

PeCD2 =
1024

9
Γ
G2

. (31)

For Pe > PeCD2, the instability of the motionless
state is oscillatory.

It is interesting to note that qualitatively simi-
lar results Eqs. (27–30) can be derived if inertia is
neglected, i.e., Re � 1, at least for not too small Pe. In
the case of Re = 0, the eigenvalue problem (22) reduces
to a second-order problem, which is easily solved and
the critical thresholds for both monotonic and oscilla-
tory instabilities are obtained by the same equations
(26-29), but now with Re = 0. This is probably due to
the fact that the fluid velocities for this case stay rather
small and inertia effects play no significant role.

To demonstrate that our results are not an artifact
of the projection method used to obtain the set of
Eqs. (18), we next solve the linearized long-wave set
of Navier–Stokes and heat equations (1) by a standard
finite-difference method for the same parameters and
found a phase diagram presented in the right frame of
Fig. 2. It clearly shows that for Pe = 25, the first insta-
bility of the quiescent state is oscillatory.

4 Numerical results

Finally, we present our numerical results based on the
reduced system (18). An FTCS (forward-time central-
space) [12] finite-difference method has been applied
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Fig. 3 Left: contour lines of the surface profile in the monotonic regime Ma = −300, just before film rupture. Right:
contour lines of the surface profile in the oscillatory regime Ma = −400. An oscillating wave occurs with the frequency and
the wave length in good fit with the linear theory, compare Fig. 2. At a longer time, the film also ruptures

h

h

t

min

max

Fig. 4 Variation of the maximal and minimal values of
h(x , y , t) with time. Rupture occurs after t ≈ 155 s. Thick-
ness h is presented in units of the mean film thickness,
whereas time t is shown in seconds. Ma = −400, B =
0.1, P e = Pr = 25

with a fixed time step Δt = 0.5 · 10−3 and grid spacing
Δx = 1. The resolution is fixed with 300 x 300 points
and the lateral boundaries are periodic. For all runs,
random initial conditions for the interface are used

�q = 0, h = 1 + 0.1 ξ, θ = 1/(1 + B h)

with ξ as equally distributed random numbers in
[−0.5, 0.5]. The fluid parameters used are given in the

[mm]

monotonic

oscillatory

2[m /s]

d

ν

x

Fig. 5 Viscosity at the codimension-two point for σ = 0.02
N/m, κ = 0.15 · 10−6 m2/s, ρ = 920 kg/m3. The x marks
the values used for the present study

caption of Fig. 2 and Pe = Pr = 25 allow for the
emergence of an oscillatory instability at Ma ≈ −440,
whereas the monotonic instability sets in at Ma ≈
−400. Note that here B = 0.1.

For Ma = −300, we are clearly in the monotonic
region of Fig. 2 and after a certain time of coarsening,
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a few single stalactites survive and the code diverges,
as a probable sign of film rupture, see Fig. 3, left frame.

The situation is completely different in the oscilla-
tory regime for Ma = −400, Fig. 3, right frame. Now,
the amplitudes of the emerging pattern remain small
for a long time before more or less suddenly film rup-
ture takes place, see Fig. 4. During this phase, the film
surface has the form of mixed traveling and standing
waves, nonlinear selection processes do not take place
probably due to the rather small amplitudes. The emer-
gence of the Hopf bifurcation is obvious from very early
stages of the evolution.

5 Conclusions

We have shown that an oscillatory (wave) instability
emerges via the Marangoni effect for a Rayleigh–Taylor
unstable thin layer heated from the gas side. Increasing
the (negative) Marangoni number, this instability may
bifurcate first from the motionless flat film state for a
certain range of fluid parameters and mean layer depth.
For rather thin films and/or high fluid viscosity, this
instability is obliterated by the monotonic long-wave
instability. Inspection of the codimension-two condition
(31) yields an upper bound for the kinematic viscosity
of the liquid

ν <
9

1024
ρg2d5

σκ

which enables the emergence of the oscillatory instabil-
ity. It is presented for a typical set of fluid parameters
σ = 0.02 N/m, κ = 0.15 · 10−6 m2/s, ρ = 920 kg/m3

as a function of the mean depth in Fig. 5. It demon-
strates that the layer must be rather thick to exhibit an
oscillatory instability with an increase in the kinematic
viscosity of the fluid. A similar instability behavior has
been found based on the original hydrodynamic equa-
tions which justifies the projection method developed
here. Nonlinear simulations of the set of reduced model
equations terminate always with rupture (or dripping
of some singular stalactites) in both the oscillatory and
the monotonic flow regimes, probably due to the rather
large mean film thickness of 0.5 mm used for our com-
putations.

Finally, the physical situation described in this paper
in which the dynamics of a Rayleigh–Taylor unstable
thin liquid film is heated at the gas side has been stud-
ied both theoretically and experimentally. In the limit
of the inertialess long-wave theory, heating the film
at its interface provides an extra-stabilization mech-
anism along with the surface tension which leads to
the emergence of the monotonic instability and its sub-
sequent saturation [13, 14] in both 2D and 3D. The
same was found experimentally in double-layered sys-
tems [15] and then reproduced theoretically [3].

The emergence of the oscillatory instability in this
physical setting has been found for the first time, and a
possibility of its saturation, which was not found here,
may be explored in more detail in the future.
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Congress Français Mecanique [CFM2015], Lyon (2015)

8. E. Sterman-Cohen, A. Oron, Dynamics of nonisother-
mal two-thin-fluid-layer-systems subjected to harmonic
tangential forcing under Rayleigh- Taylor instability
conditions. Phys. Fluids 32, 082113 (2020)

9. M. Bestehorn, Laterally extended thin liquid films with
inertia under external vibrations. Phys. Fluids 25,
114106 (2013)

10. S. Richter, M. Bestehorn, Direct numerical simulations
of liquid films in two dimensions under horizontal and
vertical external vibrations. Phys. Rev. Fluids 4, 044004
(2019)

11. P.M.J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliada-
sis, Heated falling films. J. Fluid Mech. 592, 295 (2007)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


374 Eur. Phys. J. Spec. Top. (2023) 232:367–374

12. M. Bestehorn, Computational Physics (De Gruyter,
Berlin, 2018)

13. A. Oron, P. Rosenau, Formation of patterns induced by
thermocapillarity and gravity. J. de Phys. Paris 2, 131
(1992)

14. R.J. Deissler, A. Oron, Stable localized patterns in thin
liquid films. Phys. Rev. Lett. 68, 2948 (1992)

15. J.M. Burgess, A. Juel, W.D. McCormick, J.B. Swift,
H.L. Swinney, Suppression of dripping from a ceiling.
Phys. Rev. Lett. 86, 1203 (2001)

123


	Hopf instability of a Rayleigh–Taylor unstable thin film heated from the gas side
	1 Introduction
	2 Derivation of the model
	2.1 Governing equations
	2.2 Boundary conditions
	2.3 Hydrostatic pressure
	2.4 Polynomials and 2D variables
	2.5 The dimension-reduced model

	3 Linear stability analysis
	4 Numerical results
	5 Conclusions
	References
	References




