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Abstract The synchronization of coupled neurons has been an important field of study in neuroscience. In
this paper, the synchronization in coupled map-based neurons is studied. It is assumed that the neurons are
coupled via a memristor. Firstly, the case of two-coupled neurons is investigated, and then two neurons are
used as the units of a ring network. It is shown that the memristive coupling coefficient and the initial con-
dition of the flux variable affect the synchronization of two neurons. By increasing the memristive coupling
coefficient, multiple synchronous and asynchronous regions are observed. In the ring network, two neurons
in each unit can become synchronous, but the whole network does not reach complete synchronization.

1 Introduction

Synchronization is a critical collective behavior in cou-
pled dynamical systems [1]. In general, synchronization
is associated with different phenomena in various sci-
ences, such as physics, neuroscience, ecology, etc. [2, 3].
Synchronization of chaotic systems has attracted much
attention in recent years [4–6]. In neuroscience, syn-
chronization has many relations with the natural brain
function, such as cognitive tasks [7]. Therefore, it has
been remarkably studied in various neuronal networks
with different neuron models, network structures, and
coupling schemes [8–10].

Most studies on the synchronization of the
neurons have been done on the flow models
[11–13]. In these studies, continuous-time neuron
models, such as Hodgkin–Huxley, Hindmarsh–Rose,
Fitzhugh–Nagumo, etc., have been used. For example,
Sun et al. [13] considered a network of subnetworks
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consisting of Hindmarsh–Rose neurons and showed two
types of burst synchronizations. Nikitin et al. [14] stud-
ied partial synchronization patterns in a multiplex net-
work of FitzHugh–Nagumo oscillators with delayed cou-
pling. Shafiei et al. [15] investigated the coupled Izhike-
vich neurons with partial time delay. They reported
the effect of the partial time delay on the level of
synchronization and also on the formation of different
spatiotemporal patterns. The synchronization has also
been studied in non-identical neurons. For example, Yao
et al. [16] focused on the possibility of the occurrence of
synchronization in two photosensitive and thermosen-
sitive neurons.

In addition to the ordinary differential equations
(ODEs), some discrete dynamical systems (maps) have
been introduced that can represent the biological
dynamics of the neurons [17]. Discretization of ODEe
has been used widely in different complex systems.
Using map-based models decreases the computational
cost significantly. Hence, some studies focusing on syn-
chronization have employed map-based neuron models
[18–20]. Tanaka et al. [18] studied the in-phase and anti-
phase synchronization in a network of map-based burst-
ing neurons. Rakshit et al. [21] investigated the dynam-
ics of two-coupled neuronal Rulkov maps with chemical
synaptic interactions. The effects of the time delay and
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autapse were also under consideration. Sausedo-Solorio
and Pisarchik [22] considered the Rulkov maps with
memory and synaptic delay and observed lag or antici-
pated synchronization. The network of the memristive
version of the Rulkov model was studied by Mehrabbeik
et al. [23]. They showed that in contrast to the origi-
nal Rulkov models, two electrically coupled memristive
Rulkov maps could reach complete synchronization.

In recent years, memristors have found significant
applications in chaotic systems [24–26]. Different fir-
ing patterns in neurons can lead to the induction of
electromagnetic fields, which can be considered by the
memristive coupling between neurons [27–29]. Bao et al.
[27] reported coexisting firing patterns in two neurons
coupled with a memristor with the threshold memduc-
tance. Different coherent and incoherent spatiotempo-
ral patterns, such as the chimera state [30], have also
been found in memristive coupled neurons [31]. In this
paper, we consider KTz map-based neuron models with
memristive coupling. Memristive synapse can be a bet-
ter model for the synapse plasticity. To the best of
our knowledge, the synchronization of this model has
not been studied before. The synchronization is stud-
ied by considering two-memristive-coupled neurons and
a ring network of two neurons. The effects of varying
the parameters of the coupling and memristor are inves-
tigated.

2 Model

The KT model is a two-dimensional map-based neuron
model wherein a hyperbolic tangent function is used
for modeling the membrane potential [32]. This original
model has been extended by adding a third variable as
the slow variable to be able to represent various burst-
ing and spiking patterns (KTz model) [33]. To increase
the computational efficacy of the KTz model, Girardi-
Schappo et al. [34] modified this model by approximat-
ing the hyperbolic tangent function with a logistic func-
tion. This paper uses the modified KTz model for each
neuron.

The following equations define the three-dimensional
KTz map model:

x(t + 1) = f

(
x(t) − Ky(t) + z(t) + H + I(t)

T

)
,

y(t + 1) = x(t),
z(t + 1) = (1 − δ)z(t) − λ(x(t) − xR), (1)

where the gain function f is a hyperbolic tangent that
by first-order expansion can be approximated with a
logistic function:

f(u) =
u

1 + |u| . (2)

In these equations, x is the membrane potential
variable, y is the recovery variable, z is the slow

current, and I denotes the external current. By appro-
priately adjusting the parameters, this map-based neu-
ron model can represent different firing patterns, such
as fast, slow, tonic, cardiac, phasic spiking, and burst-
ing. Here, the parameters are set such that the neu-
ron shows slow spiking behavior, K = 0.6, T = 0.21,
δ = 0.01, λ = 0.01, xR = −0.37, H = 0. This
behavior is shown in Fig. 1 for the initial conditions
(x0, y0, z0) = (0, 0, 0).

When two neurons become connected through
synapses, the information can be exchanged. Here, it is
considered that the synaptic connection is via the mem-
ristor. The schematic of two neurons connected with a
memristor is shown in Fig. 2. The current generating
from the memristor can be described by:

Fig. 1 The schematic of two-coupled map-based neurons
with memristive coupling

Fig. 2 The firing of the map-based neuron for K = 0.6,
T = 0.21, δ = 0.01, λ = 0.01, xR = −0.37, H = 0. The
initial condition is (0, 0, 0)
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Im = ρ(φ)(x1 − x2)
φ(t + 1) = (x1 − x2) − ηφ(t) (3)

where ρ(φ) = α + 3βφ2 is the memductance function
of the memristor [35], and φ is the inner flux variable.
Based on these definitions, two map-based neurons con-
nected by a memristor can be described by:

x1(t + 1) = f

(
x1(t)− Ky1(t) + z1(t) + H + I(t)

T

)
+ εIm,

y1(t + 1) = x1(t),

z1(t + 1) = (1− δ)z1(t)− λ(x1(t)− xR),

x2(t + 1) = f

(
x2(t)− Ky2(t) + z2(t) + H + I(t)

T

)
− εIm,

y2(t + 1) = x2(t),

z2(t + 1) = (1− δ)z2(t)− λ(x2(t)− xR),

φ(t + 1) = (x1 − x2)− ηφ(t), (4)

where ε shows the memristor coupling coefficient
between two neurons and η is the induction coefficient.
The memductance function is considered as ρ with the
parameters α = 0.1 and β = 0.03.

This memristive coupling can lead to synchronized
dynamics between neurons. To measure the synchro-
nization between two neurons, the average synchroniza-
tion error is calculated:

E = 〈
√

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2〉t. (5)

In addition to two-coupled neurons, the synchroniza-
tion is investigated in a ring network of memristive cou-
pled neurons. The schematic of this network is shown
in Fig. 3. It should be noted that the ring of memristive
coupled neurons is similar to a two-layer network with
memristive interlayer couplings. Considering each two-
coupled neuron as a subnetwork, a ring of subnetworks
is constructed. This network can be described by:

x1,i(t + 1) = f

(
x1,i(t)− Ky1,i(t) + z1,i(t) + H + I(t)

T

)

+ ερ(φi)(x1,i(t)− x2,i(t))

+ σ(x1,i+1(t + 1) + x1,i−1(t + 1)− 2x1,i(t + 1)),

y1,i(t + 1) = x1,i(t),

z1,i(t + 1) = (1− δ)z1,i(t)− λ(x1,i(t)− xR),

x2,i(t + 1) = f

(
x2,i(t)− Ky2,i(t) + z2,i(t) + H + I(t)

T

)

− ερ(φi)(x2,i(t)− x1,i(t))

+ σ(x2,i+1(t + 1) + x2,i−1(t + 1)− 2x2,i(t + 1)),

y2,i(t + 1) = x2,i(t),

z2,i(t + 1) = (1− δ)z2,i(t)− λ(x2,i(t)− xR),

φi(t + 1) = (x1,i(t)− x2,i(t))− ηφi(t), (6)

where σ shows the coupling strength between the sub-
networks. Now, the synchronization error can be com-
puted among the first neurons (E1), or the second neu-
rons (E2) or among the first and second neurons in all
subnetworks (E) as:

E1=

〈
1

N − 1

N∑
i=2

√
(x1,1−x1,i)

2 + (y1,1 − y1,i)
2 + (z1,1 − z1,i)

2

〉
t

(7)

E2=

〈
1

N − 1

N∑
i=2

√
(x2,1−x2,i)

2 + (y2,1 − y2,i)
2 + (z2,1 − z2,i)

2

〉
t

(8)

E =

〈
1

N

N∑
i=1

√
(x1,i − x2,i)

2 + (y1,i − y2,i)
2 + (z1,i − z2,i)

2

〉
t

.

(9)

3 Results

At first, two map-based neurons with a memristive
synapse are investigated. The synchronization error of
two neurons is computed by varying the memristor
coupling coefficient (ε) and the induction coefficient
(η). The synchronization error between two neurons
is shown in Fig. 4a. It can be observed that, gener-
ally, the synchronization is not dependent on the induc-
tion coefficient. In contrast, the memristor coupling
coefficient plays an important point. However, its rela-
tion is not linear (see Fig. 4b). In fact, for small cou-
pling coefficients, the neurons are asynchronous. For
the small range 0.11 < ε < 0.13, the synchroniza-
tion appears. By more increasing this coefficient, the
synchronization is disturbed and again appears in the
range 0.41 < ε < 0.47. An increment of the coupling
coefficient from ε = 0.47 leads to asynchronization, and
finally, the neurons become synchronous for ε > 0.54.
The time series of the neurons for some different mem-
ristor coupling coefficients and induction coefficients are
shown in Fig. 4c–f. The synchronous and asynchronous
firing of neurons can be observed in these figures. It
is seen that in the asynchronization mode, the sub-
threshold oscillations have some differences.

Investigating two neurons for different sets of ini-
tial conditions shows that another important param-
eter in the synchronization of two neurons is the ini-
tial condition of the flux variable. Thus, we calculate
the synchronization error by varying the initial condi-
tion of the flux variable (φ0) and the memristor cou-
pling coefficient (ε). The result is shown in Fig. 5a. The
black regions in this figure represent the instability of
the neurons. It is observed that for φ0 < −3.6 and
φ0 > 7.2, there is only one synchronization region, and
the neurons become unstable for higher coupling coef-
ficients. Out of this range, there are multiple synchro-
nization regions by increasing ε. For example, the syn-
chronization errors for φ0 = −7,−4, 0, 7 are shown in
Fig. 5b–e. For φ0 = −7, the synchronization happens
for ε > 0.02, and for ε > 0.175, the neurons become
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Fig. 3 The schematic of
the ring network of
two-memristive-coupled
neurons. The memristor
coupling coefficient is ε, and
the coupling between
subnetworks is shown by σ

Fig. 4 a The result of synchronization error of two-memristive-coupled neurons by varying the memristor coupling coef-
ficient (ε) and the induction coefficient (η). b The error for η = 0.8 with respect to ε. c–f The time series of two neurons
for different η and ε: c η = 0.1, ε = 0.05, d η = 0.1, ε = 0.6, e η = 0.5, ε = 0.6, f η = 1, ε = 0.5. The initial conditions are
[0.91 0.91 0.1 0.55 0.96 0.97 5]
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Fig. 5 a The result of synchronization error of two-memristive-coupled neurons by varying the memristor coupling coef-
ficient (ε) and the initial condition of the flux variable (φ0). The color represents the synchronization error and the black
shows the instability region. b–e The error with respect to ε for φ0 = −7, φ0 = −4, φ0 = 0, φ0 = 7. The initial conditions
are the same as Fig. 4

unstable. For φ0 = −4, there is a narrow synchroniza-
tion region in 0.03 < ε < 0.06, and then the neurons
become synchronous at ε > 0.08. The instability occurs
for ε > 0.35. For φ0 = 0, there are multiple synchro-
nization regions in 0.11 < ε < 0.13, 0.41 < ε < 0.47,
and ε > 0.54. The neurons do not become unstable in
this case. For φ0 = 7, there is a large synchronization
region in 0.025 < ε < 0.3 and a small synchroniza-
tion region in 0.4 < ε < 0.45, and instability occurs at
ε = 0.58. Therefore, the value of the initial flux variable
is significant in the synchronous firing of two neurons.

Next, the memristive synapse coupled neurons are
considered as the subnetworks of a ring network
(Fig. 3), and their synchronization is studied. The syn-
chronization error is computed among the first neu-
rons, among the second neurons, and the first and sec-
ond neurons in all subnetworks. These synchronizations

are calculated by varying the coupling between subnet-
works (σ) and the memristive coupling coefficient (ε).
As it was shown that the initial condition of the flux
variable is an essential factor, we consider four differ-
ent values for this variable as φ0 = −6.2,−2.2, 2, 7.8.
The results are shown in Fig. 6. In this figure, the left
column shows the error of all first and second neurons
(E), the middle column shows the error of the first neu-
rons (E1), and the right column shows the error of the
second neurons (E2). The dark blue region represents
the synchronization region, and the black shows insta-
bility. The first column shows that the first and sec-
ond neurons in subnetworks can become synchronous
in an area of σ and ε. According to the middle col-
umn (and the right column), all of the first neurons of
subnetworks (and the second neurons of subnetworks)
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Fig. 6 The synchronization errors of the ring network by varying σ and ε. Left column: The error of the first and second
neurons in all subnetworks, middle column: the error of the first neurons, right column: the error of the second neurons.
a φ0 = 2, b φ0 = 7.8, c φ0 = −2.2, d φ0 = −6.2. The color represents the synchronization error and the black shows the
instability region

are asynchronous in this region. This means that two-
memristive-coupled neurons are synchronous, but the
subnetworks cannot become synchronous. Furthermore,
this region is wider for larger φ0 values (see parts b and

d in the left column). However, the instability region
also exists in larger φ0 values and increases by increas-
ing φ0.
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4 Conclusion

This paper investigated the synchronization of map-
based neurons with memristor synapse. At first, two
neurons coupled with a memristive synapse were con-
sidered. The synchronization error of two neurons was
computed by varying the memristor coupling coefficient
and the induction coefficient. It was observed that the
synchronization depends only on the memristor cou-
pling coefficient. In fact, by increasing the memristor
coupling coefficient, multiple synchronous and asyn-
chronous regions were formed. Furthermore, the effect
of the initial conditions was studied, and it was revealed
that the initial condition of the flux variable has an
essential role in the synchronization of neurons. As the
initial condition of the flux variables was increased,
the instability region happened in lower coupling
coefficients. A ring network of two-memristive coupled
neurons was studied in the next step. Three synchro-
nization errors were computed: error among the first
and second neurons in all units, the error among the
first neurons, and the error among the second neurons.
The results showed that the first and second neurons in
the subnetworks could become synchronous for particu-
lar coupling coefficients. But the synchronization could
not occur in all units.
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