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Abstract Based on a recently developed non-perturbative platform designed to simulate the full quantum
dynamics of quantum thermal machines, the situation of a quantum refrigerator operating according to
an Otto cycle is studied. The periodic steady-state dynamics is discussed in detail as well as the key
thermodynamic quantities work, heat, and entropy. A particular benefit of the formulation is that it
allows to access explicitly the work required for switching on and off the interaction with the respective
thermal reservoirs in a consistent way. The domains in which the device operates in refrigerator mode are
characterized.

1 Introduction

In the last decade, remarkable advances have been made
in applying classical thermodynamic concepts to sys-
tems that operate at atomic scales and low temper-
atures [1,2]. In this exceptionally challenging regime,
quantum mechanics takes over and raises questions
on how intrinsic quantum phenomena challenge our
classical understanding of physics. While for thermal
reservoirs, fundamental limits as the Carnot efficiency
remain valid [3,4] and fluctuation theorems equally
apply to the quantum case [5–7], a quantum analogue of
friction due to nonadiabatic finite-time coupling can be
introduced [8,9]. As opposed to the classical case, where
characteristic time and length scales of thermodynamic
cycles can be well separated, a microscopic description
needs to address a loss of separability in the scales of the
respective thermodynamic protocols, i.e., the dynami-
cal equivalent of “valve” and “piston” operation in a
machine which is not self-governed. The first exper-
imental realizations of thermodynamic engines oper-
ating at the atomic scale employed single ions that
were confined in a linear Paul trap [10,11]. Due to the
tapered geometry of such a setup, an ion can move along
the gradient of a funnel-shaped potential. Thus, driv-
ing the frequency of the working medium through two
isentropic processes during which the trap frequency is
varied, a four-stroke Otto cycle is completed by alter-
nate coupling to hot and cold reservoirs. Other realiza-
tions feature solid-state circuits [12] and even explore
the quantum domain [13–16].
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In previous theoretical work, modulations of the
system-reservoir energy transfer have often been bro-
ught about by combining a modulation of the char-
acteristic energy gap of the work medium with spec-
trally structured reservoirs [17–19]. Within a weak-
coupling approximation, driving including fast modu-
lation on the timescale of the reservoir fluctuations can
bring about anti-Zeno dynamics [19]. Coherence effects
thus introduced speed up energy exchange between
system and reservoir, and take the dynamics beyond
the paradigm of finite-time thermodynamics [20]. Like-
wise, modulating the system-reservoir coupling has
been shown to effect a similar speedup [21]. It should
be noted, however, that subjecting these couplings to
explicit time dependence amounts to introducing addi-
tional transfers to/from the work reservoir. This fact is
sometimes neglected in the extant literature, resulting
in unrealistic figures of merit.

In a recent publication [22], we presented a non-
perturbative simulation platform that allows to oper-
ate a quantum Otto cycle with harmonic/anharmonic
oscillator as working medium in a fully dynamical,
finite-time protocol with explicit cyclic modulation of
the system-reservoir coupling. We were thereby able to
observe the engine’s operation during its cyclic dynam-
ics as an open quantum system with consecutive de-
/coupling phases to/from the hot/cold reservoirs as
integral parts of the net energy.

Based on an exact mapping of the Feynman–Vernon
path integral formalism [23,24] onto a Stochastic Liou-
ville-von Neumann equation [25] that has been success-
fully applied in a variety of fields [26–33], this technique
is especially suitable for modeling quantum thermody-
namic processes at low temperatures, strong coupling,
and driving as it naturally includes medium-reservoir
quantum correlations and non-Markovian memory effects
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Fig. 1 Top: energy–frequency diagram of a work medium
in a quantum Otto refrigerator with frequency ω(t) vary-
ing around ω0. The cycle runs in alphabetical order and
includes two isochore (A → B, C → D) and two isentropic
strokes (B → C, D → A). Bottom: thermal contact to hot
(cold) reservoirs is controlled by λh(t) [λc(t)] and expansion
(compression) is due to ω(t). The cycle is specified by three
characteristic time scales τI , τd, τR

[34–39]. It shares the latter advantage with dynamical
studies of thermal machines using hierarchical equa-
tions of motion [40], thus reaching far beyond standard
weak-coupling approaches [41–55].

Besides the heat engine, as the most common vari-
ant of a thermal machine, a refrigerator reverses the
operational principle [56]. During the cyclic operation
of such a cooling machine, work is absorbed from the
cold source and transferred to the hot reservoir. In this
paper, we present essential dynamics and parameter
regimes that allow to operate the engine cycle depicted
in Fig. 1 in refrigerator mode.

2 Modeling

As a microscopic, fully dynamical model to describe
the four-stroke cycle of a quantum Otto refrigerator,
we consider a distinct quantum system Hm(t) = p2

2m +
V (q, t) (1D point particle) with coordinate q, momen-
tum p, and mass m that is governed by a potential
V (q, t). It interacts with two thermal, harmonic reser-
voirs Hc/h that are characterized by their respective
temperatures Tc < Th. The influence of bilinear cou-
pling to the bosonic baths leads to a global Hamiltonian
of the form:

H(t) = Hm(t) + Hc + HI,c(t) + Hh + HI,h(t). (1)

The interaction between the working medium Hm

and the dissipative environment is controlled by two
dimensionless coupling functions λc/h(t) (cf. Fig. 1)

that vary between 1 and 0 (maximum/minimum cou-
pling) during the four branches of the cyclic proto-
col. The de-/coupling stages of the cycle are imple-
mented using sinusoidal functional segments for λc/h(t),
cf. Fig. 1b. Their explicit form strongly depends on
the duration τI which will be discussed in the con-
text of the characteristic cycle times later in this sec-
tion. The free fluctuations of the thermal reservoirs are
assumed to be Gaussian and lead to bilinear coupling
terms HI,c/h(t) = −λc/h(t)q

∑
k ck,c/h(b†

k,c/h +bk,c/h)+
1
2q2λ2

c/h(t)μc/h that contain sums over bosonic modes
that become infinite in the continuum limit. The renor-
malization coefficients μc/h, related to the static reser-
voir response [22,24], ensure that only the dynamical
impact of the medium-reservoir coupling contributes to
the microscopic dynamics. With quantum reservoir cor-
relation functions Lc/h(t− t′) = 〈Xc/h(t)Xc/h(t′)〉 with
Xc/h =

∑
k ck,c/h(b†

k,c/h + bk,c/h) as memory kernels
of a non-local action functional, the effective impact of
the reservoir dynamics on the dedicated system can be
described as a retarded self-interaction, that is:

Lc/h(t) =
h

π

∫ ∞

0

dωJc/h(ω)
[

coth
(

�βc/hω

2

)

cos(ωt)

−i sin (ωt)] , (2)

with spectral distribution of reservoir modes Jα(ω), α =
c, h.

This formulation can be exactly mapped onto a
Stochastic Liouville–von Neumann equation (SLN) [25],
an approach which remains consistent also in the
regimes of strong coupling, fast driving, and low tem-
peratures [26,28–32], where master equations become
unreliable or fail. In the paradigmatic case of ohmic dis-
sipation [57], the reservoirs are not only characterized
by their temperatures, but also by a coupling weighted
spectral density of the form:

Jα(ω) =
mγαω

(1 + ω2/ω2
cut)2

, (3)

up to a high-frequency cutoff ωcut (significantly larger
than any other frequency of the problem, including
1/�βα). The quantity γα denotes a coupling strength
related to the coefficient ηα of classical Stokes friction
ηα = mγα. Assuming factorizing initial conditions for
the global density matrix ρtot, the Feynman–Vernon
path integral formulation for the reduced density oper-
ator of the medium can be converted into a highly non-
trivial version of the SLN with time-dependent control
of system-reservoir couplings:

d
dt

ρξ(t) =
1
i�

[Hm(t), ρξ]

+
∑

α=c,h

{
i

�
λα(t)ξα(t) [q, ρξ]

−i
mγα

2�2
λα(t)λ̇α(t)

[
q2, ρξ

]

123



Eur. Phys. J. Spec. Top. (2021) 230:851–857 853

−i
mγα

2�2
λ2

α(t) [q, {p, ρξ}]

−λ2
α(t)

mγα

�2βα
[q, [q, ρξ]]

}

. (4)

The stochastic propagation of the reduced density in
probability space is, hence, dominated by two distinct
Gaussian noise sources ξc(t) and ξh(t) that are deter-
mined through their respective reservoir correlation
function 〈ξα(t)ξα(t′)〉 = Re Lα(t − t′) − 2mγα

βα
δ(t − t′)

and α = c, h. To obtain physically meaningful results
for the evolution of the reduced system, the individual
stochastic trajectories need to be averaged with respect
to a sufficiently large number of sample realizations
ρ(t) = E[ρξ(t)]. We emphasize that even though the
above equation is local in time, the physical density ρ(t)
carries the full information about the non-Markovian
time evolution.

The above model contains three control parameters
which will later be associated with distinct sources of
work during the cycle. Both the time-dependent poten-
tial V (q, t) and time-dependent couplings λc/h(t) are
operated in alternating phases of the cycle, see Fig. 1.
For simplicity, in the sequel, we consider reservoirs
with equal maximal coupling rate γα ≡ γ and a sin-
gle harmonic oscillator degree of freedom representing
the working medium, that is:

V (q, t) =
1
2
mω2(t)q2, (5)

with a parametric-type driving ω(t). The above for-
mulation also allows to treat anharmonic and higher
dimensional systems [22], but already the one-dimen-
sional linear problem reveals the highly non-trivial fea-
tures of the underlying dynamics. The operating prin-
ciple of the quantum Otto refrigerator, as depicted in
Fig. 1, includes an external modulation of the oscilla-
tion frequency ω(t) of the work medium (“piston”) and
the coupling constants through the control functions
λc/h(t) (“valves”). The frequency ω(t) is varied around
a center frequency ω0 between ω0±Δω

2 , (Δω > 0) within
the time τd during expansion and compression. The ide-
alized cycle consists of two unitary processes (B → C
and D → A) and two isochoric strokes (A → B and C
→ D):

1. The hot isochore (A → B): the working medium is in
contact with the hot reservoir, heat is pumped from
the system to the hot reservoir, and the frequency
is kept constant (no change of volume).

2. Isentropic expansion (B → C ): the working medium
expands and produces work due to an “increase in
volume” toward ω0 − Δω

2 , (Δω > 0).
3. The cold isochore (C → D): the working medium

absorbs heat from the cold reservoir; the frequency
is kept constant (no change of volume).

4. Isentropic compression (D → A): while isolated
from both thermal reservoirs, the working medium
is “compressed in volume” back toward ω0 + Δω

2 .

The isochore branches are divided into an initial
phase raising the coupling parameter λc/h from zero
to one with duration τI , a relaxation phase of duration
τR, and a final phase with λc/h → 0, also of duration τI .
During one complete cycle of the refrigerator operation,
work is consumed to pump heat from the cold to the hot
reservoir. The cycle adds up to T = 4τI +2τd+2τR. The
total simulation time covers a sufficiently large number
of cycles to approach a periodic steady state (PSS) with
ρm(t) = ρm(t + T ).

Now, we go beyond conventional treatments by
including the coupling/decoupling processes as finite-
time transitions between phases of the process and tak-
ing into account that modulating the thermal interac-
tion contributes to the energy balance, see also Ref. [34].
This precludes the use of simpler formulations (e.g.,
master equations) which do not allow to systemati-
cally include this aspect. However, in the deep quantum
regime, such effects may, on the contrary, play a crucial
role as will be revealed in the sequel.

3 Periodic steady-state dynamics

In a first step, the steady-state dynamics for a quantum
refrigerator cycle with harmonic work medium is shown
in Fig. 2. In its initial state, the system is uncorrelated
to either reservoir, in a Gibbs state with temperature Th

of the hot bath. The system (work medium) approaches
a periodic steady state (PSS) after a transient period
of time, see Fig. 2a, characterized by fast oscillations
of the second moments on time scales of order 1/ω0

and cyclic modulations according to the sequence of
strokes. In particular, pronounced qp-correlations are
manifestations of the deviation of the finite-time oper-
ation from a mere sequence of equilibrium states. A
blow-up of the PSS dynamics for one cycle is depicted
in Fig. 2b. While position 〈q2〉 and momentum 〈p2〉
variances tend to approach roughly their values in ther-
mal equilibrium values (dashed lines) toward the end
of the isochores according to the respective oscillator
frequencies, the oscillatory pattern survives especially
during contact with the cold reservoir. These features
also demonstrate the non-local dynamics in time of the
reduced quantum dynamics with rapid coherent energy
transfer between medium and reservoir and relatively
long-lived correlations between them.

4 Heat, work, and efficiency

In a second step, we turn to the thermodynamic quanti-
ties heat and work that fully characterize the operation
of a thermal machine. They can be derived from the
Hamiltonian dynamics of the model according to the
total energy change due to external driving:

d

dt
〈H〉 =

〈
∂Hm(t)

∂t

〉

+
〈

∂HI,c(t)
∂t

〉

+
〈

∂HI,h(t)
∂t

〉

,

(6)
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(a) (b)

Fig. 2 Quantum dynamics for an harmonic Otto refrig-
erator with ω0�βh = 1, ω0�βc = 1.5. Time scales are
ω0τI = 10, ω0τd = 5, ω0T = 60 with peak reservoir cou-
pling γ/ω0 = 0.25 and ωcut/ω0 = 30. a Initially, tran-
sient dynamics settle into a periodic pattern, i.e., a PSS
is approached for the variances in position, momentum and

cross-correlations 〈qp+ pq〉. b During a PSS cycle, the vari-
ances exhibit damped oscillations toward thermal equili-
bration with the respective reservoirs, while a high degree
of non-equilibrated motion is maintained especially during
contact with the cold reservoir

with separate terms that correspond to parametric
control through ω(t) and λc/h(t). During a PSS, the
microstate of the working medium as described by the
reduced density ρm(t) is restored after one iteration
ρm(t + T ) = ρm(t). This periodic behavior contin-
ues to be apparent in the inner energy of the sys-
tem and the interaction 〈Hm(t + T )〉 = 〈Hm(t)〉 and
〈HI,α(t + T )〉 = 〈HI,α(t)〉. The heat flux to/from the
system can be decomposed into two contributions that
lead to an exchange of energy with the cold and hot
bath, respectively, that is:

jQ(t) := Tr{Hmρ̇tot}
= − i

�
Tr{[Hm,HI,c]ρtot}

︸ ︷︷ ︸
:=jQ,c(t)

− i

�
Tr{[Hm,HI,h]ρtot}

︸ ︷︷ ︸
:=jQ,h(t)

,

(7)

so that the heat that transferred into the hot/cold reser-
voir over one cycle reads:

Qα =
∫ T

0

dt jQ,α(t) − WI,α. (8)

Here, WI,α denotes the work required to de-/couple
the work medium from the respective thermal reservoir,
that is:

WI,α =

T∫

0

dt

〈
∂HI,α(t)

∂t

〉

. (9)

The external driving leads according to Eq. (6) to
another source of work, namely:

Wd =
∫ T

0

dt

〈
∂Hm(t)

∂t

〉

. (10)

More specifically, this latter work originates from driv-
ing the potential through the frequency modulation
ω(t) and is either generated or consumed along the isen-
tropic strokes. Instead, it can be shown that the total
coupling work during one cycle WI = WI,c + WI,h is
completely dissipated into the reservoirs. A representa-
tion of the first law is, hence, verified by the per-cycle
balance Wd + WI + Qc + Qh = 0.

The expressions for heat transfer Qα and the work
sources Wd and WI can be translated from Hamilto-
nian dynamics to the probabilistic framework of the
SLN. This is a straightforward task if the frequency
modulation of the system Hamiltonian is considered:

〈
∂Hm(t)

∂t

〉

= ω̇(t)
〈

∂Hm(t)
∂ω

〉

= ω(t)ω̇(t)〈q2〉. (11)

As a particular benefit, the SLN approach allows
to access more intricate correlations between system
and reservoir degrees of freedom. An example is the
heat flux jQ,α(t), whose stochastic equivalent is found
as [22]:

jQ,α(t) = − i

�
〈[Hm,HI,α]〉

= λα(t)ξα(t)〈p〉/m − γαλ2
α(t)〈p2〉/m

+γαλ2
α(t)kBTα

−γαλα(t)λ̇α(t)〈qp + pq〉/2. (12)

Likewise, the energy change of the total Hamilto-
nian due to an explicit time-dependent system-reservoir
interaction can be expressed through microscopic dynam-
ics and stochastic force fields:
〈

∂HI,α(t)

∂t

〉
= λ̇α(t)

〈
∂HI,α(t)

∂λα

〉

= −λ̇α(t)ξα(t)〈q〉 + γαλα(t)λ̇α(t)〈qp + pq〉/2
+γαλ̇2

α(t)m〈q2〉. (13)
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(a) (b)

Fig. 3 Thermodynamic quantities of the harmonic quan-
tum Otto refrigerator for various peak coupling strengths
γ/ω0 at fixed hot bath ω0�βh = 1. The parameters of the

control protocol are again ω0τI = 10, ω0τd = 5, ω0T = 60.
a Net work Wd +WI and b absorbed heat Qc from the cold
reservoir

These and corresponding expressions for all relevant
quantities within the stochastic formulations allow to
analyze the behavior of the quantum refrigerator in
detail. For this purpose, we have to operate the thermal
machine in a certain regime in parameter space as we
will discuss now.

In Fig. 3a, a strong coupling dependence of the
net work Wd + WI > 0 can be seen for increased
coupling strength γ/ω0 which always appears as con-
sumed energy. In contrast, in (b), the dependence of
the absorbed heat from the cold reservoir Qc changes
its sign with growing coupling or/and with growing
temperature gradient between hot and cold reservoir.
Hence, to avoid that the thermodynamic cycle leaves
the refrigerator regime Qc > 0, one roughly has to
respect the cooling condition [56]:

ωh

ωc
>

βc

βh
. (14)

At high temperatures and weak coupling in the quasi-
stationary limit, this condition easily follows from (12)
and (9): Then, only the second and the third term
in jQ,c survive and WI,c is negligible. Since 〈p2〉(t)
relaxes with coupling rate γc toward the equilibrium
value 〈p2〉D ≈ m/βc, one finds Qc ≈ (〈p2〉D −〈p2〉C)/m
with 〈p2〉C ≈ (ωc/ωh)m/βh. At lower temperatures,
the relation still applies in the weak coupling/quasi-
stationary regime but typically does not hold beyond.
This is clearly seen in Fig. 3b, where Qc displays a
non-monotonous behavior with increasing thermal cou-
pling due to the growing impact of WI,c but also due
to the coupling dependence of 〈p2〉(t). For a sufficiently
low temperature of the cold bath, we find for the given
parameter set that always Qc < 0 which implies that
the machine consumes energy by transferring heat from
the hot to the cold reservoir. Accordingly, the efficiency
in the refrigerator mode defined as

η =
Qc

Wd + WI
(15)

formally becomes negative, since Wd + WI > 0.

Fig. 4 Thermodynamic efficiency η (cf. Eq. 15) for the
quantum refrigerator for various peak coupling strengths
γ/ω0, at fixed hot bath ω0�βh = 1 and frequency com-
pressions Δω/ω0 = 1 and Δω/ω0 = 0.8 (inset, dashed).
The refrigerator works efficiently for temperature differences
between the hot and the cold reservoir that remain suffi-
ciently small. For larger damping strengths, the increased
coupling costs turn the refrigerator into a dissipator for
η < 0

Figure 4 shows the effect of increased temperature
spreads between hot and cold reservoir on the refrig-
erator’s efficiency. The thermodynamic cooling opera-
tion works quite efficiently for moderate damping γ/ω0

and moderate temperatures of the cold reservoir. The
inset in Fig. 4 shows the effect of lowering the effec-
tive frequency modulation, i.e., the hub size of com-
pression and expansion strokes Δω/ω0. While for small
temperature differences between hot and cold reservoir,
a smaller hub size can increase the efficiency to some
extent, higher temperature gradients require sufficiently
large compression strokes to pump sufficient amounts of
energy against the temperature gradient.
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(a) (b)

Fig. 5 The von Neumann entropy SvN (ρm) for one PSS
refrigerator cycle (a) and a comparable cycle (with respect
to process time scales) of a quantum Otto engine (b) is
shown for various temperatures. a Refrigerator entropy for

peak coupling strength γ/ω0 = 0.25 at fixed hot bath
ω0�βh = 1. b Heat engine entropy for fixed cold bath inverse
temperature ω0�βc = 3. Periods of unitary evolution of the
working medium are indicated by dashed vertical lines

5 Von Neumann entropy—refrigerator vs.
heat engine regime

In case of heat engine or refrigerator protocols with
harmonic work media, the individual samples of the
reduced density remain Gaussian for Gaussian initial
conditions. This is a result of Gaussian transformations
that always map Gaussian states onto Gaussian states
[58,59]. The von Neumann entropy of mixed states can
then be derived [60] from the elements of the covariance
matrix according to:

SvN (ρ) = g

(√
〈q2〉〈p2〉 − 〈qp + pq〉2/4

)

g(x) =

(
x +

1

2

)
log

(
x +

1

2

)
− (x − 1

2
) log

(
x − 1

2

)
.

(16)

For an harmonic oscillator in thermal equilibrium
weakly coupled to a thermal bath, the von Neumann
entropy of the steady state is known in analytic form:

SvN = −kB log
(
1 − e−�βω

)
+ �βω

e−�βω

1 − e−�βω
. (17)

In [22], it is shown how the working medium in the
PSS regime of a heat engine cycle substantially devi-
ates from a mere sequence of equilibrium states. The
entropy is thereby used to indicate incomplete thermal-
ization with the reservoirs during the isochores. Fig-
ure 5 shows the von Neumann entropy for an entire
PSS cycle of a refrigerator setting (a) and for a, in
terms of process time scales, corresponding heat engine
(b). The von Neumann entropy SvN displays in both
thermodynamic regimes the alternate sequences of uni-
tary strokes and thermal contacts to reservoirs. Even
with a relatively long contact time compared to 1/γ,
the entropy values indicate incomplete thermalization
with the colder reservoir, even when the non-thermal
nature of squeezing is disregarded.

6 Conclusions

In this paper, we presented a brief discussion of the
quantum dynamics of a quantum refrigerator within a
consistent non-perturbative formulation. This allows to
monitor details of the mode of operation of the device
including the periodic steady state. While we focus here
on a harmonic work medium, it is straightforward to
consider also nonlinear systems as shown for quantum
heat engines recently [22]. The prominent role of the
coupling work has been elucidated.

As a next step, the platform will be extended to
implement optimal control techniques to control quan-
tum coherences and correlations between work medium
and reservoirs. This may also lead to new driving pro-
tocols beyond the known classical ones (Otto, Stirling).
Furthermore, the cycle protocol could be generalized by
including measurements [61].
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