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Abstract This topical issue collects contributions of recent achievements and scientific progress related to
the collective behavior of nonlinear dynamical oscillators. The individual papers focus on different questions
of present-day interest in this topic.

1 Introduction

Complex networks are formed by the interconnection of
many dynamical systems [1]. Based on the type of com-
munication between these systems, they may exhibit
different collective behaviors [2]. In real applications,
interactions are inevitable, making the research of col-
lective behaviors highly important. An efficient tool for
this purpose is connecting nonlinear dynamical systems
in complex structures that can be different according to
the application.

The interconnection among systems may lead to
coherence in their dynamics. The characteristics of this
coherence determine the emergence of different collec-
tive behaviors. One of the essential collective behav-
iors is synchronization, generally defined as the time-
correlated dynamics of coupled systems [3]. Synchro-
nization has several types, including phase, lag, almost,
generalized, explosive, and complete synchronization
[4]. Although complete synchronization, i.e., quite sim-
ilar temporal dynamics, is mainly preferred, it is not
achievable in many networks. Therefore, one of the crit-
ical issues to study is the possibility of synchrony in
a network. Various numerical and analytical methods
have been presented to search for this problem [5]. For
example, a straightforward and efficacious approach is
the master stability function (MSF) [6]. Applying the
MSF enables the necessary conditions to be obtained
for complete synchronization according to the coupling

a e-mail: sajadjafari83@gmail.com (corresponding author)
b e-mail: mervinbao@126.com
c e-mail: chvolos@gmail.com
d e-mail: fahimenazarimehr@yahoo.com
e e-mail: hanbao@cczu.edu.cn

scheme. Another important issue for study is investi-
gating various factors in the occurrence of other types
of synchronization and their stability area [7–9].

Certain studies have considered the formation of par-
tial synchronization patterns [10, 11]. In these cases, the
motivation can be obtaining the emergence conditions,
influential factors, stability area, lifetime, and control-
lability. The chimera state is one of the attractive states
among partial synchronization patterns [12]. This state
is organized by coexisting coherent and incoherent oscil-
lations in a network. The chimera state can be divided
into categories depending on the features of the coher-
ent and incoherent groups, including the nonstation-
ary chimera, traveling chimera, and so on [13, 14]. The
relation between the chimera state and the neuronal
processes has increased the importance of studying this
phenomenon [15]. In addition to the chimera, the soli-
tary state has also attained considerable attention [16].
However, most systems are synchronous in the solitary
state; only a few escape from the synchronous state and
oscillate differently.

This special issue is devoted to the current state of
the art in the research on the collective behavior of
nonlinear dynamical oscillators. Many efforts have been
made to find the dependence of synchronization on the
network structure and increase the possibility of syn-
chronization. In this regard, the authors in [17] report
that synchronization can be attained by switching only
one link, whereas synchronization is impossible in both
alternating structures. According to the master stabil-
ity function (MSF) method, the requisite for synchro-
nization in a network is that all its normalized coupling
parameters are located in the MSF stability region.
This paper shows that synchronization can be obtained
if the network switches between two structures, each
with only one normalized coupling parameter out of the
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stability region. Another significant problem is preserv-
ing synchronization during network reduction. Reduc-
ing the dimension of large-scale networks helps decrease
the computational complexity and required memory.
The paper [18] presents an optimization algorithm to
preserve synchronization after node reduction. The pro-
posed algorithm tries to keep the eigenvalues of the net-
work unchanged while reducing the network size.

Synchronization and consensus of multi-agent sys-
tems have attracted much attention in recent years. In
[19], the authors focus on presenting an event-triggered
protocol for obtaining global exponential consensus in
Lipschitz nonlinear multi-agent systems. Practical con-
straints such as the unknown time-varying input delay
and state quantization constraints are also considered.
The result of this study is finding a sufficient condition
on the upper bound value of time-varying input delay
for the global consensus of multi-agent systems.

Synchronization of coupled chaotic systems and cir-
cuits has special applications, for example, in secure
communication. The authors in [20] investigate the
dynamics of coupled Wang–Zhang–Bao circuits. They
show that this system exhibits bistability for a range
of parameters. The synchronization of two-coupled and
100-coupled circuits is analyzed using the MSF method
and computing the temporally averaged synchroniza-
tion error. In [21], synchronization of coupled Joseph-
son junction oscillators is considered. Two sliding-mode
control strategies, namely integral and terminal, are
designed to synchronize the oscillators. The results
show that the first method has a smaller error than the
second, and its implementation is also more accessible.
However, the second method is faster. In [22], the effects
of different coupling elements on the collective dynam-
ics of the Chua circuits are examined. It is shown that
complete synchronization is only obtained when the
circuits are coupled via resistors, while in memristor-
coupled circuits, instability emerges for larger cou-
plings. If inductors connect the circuits, increasing the
coupling can only synchronize two systems’ variables.
Furthermore, the nonstationary chimera can be formed
in all coupling schemes.

Previous studies have revealed the significance of
the synchronized behavior of neurons in brain activ-
ity. Hence, several papers in this special issue are dedi-
cated to studying synchronization in neuronal models.
Vivekanandhan et al. [23] study the impact of an elec-
tric field on the firing pattern and synchronization of
the Izhikevich neuron models. Their investigations of
the firing patterns show that the electric field inten-
sity and the external electric field parameters greatly
influence the firing of neurons. Moreover, synchroniza-
tion is achieved in stronger couplings in the presence
of the electric field. Yang and Ma [24] investigate the
dynamics of a star network composed of four photo-
sensitive neurons. The coupling is considered adaptive
such that the coupling intensity is increased exponen-
tially to a threshold value before attaining energy bal-
ance. Complete synchronization and energy balance can
be observed in this network by enhancing the coupling.

In [25], a neural network model proposed for the up-
to-down state oscillations of the cortex is used. The
model consists of excitatory and inhibitory neurons.
The authors investigate synchronization by construct-
ing a network of this neural model. Their results show
that the synchronization relies significantly more on the
excitatory connections than the inhibitory ones.

Map-based models can decrease the computational
cost even though they can reproduce many neuron
behaviors. Therefore, the use of map-based models is
beneficial for investigating neural synchrony. Sayari
et al. [26] consider a random network of Rulkov
maps with burst-timing-dependent plasticity. They also
investigate the effects of periodic and random exter-
nal perturbations on the network synchronization. They
report that the perturbations can induce synchroniza-
tion and synchronization states which are dependent
on the initial synaptic weights. In [27], Wang et al.
study synchronization in coupled map-based neurons by
considering the memristive synapse. They demonstrate
that the synchronization is dependent on the memris-
tor coupling coefficient and the initial condition of the
flux variable. When the memristor coupling coefficient
increases, the network alternates between synchrony
and asynchrony and, finally, becomes synchronous. The
initial condition of the flux variable also determines the
range of the instability zone. In [28], Shang et al. use a
discrete memristor for the coupling of Chialvo neurons.
This study considers two coupled neurons and a ring of
coupled neurons, and the occurrence of synchronization
and emergence of a chimera state are investigated.

Wave propagation and pattern formation are other
important study subjects in neuronal networks. In [29],
a two-layer network of neurons with gradient field cou-
pling is considered. Two types of gradient coupling are
assumed as step-like and cone-like. For the small cen-
tral intensity of the gradient field, the cone-like cou-
pling causes less damage to the target waves in the
first layer. As the central intensity of the gradient field
increases, the target waves are destroyed, and spiral
waves are formed. Furthermore, larger external stim-
ulations induce spiral waves in the second layer. The
authors in [30] study turbulent exotic waves in a net-
work of piecewise linear learning neuron models con-
taining magnetic flux coupling and periodic excitation.
It is shown that as the excitation amplitude increases,
the exotic waves become very turbulent.

The chaotic activity can influence the electrical
activity and firing rhythms of the single and coupled
neurons. In [31], the spiking inhibition behavior of
Hodgkin–Huxley (HH) neurons induced by the chaotic
activity is studied. The mean firing rate is observed
to reach a minimum according to the chaotic activity,
which is called the inverse chaotic resonance. It is found
that the types of synaptic currents, the number of spik-
ing neurons, and each neuron’s firing rate affect the
network’s collective firing rate. The rhythmic behav-
iors also have essential roles in the respiratory network.
To study the firing patterns or rhythms and the tran-
sitions between different patterns, bifurcation analysis
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can be used. The paper [32] studies the rhythm transi-
tions in coupled sigh and eupnea compartments of the
pre-Bötzinger complex, which is the respiratory net-
work in mouse brainstem slices. The authors investi-
gate the effects of different ionic currents and analyze
the underlying mechanism of bifurcations.

Another part of the special issue is devoted to the
contributions concerning partial synchronization pat-
terns. In [33], Ramamoorthy et al. report transitions
between different collective behavior induced by the
repulsive coupling in Stuart–Landau oscillators by vary-
ing the control parameter. For example, by decreasing
the control parameter, the state of the network tran-
sitions from a traveling wave to an imperfect travel-
ing chimera, then to the synchronized state. Other col-
lective behaviors such as cluster chimera death, clus-
ter oscillation death, imperfect amplitude chimera, and
multi-chimera death state are also observed in this
study. In [34], the authors concentrate on the mech-
anism of the formation of the solitary state in com-
plex networks. This study considers three different net-
work topologies: a symmetric nonlocally coupled ring,
a random, and a scale-free network. The occurrence
of the solitary state is studied for various parameters.
It is found that the solitary state is more likely to
form in asymmetric networks with scale-free proper-
ties. Fan et al. [35] consider a two-layer multiplex net-
work of discrete Hindmarsh–Rose neurons with a flux-
controlled memristor. The interlayer connections are
through chemical synapses, while different synapses are
examined for intralayer links. The simulation results for
this network show that the synchronization of the neu-
rons mostly depends on the intralayer electrical connec-
tions. Moreover, the chemical interlayer links have an
essential role in the emergence of the chimera state in
layers.

Finally, the special issue ends with a study on
the attenuation rate of an electromagnetic wave in
plasma. Although the interaction between the elec-
tromagnetic wave and the plasma has been studied
extensively, its attenuation in an unmagnetized colli-
sionless cold plasma has not been considered. In [36],
the authors explore this issue through two-dimensional
(2D) particle-in-cell simulation. The evolution of elec-
tromagnetic waves through plasma with different sizes
is considered at different frequencies. It is found that
electromagnetic energy reduction is more remarkable
in plasma with larger sizes.

Thus, this special issue provides a broad spectrum of
current research on the collective behavior of complex
networks, and we hope that the related researchers in
this field will find it useful. We wish to express our
appreciation to the authors of all the papers in this
special issue for their excellent contributions, as well
as to the many reviewers for their high-quality work in
reviewing the manuscripts.

Data availability No data has been used in this study.
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