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Abstract The dynamical behavior of networked systems is expected to reflect the properties of their cou-
pling structure. Yet, symmetry-broken solutions often occur in symmetrically coupled networks. An exam-
ple are so-called solitary states where the dynamics of one network node is different from the synchronized
rest. Here, we investigate the structural constraints of networks for the appearance of solitary states. By
performing a large number of numerical simulations, we find that such states occur with high probability
in asymmetric networks, among them scale-free ones. We analyze the structural properties of the networks
that support solitary states. We demonstrate that the minimum neighbor node degree of a solitary node is
crucial for the appearance of solitary states. Finally, we perform bifurcation analysis of dimension-reduced
systems, which confirm the importance of the connectivity of the neighboring nodes.

1 Introduction

Understanding the interplay between network topology,
coupling scheme and emerging dynamics is one of the
central issues in the field of nonlinear dynamics and
the theory of complex networks [1–4]. Often, perfectly
symmetric networked systems exhibit symmetry-broken
solutions [5–7]. For networks of oscillators, a particu-
larly interesting example is the extreme case of cluster
synchronization in which only one oscillator does not
synchronize with the rest of the network. This highly
unbalanced network configuration is called “solitary”
state [8, 9]. The occurrence of these states has been
observed in a variety of symmetrically coupled systems
such as globally coupled nonlinear oscillators [8], in
non-locally (and globally) coupled networks of phase
oscillators [10, 11], adaptive networks [12], coupled
chaotic maps [13–15], coupled excitable systems [16],
multilayer networks [17–20], and time-delayed systems
[21]. Such ubiquity naturally drew attention to soli-
tary states and raised questions about the mechanism
behind their appearance [18, 22]. Recently, Schülen
et al. have addressed this issue for coupled neural oscil-
lators and found that solitary states are created sub-
critically in a fold bifurcation [23]. Additionally, they
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have demonstrated that the dynamics of the solitary
oscillator can also be chaotic, while the synchronized
cluster stays periodic [23].

Despite the advanced understanding of ubiquity and
onset of the solitary states, some essential questions
remain unanswered. For instance, what are the topo-
logical constraints for the emergence of these asym-
metric solutions? Naturally, symmetry-broken solutions
are unexpected in the scope of symmetric systems with
uniform distribution of node degree. However, complex
networks with asymmetries in their structure of connec-
tions, such as scale free ones, which have a power-law
distribution of node degrees, do not offer any imme-
diate advantage for the occurrence of solitary states.
In fact, it has been recently found that asymmetries
can actually favor synchronization [24, 25] or regular
behavior [26, 27]. Therefore, the onset of solitary states
in asymmetric networks is as equally important as the
symmetric case, especially for a better understanding
of how these states occur in general setups.

In this work, we address the onset, and the topologi-
cal dependencies of solitary states in complex networks
of FitzHugh–Nagumo oscillators. We begin our inves-
tigation by studying the appearance of solitary states
in three different network topologies: a symmetric non-
locally coupled ring, a random, and a scale-free graph.
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To establish the range of parameters in which the soli-
tary states would appear, we use a symmetric non-
locally coupled ring as a baseline for the parameter
search. We find that random and scale-free networks
exhibit solitary states for similar parameter values as
the symmetric one. These results are verified over an
ensemble of realizations of such networks with different
initial conditions. Further, we proceed to the topologi-
cal analysis of the networks, aiming to identify a com-
mon feature of solitary nodes. We analyze their node
degrees, neighbor node degrees, and eigenvector cen-
trality. Among these measures, we found that a high
neighbor node degree correlates with the onset of soli-
tary states. Our next step is to verify this observation
more rigorously by performing bifurcation analysis. We
rely on geometrical arguments to obtain a dimension-
reduced system, where the bifurcation analysis demon-
strates the onset of the solitary states in a fold bifurca-
tion and their dependencies on the minimum value of
the neighbors node degree.

2 Solitary states in complex networks

We consider different network topologies, each network
consisting of identical FitzHugh–Nagumo (FHN) ele-
ments in the oscillatory regime. Such networks are
numerically simulated using the following dimension-
less equations:

ε
dui

dt
= f(ui, vi) +

N∑

j=1

Aij

di
[σu(uj − ui) + σv(vj − vi)],

dvi

dt
= g(ui, vi), (1)

where the pair (ui, vi) accounts for the activator and
inhibitor variables, respectively, of each FHN oscillator
i with i = 1, . . . , N . The parameter N prescribes the
network size. The functions:

f(ui, vi) = ui − u3
i

3
− vi, g(ui, vi) = g(ui) = ui + a

(2)

specify the local dynamics of the variables ui and
vi. The parameter ε defines the time scale separation
between the fast (ui) and slow (vi) variables. Through-
out this study, we fix ε = 0.1. For isolated oscilla-
tors, the threshold parameter a separates the excitatory
(|a|> 1) from the oscillatory (|a|< 1) regime through a
supercritical Hopf bifurcation. We set each oscillator in
the oscillatory regime by keeping a = 0.5. The different
network topologies are characterized by their adjacency
matrix Aij . The FHN oscillators are diffusively coupled
via both variables ui and vi, similarly to [22, 28–31].
The strength of the diffusive coupling is given by σu and
σv for the activator and the inhibitor variable, respec-
tively. The coupling function of a given FHN oscillator

i is normalized by the number of oscillators coupled to
it, i.e., its node degree di =

∑N
j=1 Aij .

In our study, we consider three different network
topologies, namely, a symmetric non-locally coupled
ring, a random, and a scale-free network. The topology
of the symmetrically coupled ring is determined by a
coupling radius R common to all nodes in the network.
The coupling radius R defines the number of neighbors
in each direction on a ring. This coupling scheme yields
a uniform node degree di = 2R ∀ i ∈ [1, N ], see the
corresponding graph in Fig. 1(a). This symmetric case
is used as a reference case for the comparison with the
asymmetric structures. To obtain the random topology,
we consider the well-known Erdős–Rényi (ER) algo-
rithm [32]. Starting from N = 100 unconnected nodes,
we establish a connection between any given pair of
nodes with a probability p = 0.18. This procedure
results in a normal distribution of node degree with
average value of 〈di〉 = 18, see the corresponding graph
in Fig. 1(b). To obtain a scale-free network, we use the
Barabási–Albert (BA) algorithm which is based upon
preferential attachment in the network growth process
[33, 34]. Starting from a network with a star-like topol-
ogy, at each step of the BA algorithm a node with m new
links is added to the existing network. The newly added
links are distributed across the network as follows: a
given node i receives a new link in accordance with its
current degree di with the probability pi = di∑

i di
. This

procedure yields a network with a power-law distribu-
tion of node degrees. In Fig. 1(c), we show the resulting
graph of the BA algorithm with m = 5.

In all three network structures, we are able to find
solitary states for various initial conditions. Each red
node in the network graph depicts an oscillator that
is not in sync with the rest colored in dark blue. The
fact that such states emerge for networks with different
average node degrees already suggests that this mea-
sure alone does not determine their existence. Note that
dav = 〈di〉 is generally a poor measure to compare net-
works with vastly different node distributions.

We now investigate the onset of solitary states in the
considered asymmetrically coupled networks. For that,
we assign random initial conditions (ICs) to the system
in Eq. (1) with the adjacency matrix Aij for a scale-free
topology as shown in Fig. 1(c). In Fig. 2(a), we show the
time evolution of the network, illustrating the presence
of one solitary node split off from the main synchronized
cluster. This behavior can be further visualized in a
snapshot of the variable ui at t = 2000 (arb. units)
as shown in Fig. 2(b). In general, the trajectories of
solitary nodes approach an attractor coexisting with the
one hosting the synchronized cluster. The attractor of a
solitary node can be periodic or chaotic [22, 23]. For the
case depicted in Fig. 2(a) and (b), the dynamics of the
solitary node follows a period-3 limit cycle as shown in
the state-space projection (ui,vi) depicted in Fig. 2(c).
This figure demonstrates the existence of solitary states
in asymmetric networks.

To establish the coupling strengths for which soli-
tary states arise in complex networks, we obtain the
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Fig. 1 Three examples of solitary states for various topologies, namely: a a non-locally coupled ring (for better visibility
we use N = 30 and R = 5, yielding di = d = 10); b an Erdős–Rényi network with N = 100, p = 0.18, yielding an average
node degree of 〈di〉 ≈ 18; c Barabási–Albert network with N = 100 and m = 5 links added at each algorithm step, yielding
〈di〉 ≈ 9.5. The size of the nodes is proportional to the respective node degree

Fig. 2 Exploring the dynamics of a solitary state with a single solitary node in a scale-free network with N = 100, m = 5
(as shown in Fig. 1c), σu = 0.12, and σv = 0.15: a Space-time plot for the activator variable ui; b Snapshot of the activator
variable ui taken at t = 2000 (arb. units). Blue circles correspond to the synchronized cluster, while the red one shows the
solitary node; c State-space projections for the solitary node (red) and the synchronized cluster (blue)

Fig. 3 Regions of existence of solitary states in the (σu, σv)-parameter plane. Color-coded is the probability of obtaining
a solitary state for the following topologies: a A non-locally coupled ring network with R = 9; b A random (Erdős–Rényi)
network with average degree p = 0.18; c A scale-free (Barabási–Albert) network with m = 10. The probability is estimated
from 100 network realizations with different ICs uniformly distributed over the intervals ui ∈ [−2.2, 2.2], vi ∈ [−1.1, 1.1].
The network size is N = 100 in all cases

map of regimes in the (σu, σv)-parameter plane for
all three topologies shown in Fig. 1. We consider an
ensemble of 100 network realizations with different ICs.
For each simulation, we integrate a time interval of
Δt = 2000 (arb. units) before checking the existence
of solitary states. This approach provides statistical
results in which the fraction of simulations resulting
in solitary states is characterized by the probability
of their occurrence. With this, in the map of regimes
shown in Fig. 3(a)–(c) for the respective topologies,

the color-code stands for the probability of obtaining
a solitary state for a given parameter pair (σu, σv). We
observe that the parameter regions with a high prob-
ability of finding solitary states occur for very similar
values of the coupling intensities σu and σv for all three
topologies. In addition, the shape of such parameter
regions is similar across the topologies. Therefore, the
analysis of the (σu, σv)-parameter plane does not cap-
ture the influence of topological asymmetries. To tackle
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this issue, we analyze in more detail the topological fea-
tures of networks exhibiting solitary states in the sub-
sequent sections.

To complement our analysis of the coupling inten-
sities, we point out that in a recent work for a glob-
ally coupled system (symmetric), Schülen et al. have
obtained similar patterns in the (σu, σv)-parameter
plane [23]. For a class of such systems, the authors have
derived the bifurcation curves delimitating the regions
of high probability for the occurrence of solitary states
[23]. The similarity of the patterns observed for the
globally coupled system and the networks studied here
suggests that the same bifurcation scenario gives rise to
solitary states in the networks with complex topologies.
This fact is also investigated subsequently in this work.

3 The role of the network connectivity
and local topological features

The results conveyed in Sect. 2 show that solitary states
arise in networks with complex topologies for the same
range of coupling strength as for simple regular net-
works. This raises a general question: What would be
the topological requirements for the onset of the soli-
tary states? To investigate the existence of possible con-
straints, we concentrate our efforts on networks with
topologies represented by BA graphs as they consti-
tute the example with asymmetric distribution of node
degrees. As discussed in Sect. 2, the connectivity of BA
graphs is specified by the number of links m added at
every step of the growth algorithm. We investigate the
onset of solitary states in such networks for different
levels of connectivity by varying m. For that, we first
adopt a statistical approach by considering 1000 real-
izations of the system Eq. (1) with different ICs chosen
randomly as discussed in Fig. 3. In the top panel of
Fig. 4(a), we show the share of ICs resulting in solitary
states with different number of solitary nodes for vary-
ing m as follows: one (green), two (orange), three (blue),
four (orchid), and five or more (red). The absence of
solitary nodes (regime of synchronization) is marked in
gray. The colored region is the relative fraction that of
all ICs that goes to this specific state. For example, if
m = 10, about 35% of the simulations go to a state
with a single solitary oscillator, about 60% go to either
a single or two solitary nodes, so the relative share of
two solitaries is about 25%. Thus, they are given by
the differences between two curves. In effect, we have a
100% stacked bar for each value of m. For low values
of m (low connectivity), we observe that solitary states
occur for a small share of the ICs and they contain only
one solitary node. By increasing m, the share of realiza-
tions corresponding to the completely synchronized net-
work (gray) diminishes giving room to a larger variety
of solitary states. For instance, for m ≈ 8 solitary states
are prevalent among all the realizations being observed
with a different number of solitary nodes. Despite the

fact that they are observed for all levels of network con-
nectivity, the findings in Fig. 4(a) indicate that high
connectivity favors the formation of such states.

Next, we refine our knowledge by analyzing how
higher connectivity influences the formation of solitary
states. Specifically, we investigate local node properties
to find out if the success of high network connectivity
can be captured by measures such as the node degree,
average neighbor node degree, and eigenvector central-
ity. As the node degree di has been already defined in
Sect. 2, the average neighbor node degree of node i is

given by dav,i =
∑N

j=1 Aijdj

di
. This measure accounts for

the average level of connectivity of adjacent nodes of
i . The eigenvector centrality of a node i is given by
ci = 1

λ

∑N
j=1 Aijcj , where λ is the largest eigenvalue cal-

culated via Ac = λc. This measure ranks the node i fol-
lowing the connectivity of its neighbors. We first obtain
the average of these three measures over the entire net-
work, denoted by 〈.〉all. We then obtain the average
only over the solitary nodes, which we denote by 〈.〉sol.
We calculate the ratio 〈.〉sol/〈.〉all as a function of the
parameter m in the bottom panel of Fig. 4(a). Interest-
ingly, for m � 8, the average over solitary nodes differs
from the network average. In particular, we point out
the fact that the average neighbor node degree is much
higher for the solitary nodes, i.e., 〈dav,i〉sol > 〈dav,i〉all

[yellow curve in the bottom panel of Fig. 4(a)]. This
measure will be justified later on by the bifurcation
analysis (Sect. 4). In addition, by comparison with the
top panel of Fig. 4(a), we conclude that the asymme-
tries between the solitary nodes and the nodes in the
synchronized cluster favor the appearance of solitary
states with only one solitary node [green region in the
top panel of Fig. 4(a)]. In contrast, at m ≈ 8, the ratio
〈.〉sol/〈.〉all of all measures approaches one, indicating
the establishment of homogeneity among the solitary
and the synchronized nodes. This configuration holds
for m > 8, giving rise to the regime dominated by soli-
tary states with a large number of solitary nodes.

To further analyze the dependencies observed in
Fig. 4(a), we now investigate the probability of a node
being a solitary given one of its characteristics dis-
cussed above such as node degree, average neighbor
node degree, eigenvector centrality. For that, we employ
the concept of conditional probability, given by

p(s|x) =
p(s ∩ x)

p(x)
, (3)

where p(s—x ) stands for the probability of a node being
a solitary s given a topological property x , e.g., the node
degree d or the average neighbor node degree dav. To
calculate this conditional probability, we consider 1000
realizations with different ICs of BA networks possess-
ing N = 500 nodes (for better statistical quality). With
this, in the top panel of Fig. 4(b), we obtain the con-
ditional probability of a node being a solitary given its
node degree, i.e., p(s—d). For m = 4 (green circles), we
observe that only nodes with low d < 10 degree have a
nonzero probability of being solitary [see the inset in the
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Fig. 4 The impact of various topological measures on solitary states a Top panel: Share of network realizations yielding
a solitary state with one (green), two (orange), three (blue), four (light purple), and five or more (red) solitary nodes for
m ∈ [1, 25]. The gray color corresponds to realizations with no solitary states. Bottom panel: Ratio 〈.〉sol/〈.〉all between
average network measures, node degree (blue), centrality (red), and average neighbor degree (yellow). Parameters are:
σu = 0.12, σv = 0.12, and N = 100. b Conditional probability p(s—d) to obtain a solitary state for a given node degree
d in a Barabási–Albert network with m = 4 (green) and m = 8 (magenta). c Conditional probability p(s|dav) to obtain
a solitary state for a given average neighbor degree dav in a Barabási–Albert network with m = 4 (green) and m = 8
(magenta). Parameters in b and c: σu = 0.12, σv = 0.15, and N = 500

top panel of Fig. 4(b)]. The probability of occurrence
of solitary nodes with a degree above this threshold is
zero. This suggests that the basins of attraction of the
solitary states are rather small and does not necessar-
ily mean that solitary states are impossible for these
node degrees. On the other hand, for m = 8 (pink cir-
cles), we find that both nodes at the lower and the
higher end of the degree distribution have a high prob-
ability of becoming a solitary node. This inconsistency
between the cases m = 4 and m = 8 suggests that the
probability of a node being solitary is not only deter-
mined by its respective degree. Therefore, we now look
into the conditional probability considering the average
neighbor degree as the underlying condition p(s|dav). In
Fig. 4(c) for both cases (m = 4 and m = 8), we observe
that a high average neighbor degree corresponds to a
higher probability of the respective node being solitary.
This observation is in line with the findings in the bot-
tom panel of Fig. 4(a). Note that for m � 8, the average
neighbor degree is the only measure that is on average
higher for the solitary nodes with respect to mean of
the network, i.e., 〈dav,i〉sol > 〈dav,i〉all. As m increases,
the high connectivity in the network provides a higher
average neighbor degree to more nodes, creating the
abundance of solitary states observed in the top panel
of Fig. 4(a).

4 Bifurcation analysis

The statistical analysis performed in Sect. 3 has shown
that the average neighbor node degree plays an impor-
tant role in the formation of solitary states. Now, we

deepen this knowledge by investigating the bifurcation
scenario giving rise to the solitary states in the consid-
ered complex network. To this end, we make use of the
fact that the entire synchronized cluster influences the
solitary node as a single input. That is, if node s is a
solitary and it is connected to ds oscillators that are all
in sync with each other, the resulting coupling term in
s is given Cs = σu(ub −us)+σv(vb −vs), where (ub, vb)
are the state variables of oscillators in the synchronized
cluster. In turn, an oscillator n, with node degree dn,
belonging to the synchronized cluster, and directly cou-
pled to the solitary node, has nonzero coupling input
only from the solitary node. The resulting coupling
term in n reads Cn = 1/dn · [σu(us −un)+σv(vs −vn)].
With this, one can immediately infer that for large val-
ues of dn, the coupling term for the node n vanishes
and it decouples from the solitary node s. Therefore,
to ensure the coupling between the nodes s and n, we
assume that n has the minimum node degree dn among
all neighbors of s. In addition, we also assume that the
rest of the network stays synchronized at all times. With
these assumptions, we can reduce the dynamics of the
network to the following equation of two interacting
nodes [35]:

ε
dus

dt
= f(us, vs) + σu(un − us) + σv(vn − vs),

dvs

dt
= g(us, vs),

ε
dun

dt
= f(un, vn) +

1
dn

[σu(us − un) + σv(vs − vn)],

dvn

dt
= g(un, vn), (4)
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Fig. 5 Bifurcations in the minimal neighbor degree of a solitary node. a Bifurcation diagram of the reduced systems
varying dn as a bifurcation parameter. Red crosses indicate saddle-node bifurcations. The vertical dashed line in magenta
indicates the threshold value dc = 7. Top panel: Reduced system in Eq. (4). Bottom panel: Reduced system in Eq. (5)
for ds = 2 (yellow), ds = 4 (red) and ds = 8 (purple). b The minimal neighbor degree of all nodes in Barabási–Albert
network with m = 4 (top panel) and m = 8 (bottom). Red circles indicate nodes that are observed as solitaries. Blue circles
are the nodes that are always in sync. The size of the red circles is proportional to how often the corresponding node is
observed as a solitary. c Conditional probability p(s|dmin) to observe a solitary for a given minimal neighbor node degree
for Barabási–Albert networks with m = 4 (green) and m = 8 (pink). Parameters: σu = 0.12, σv = 0.15, and N = 500

where the functions f (u, v) and g(u, v) are given in Eq.
(2). Following this dimension reduction, we are now able
to study the stability of solutions of the system Eq. (4).
Considering the node degree dn as a continuous param-
eter, we employ numerical continuation analysis to fol-
low a solitary solution as dn is varied. For this task,
we use the software auto-07p [36]. The resulting bifur-
cation diagram is shown in the top panel of Fig. 5(a).
Even though, in reality the minimum node degree dn is
an integer number, the bifurcation analysis in Fig. 5(a)
treating it as continuous provides deep insight into the
stability profile of the solitary node s. Note that the
limit cycle hosting the trajectory of the solitary node
appears in a fold bifurcation at dn ≈ 5.701, see the red
cross in the top panel of Fig. 5(a). This analysis indi-
cates that the neighbor nodes of a solitary node must
have a minimum node degree of dn ≥ 6. Therefore, we
establish this value of dn as a threshold value dc for the
occurrence of solitary states in the network. In addition,
it is also visible in the top panel of Fig. 5(a) that the
increase of the parameter dn leads to a period-doubling
bifurcation transforming the dynamics of the solitary
node, see a blue cross. This observation suggests that
the larger the neighbor node degree, the higher is the
period of the limit cycle hosting the solitary node.

The results shown in the top panel of Fig. 5(a) are
obtained by assuming the dynamics of two coupled
oscillators as a descriptor of two interacting subsets of
the network, i.e., the synchronized cluster and the soli-
tary node. This approach can be improved by splitting

the synchronized cluster into the dynamics of a mean-
field component and the dynamics of the node directly
coupled to the solitary node. With this, the dynamics
of the solitary node s and the directly coupled neigh-
bor n described in Eq. (4) receive an extra dynami-
cal input corresponding to the synchronized mean-field.
The dynamics of the mean-field is described by an extra
oscillator with state variables (ub, vb), which are not
affected by the nodes n and s. The resulting equations
for this version of the reduced system are given by:

ε
dub

dt
= f(ub, vb),

dvb

dt
= g(ub, vb),

ε
dun

dt
= f(un, vn) +

(
1− 1

dn

)
[σu(ub − un) + σv(vb − vn)]

+
1

dn
[σu(us − un) + σv(vs − vn)]

dvn

dt
= g(un, vn),

ε
dus

dt
= f(us, vs) +

(
1− 1

ds

)
[σu(ub − us) + σv(vb − vs)]

+
1

ds
[σu(un − us) + σv(vn − vs)],

dvs

dt
= g(us, vs),

(5)

with f (u, v) and g(u, v) as in Eq. (2). As before, the
bifurcation analysis is performed by varying the min-
imum degree dn of the neighbor node, see the bot-
tom panel of Fig. 5(a). We repeat the analysis for
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three different values of the parameter attributed to
the degree of the solitary node, namely ds ∈ [2, 4, 8].
Surprisingly, the choice of ds does not influence much
the threshold for the existence of solitary states. In all
three cases, we find the fold bifurcation located between
6 < dn < 7, slightly higher compared to the case of
the two-node reduction. This implies that the lower
threshold is dn ≥ 7. We can therefore confirm the claim
that the crucial parameter for the formation of solitary
states is the minimal neighbor node degree dn. Neither
the node degree of the solitary node nor the average
neighbor node degree by itself has a causal role in the
formation.

Finally, we statistically verify this result in the full
system, i.e., via an ensemble of realizations of the com-
plex network. We consider again realizations of BA net-
works with two different values of the parameter m to
compute the quantity dmin,i, the minimum neighbor
node degree of each network node i . For m = 4, in the
top panel of Fig. 5(b), we obtain dmin,i for all nodes i . In
this figure, among the different realizations, the nodes
that are solitary at least once are colored in red, while
the other nodes are marked in blue. In addition, the size
of the red circles is proportional to how often the corre-
sponding node is observed as a solitary. We observe that
the nodes with a higher value of dmin,i are more often
solitaries, indicating that indeed the higher value of the
minimum neighbor node degree yields a higher proba-
bility of being solitary. Moreover, for the m = 4, the BA
network has low connectivity implying that most nodes
have a dmin below the threshold dc = 7 unraveled by
the bifurcation analysis in Fig. 5(a). The dashed hori-
zontal line in Fig. 5(b) marks this threshold and indeed
all nodes below this threshold do not become solitary
(blue circles). Conversely, in a BA network with m = 8,
all nodes have a degree larger than the critical thresh-
old dc. In such a network, all nodes meet the criteria we
established via bifurcation analysis. The network simu-
lations shown in the bottom panel of Fig. 5(b) confirm
this hypothesis. Note that dmin for all nodes falls above
the dashed horizontal line marking dc and most of the
nodes can be solitaries (red circles). Also, in this case,
higher dmin corresponds to a higher probability of being
solitary. Finally, in Fig. 5(c), we complement our anal-
ysis by estimating the conditional probability p(s|dmin)
of a node i with a given dmin,i being solitary. For m = 4
(green circles), the observed probability is nonzero only
for the nodes having dmin,i > dc. In addition, the prob-
ability increases for nodes with higher values of dmin,i.
For m = 8 (pink circles), as all nodes already fall into
the criteria for solitary (dmin,i > dc ∀ i ∈ [1, 500]),
there is no node with zero probability of being a soli-
tary. Again, the probability is higher for nodes with
higher dmin,i. Both cases confirm the existence of the
threshold dc for the minimum node degree of adjacent
nodes provided by the bifurcation analysis.

5 Discussion

In summary, by approaching the onset of solitary states
in complex networks, we have demonstrated that the
connectivity of nodes adjacent to a solitary one is an
essential topological feature for the appearance of soli-
tary states. More specifically, we found a threshold for
the minimum value of the degree of nodes neighboring
the solitary ones in the network. This finding is sta-
tistically demonstrated by estimating the conditional
probability of its occurrence in ensembles of realiza-
tions of scale-free networks. Furthermore, a dimension-
ality reduction of the network dynamics made possible
a bifurcation analysis confirming the existence of the
minimum threshold.

Due to the symmetry-broken character of solitary
states, their occurrence is undesirable in many con-
texts. Therefore, the knowledge of topological con-
straints for the onset of these states sheds light on a
perspective of their control, i.e., suppression or initi-
ation. Finally, we emphasize that the results reported
here can be extended to other classes of networked sys-
tems since there are no particular dynamical, or topo-
logical, restrictions on them.
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23. L. Schülen, A. Gerdes, M. Wolfrum, A. Zakharova, The
solitary route to chimera states. arXiv preprint arXiv:
2204.00385, (2022)

24. T. Nishikawa, A.E. Motter, Symmetric states requiring
system asymmetry. Phys. Rev. Lett. 117, 114101 (2016)

25. J.D. Hart, Y. Zhang, R. Roy, A.E. Motter, Topological
control of synchronization patterns: trading symmetry
for stability. Phys. Rev. Lett. 122, 058301 (2019)

26. Everton S. Medeiros, Ulrike Feudel, Anna Zakharova,
Asymmetry-induced order in multilayer networks. Phys.
Rev. E 104, 024302 (2021)

27. J. F. Yang, T. A. Berrueta, A. M. Brooks, A. T. Liu,
G. Zhang, D. Gonzalez-Medrano, S. Yang, V. B Koman,
P. Chvykov, M. Z. Miskin, et al. Emergent microrobotic
oscillators via asymmetry-induced order. arXiv preprint
arXiv:2205.09814, (2022)

28. I. Omelchenko, O. Omel’chenko, P. Hövel, E. Schöll,
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