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Abstract This special issue of the European Physical Journal Special Topics titled “Frontiers of Fractals
for Complex Systems: Recent Advances and Future Challenges” is a collection of cutting-edge research
proposing the application of fractal features to the dynamics of highly nonlinear complex systems.

The fractal theory seeks to understand complexity and
provide an innovative way to recognize irregularity and
complex systems. Fractals allow us to see a certain sym-
metry and order even in otherwise seemingly disordered
and complex systems. The importance of the discov-
ery of fractals can hardly be overstated. Since their
discovery there has been a surge of research activities
geared towards using this powerful concept in almost
every scientific discipline to gain deeper insights into
many unsolved problems. A host of applications dealing
with the fractal geometry of such diverse topics as price
changes and salary distributions, turbulence, statistics
of error in telephone messages, word frequencies in writ-
ten texts, and aggregation and fragmentation processes
are just a few examples.

Another reason for the development of fractals:
advances in computer graphics. The computer has aided
the researchers by providing once-unimaginable, fasci-
nating fractal structures like the Mandelbrot set and
Julia set. In mathematical literature, the Cantor set,
Sierpinski triangle and von Koch curve are some of
the most widely discussed fractal structures. For more
detailed information on fractals, see [1–3].

In recent years, the role of fractal functions in the
realm of approximation theory has become more promi-
nent. Fractal interpolation functions (FIFs) have been
introduced as the attractor of special type of the iter-
ated function system (IFS). In contrast to classical
methods, fractal interpolation functions produce com-
plex or naturally occurring structures using a simple
recursive procedure; as such, the fractal approach offers
more versatility in approximation theory. In the devel-
opment of FIF theory, in order to extend the potential
utility of FIFs and enhance flexibility in the approxima-
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tion, many researchers have constructed various types
of FIFs (see [1–7]).

The most fundamental characteristic of fractals is
their dimension, which is not always an integer. The
fractal dimension is estimated to understand the behav-
ior of complex physical systems. Several numerical tech-
niques have been developed to compute the fractal
dimension. Definitions like Hausdorff and box counting
have been suggested for the calculation of the fractal
dimension in the field of fractal analysis. Though frac-
tal analysis offers many salient features for describing
complex systems, it has been found limiting in terms
of describing objects that exhibit multifractal behav-
ior. As a result, multifractals have arisen as a more
complex form of fractals. The striking beauty of multi-
fractal analysis is that it assigns a set of fractal dimen-
sions (a spectrum) to a given object, whereas fractal
analysis assigns a single fractal value. A variety of mul-
tifractal algorithms have been proposed for use in prac-
tical applications. Multifractal analysis, as an interest-
ing tool, has also been used to characterize signals in
medicine and the biological sciences (see [8–15]).

The advent in recent years of inexpensive comput-
ing power and graphics has led to the study of non-
traditional geometric objects in many fields of science
and engineering, while at the same time, fractals have
been used to depict societal issues that can only be ade-
quately described in terms of complex systems and the
idea of fractals has been used to describe them. In a
sense, fractal theory has brought many seemingly unre-
lated subjects under one umbrella. In recent years, the
study of fractals has faced major changes and challenges
with rapid technological advances, and many new fac-
tors now have to be considered.

This special issue is a collection of 21 cutting-edge
research articles that address the application of fractal
features to the dynamics of highly nonlinear complex
systems.
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The articles can be divided into five sections, namely,

– Fractal functions
– Multifractality and applications
– Fractal calculus
– Chaotic systems
– Fractal dimension and applications

Section 1 includes an approximation of the contin-
uous function defined on a subset of R

2 with a non-
self-referential bivariate fractal interpolation function.
For smoother approximation of the prescribed function,
an r-times continuously differentiable hidden variable
bivariate FIF is developed [16].

Classical spherical harmonics are generalized with
the construction of a set of square integrable func-
tions in [17]. This generalization is made using the
α-fractal functions. In addition, the Bessel sequence,
frame sequence and Riesz sequence for the square inte-
grable functions are investigated.

A recurrent iterated function system is used to con-
struct an affine recurrent FIF. Further, its convergence
analysis and shape-preserving properties are studied in
detail [18].

In [19], by defining a continuous function on the
Sierpinski gasket, its associated α-fractal function and
its box dimension are investigated. Some properties
like topological automorphism, boundedness, and Fred-
holm are discussed by defining the fractal operator on
the gasket. In addition, it is proved that the fractal
Schauder basis exists for the Sierpinski gasket.

In [20], the Riemann-Liouville fractional calculus is
applied to the fractal interpolation function. The study
distinguishes between the roles of constant scaling fac-
tors and function scaling factors in approximation.
After introducing the fractional operator on the space
of continuous functions defined on some closed interval
of R, a number of analytical and algebraic properties
are discussed.

In [21], the Katugampola fractional integral of a vec-
tor valued function is discussed and it is shown that the
fractional integral preserves the properties (like conti-
nuity and boundedness) of the original function. For
the graph of the Katugampola fractional integral of
the given continuous function, the fractal dimension is
estimated. Further, the relation between its Hausdorff
dimension and box dimension is explored.

Section 2 explores multifractal analysis on the Moran
sets and its corresponding measures. For the relative
multifractal formalism of non-regular Moran measures,
some sufficient conditions are developed [22]. Further,
the idea of a stochastic dyadic Cantor set is extended
to a weighted planar stochastic lattice, which leads to
a stochastic porous lattice [23].

The multifractal characterization of reference evap-
otranspiration in India, based on five different loca-
tions with different climatic conditions, is studied in
[24]. Multifractal Cross Correlation Analysis is pre-
sented as a robust method for analyzing correlations
between evapotranspiration and other predictor vari-

ables like average wind speed, minimum and maximum
air temperature.

In [25], a new fractal dimension, namely the φ-
topological Billingsley dimension, is presented, where
φ is a non-negative function defined on the collection of
subsets of separable metric space. The exact value of the
φ-topological Billingsley dimension for a familiar frac-
tal set (the Sierpinski carpet) is estimated. In addition,
the connections between the φ-topological Billingsley
dimension, Hausdorff dimension and topological Haus-
dorff dimension are presented together with an appli-
cation.

In [26], multifractal analysis is used to characterize
chaos in the finance system. The chaotic dynamics are
analyzed for both noise-induced and noise-free systems.
It is observed from multifractal analysis that noise-
induced systems manifest more complicated dynamics
than the deterministic model.

In [27], a new approach to analyzing plasma dynam-
ics via power spectral fractal analysis of the plasma
emission spectrum is presented, taking copper plasma
as an example. The correlation between the fractal
dimension and the plasma temperature is revealed in
order to develop a surrogate method for plasma tem-
perature analysis.

In Sect. 3, the Hyers–Ulam stability for the fractional
order fractal differential equations is investigated [28].
By taking time as a fractal set, the radioactive decay
is mathematically modeled and it is shown that the
model is Hyers-Ulam stable. Further, fractal calculus is
applied to fractal Cantor cubes [29]. Fractal calculus is
defined on the fractal cubes by making use of the inte-
gral staircase function. Moreover, the fractal Laplace
equation is solved for the fractal sets and the Casimir
effect is illustrated as its application.

Section 4 constructs a new kind of memristor by
connecting a sine and cosine function memristor in
series [30]. The dynamical properties, fractal dimension
and Lyapunov exponents of the series memristor con-
structed are numerically investigated through its volt-
ampere characteristics system. The circuit simulation
results are compared with the numerical results and
are found to match.

In [31], the construction of a 2D chaotic system is
proposed and its chaotic characteristics are discussed.
Multi-stability analysis is explored for different states
of the chaotic system.

In [32], a general fractional calculus is described by
using fractional operators with respect to another func-
tion. Together with the continuous time random walk,
a generalized time–fractional Fokker–Planck equation
is investigated.

In section 5, a mathematical model using fuzzy con-
trollers is proposed for a two-link robot manipulator
system [33]. Using random fractals, an optimal algo-
rithm is presented to improve the proposed system’s
performance. To control the two-link robot manipula-
tor, the fuzzy control system is evaluated in a simulated
environment. The simulation results demonstrate that
the proposed system provides better response curves in
terms of stability and minimum settling time.
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In [34], the transmission of COVID-19 is analyzed
using Generalized Fractal Dimensions. X-ray images
from COVID-19 patients and healthy individuals are
compared graphically. To determine the robustness of
COVID-19 virus, multifractal dimension measure is
evaluated for noisy, noise-free and original images.

In [35], a decision-making system using machine-
learned classifiers and seven parameters to examine
twenty-two crops is presented. Based on observations of
the fractal dimension, it is found that the parameters
follow anti-persistent behavior and are thus responsible
for the maximal yield in smart farming. Of the three
algorithms discussed, the random forest algorithm is
the one that provides more accuracy in crop manage-
ment systems. The study will help governments and
farmers alike to make better decisions in crop manage-
ment.

In [36], various types of topological index like the
Randic index, and Harmonic index are estimated for
two different fractal sets, namely the Sierpinski rhom-
bus and Koch snowflake. Further, the calculated indices
are compared with their respective fractal dimensions.

The editors of this special issue wish to thank the
authors for their valued contributions, and the refer-
ees for their dedicated efforts in reviewing the articles.
We believe that the selected papers gathered here will
enrich readers’ knowledge and will help scientists and
researchers to further develop the theory of fractal anal-
ysis and related applications. Lastly, we wish to express
our sincere gratitude to all members of EPJ ST for host-
ing this special issue.
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