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Abstract We investigate critical current noise in short ballistic graphene Josephson junctions in the open-
circuit gate-voltage limit within the McWorther model. We find flicker noise in a wide frequency range
and discuss the temperature dependence of the noise amplitude as a function of the doping level. At the
charge neutrality point we find a singular temperature dependence T−3, strikingly different from the linear
dependence expected for short ballistic graphene Josephson junctions under fixed gate voltage.

1 Introduction

The encapsulation of a graphene sample in hexagonal
boron nitride allows the production of devices charac-
terized by ballistic transport features up to room tem-
perature at a micrometer scale for a wide range of car-
rier concentration [1–3]. Based on this technology, bal-
listic bipolar graphene Josephson junctions (GJJ) have
been realized [4–6]. These high-quality graphene sam-
ples with superconducting electrodes in close proxim-
ity to the graphene layer with ultra-clean interfaces
allow Cooper pairs ballistically roaming over micron
scale lengths [7–9]. In a GJJ, a dissipationless super-
current flows in equilibrium through the normal region
via the Andreev reflections at each superconductor-
graphene interface. In this system, the Andreev level
spectrum, and as a consequence the current-phase rela-
tion, depends on the normal phase channel length (L)
and on the doping level in graphene layer. In this work,
we focus on the short channel limit, L � ξ, where ξ
is the coherence length in the superconductor. This
regime has been recently experimentally achieved in
[6], and well described within the Dirac-Bogoliubov-de
Gennes approach [10]. The tunability of the current-
phase relation by varying the doping level has allowed
the realization of voltage-controlled transmon, also
known as a gatemon [11,12].

In this manuscript, we investigate the critical cur-
rent noise in short ballistic GJJ within the McWorther
model [13] commonly used to describe noise induced by
electron traps in oxide substrates [14–18]. Charge traps
act as independent generation-recombination centers,
which are described as random telegraph processes. Due
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to proximitized superconductivity of the normal metal
forming the junction, fluctuations of carrier density in
the graphene insert induce fluctuations of Andreev lev-
els, resulting in noise in the critical current of the bal-
listic GJJ [19].

Here, we address the open-circuit gate-voltage limit,
excluding any charge flow between the graphene layer
and the metal gate via the external circuit. This regime
is complementary to the fixed graphene-to-metal-gate
voltage-drop regime where charge flow through the cir-
cuit allows readjustment of the number of carriers in
graphene after each trapping/recombination process.
In Ref. [19] the fixed-VG regime was considered under
the assumption of instantaneous equilibration of car-
riers in graphene after each tunneling process. In an
equivalent circuit description, in the present manuscript
we address the infinite external resistance limit of the
bias circuit, whereas the zero resistance limit was con-
sidered in Ref. [19]. In the following, we will refer to
these two regimes as the ”open-circuit” and ”fixed gate
voltage” operating conditions, respectively. We demon-
strate that, similarly to the fixed gate voltage regime,
noise in the critical current due to fluctuations of the
carrier density in graphene depends on frequency, ω, as
SIc(ω) = A(T, μ)/ω, where μ is the chemical potential
in graphene. For large doping we find that A(T, μ) is
independent on the operating regime, or equivalently
on the equilibration time in graphene, as expected. At
the charge neutrality point (CNP) instead we find qual-
itative differences leading to striking consequences in
the low-temperature behavior of the noise amplitude
A(T, μ = 0). We find that in the open-circuit limit the
noise amplitude diverges as A(T, 0) ∝ T−3, whereas for
fixed gate voltage it is AVG(T, 0) ∝ T .
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Fig. 1 Schematic of the device (side view). The device con-
sists of a metal gate (red), a substrate (green), a monolayer
graphene (gray), and two superconducting electrodes (yel-
low). Within the substrate, the cyan circles represent the
electron traps

2 Model

Here we introduce the model which relates the charge
carrier density in graphene to charge traps in the sub-
strate. We refer to the simple device shown in Fig. 1,
formed by a monolayer graphene on a substrate host-
ing electron traps placed on top of a metal gate. The
metal-substrate interface is at z = 0, the graphene layer
is treated as a two-dimensional system at z = d and it
is partially covered by two superconducting electrodes.
The substrate width d is much smaller than both lon-
gitudinal sizes along x̂ and ŷ directions.

Carrier density fluctuations are due to charge trap-
ping and release processes between graphene and carrier
traps in the underlying substrate, and the trapping and
recombinations are considered as discrete Markov pro-
cesses [20]. The occupancy number X(i, t) of the trap
labeled by the index i at time t is a random variable.
Each trap can be empty (X(i, t) = 0) or occupied by a
single electron (X(i, t) = 1), and it randomly switches
between these states with time-independent rates (sta-
tionary process). The conditional probability that the
trap i at time t has the occupation number X(i, t) if the
trap j at time t0 has the occupation number X(j, t0) is
written as

P [X(i, t)|X(j, t0)] = δi,jpi[X(i, t − t0)|X(i, 0)]
+wi(X(i, 0)) , (1)

where wi(X(i, 0)) is the stationary probability of trap
i which depends on the initial occupation X(i, 0) as
follows wi(1) = fi and wi(0) = 1−fi, and the Kronecker
delta appears because different traps are uncorrelated.
The matrix pi is expressed as [19–21]

pi[X(i, t)|X(i, 0)] =
[
pi[0|0](t) pi[0|1](t)
pi[1|0](t) pi[1|1](t)

]

=
[

fi −(1 − fi)
−fi 1 − fi

]
e−γit , (2)

where γi = λi,00+λi,11 is the switching rate between the
two states of the stochastic process expressed in terms
of the transition rates for 0 → 1 and 1 → 0 processes,
λi,00 and λi,11, respectively. Due to Markovianity, the
multi-time correlators reduce to two-points correlation
function

P [X(iN , tN )|X(iN−1, tN−1); . . . ;X(i0, t0)]
= P [X(iN , tN )|X(iN−1, tN−1)] . (3)

The density of populated traps per unit volume and
energy, NT(ε,R, t), fluctuates around its average value
NT0. Assuming that trap i is located at position Ri and
that the energy of the occupied trap is εi (evaluated
with respect to the CNP), the average value can be
expressed as

NT0(ε,R) =
MT∑
i=1

δ(ε − εi)δ(R − Ri)fi , (4)

and the fluctuations as

δNT(ε,R, t) = NT(ε,R, t) − NT0(ε,R)

=
MT∑
i=1

δ(ε − εi)δ(R − Ri)[X(i, t) − fi] , (5)

where MT is the total amount of traps. From here
on, we assume that the stationary probability coin-
cides with the equilibrium occupation function fi =
f(εi,Ri) = fD(εi − μ0), where fD(x) = 1/{1 +
exp [x/(kBT )]} is the Fermi-Dirac distribution function
and μ0 is the Fermi level. Under these conditions, the
average density of populated traps per unit volume and
energy and the multi-time correlators read

〈δNT(ε,R, t)〉 = 0 , (6)
〈δNT(ε1,R1, t1)δNT(ε0,R0, t0)〉

= δ(R1 − R0)δ(ε1 − ε0)D(ε0,R0)fD(ε0 − μ0)
[1 − fD(ε0 − μ0)] exp[−γ(ε0,R0)(t1 − t0)] , (7)

〈δNT(ε2,R2, t2)δNT(ε1,R1, t1)δNT(ε0,R0, t0)〉
= δ(R2 − R1)δ(R1 − R0)

×δ(ε2 − ε1)δ(ε1 − ε0)D(ε0,R0))fD(ε0 − μ0)
[1 − fD(ε0 − μ0)][1 − 2fD(ε0 − μ0)]

× exp[−γ(ε0,R0)(t2 − t0)] , (8)
〈δNT(ε3,R3, t3)

δNT(ε2,R2, t2)δNT(ε1,R1, t1)δNT(ε0,R0, t0)〉
= 〈δNT(ε3,R3, t3)δNT(ε2,R2, t2)〉
〈δNT(ε1,R1, t1)δNT(ε0,R0, t0)〉

+δ(R3 − R2)δ(R2 − R1)δ(R1 − R0)
δ(ε3 − ε2)δ(ε2 − ε1)δ(ε1 − ε0)

×D(ε0,R0)fD(ε0 − μ0)[1 − fD(ε0 − μ0)]
[1 − 2fD(ε0 − μ0)]2 exp[−γ(ε0,R0)(t3 − t0)] . (9)
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Here, D(ε,R) =
∑MT

i=1 δ(ε− εi)δ(R−Ri) is the num-
ber of trap states per unit volume and energy at posi-
tion R for energy ε. We assumed that the switching
rates γ depend only on the trap distance from the
graphene layer as [13,15]

γ(ε,R) = γ0 exp[−|z − d|/�0] , (10)

usually the width of the substrate is d ∼ 100 nm, and
typical orders of magnitude of the tunneling parame-
ters are γ0 ∼ 1010 s−1 and �0 ∼ 1 − 20 Å, respectively
[15,23]. In addition, we assume that traps are homoge-
neously distribuited in the substrate, D(ε,R) → D(ε).
Under these conditions, the deviations of the total num-
ber of electrons in the traps from its equilibrium value
is

δNT(t) =
∫

dr

∫ d

0

dz

∫ Λ

−Λ

dεδNT(ε,R, t) , (11)

where R = (r, z), and Λ is the cut-off energy. In the
open-circuit limit charge flow between the graphene
layer and the metal gate via the external circuit is
not possible. Thus generation-recombination processes
in the traps result in fluctuations of the total num-
ber of carriers on the graphene layer opposite to fluc-
tuations of the number of electrons in the traps, i.e.
δN(t) = −δNT(t). We investigate the critical current
noise in short ballistic GJJs with the Dirac-Bogoliubov-
de Gennes approach of Ref. [10]. The resulting criti-
cal current, Ic, depends on the doping level μ which
is, in turn, related to the carrier density. Thus δμ ≈
(dμ0/dn0)δN , where μ0 and n0 are respectively the
chemical potential and the carrier density in graphene
at equilibrium. Treating fluctuations of the doping level
as an adiabatic perturbation of the Andreev levels, crit-
ical current fluctuations can be expressed as δIc(t) =
Ic(t) − 〈Ic(t)〉, where

Ic(t) ≈ Ic(μ0) − dIc

dμ0
εTδNT(t)

+
1
2

d2Ic

dμ2
0

ε2
T[δNT(t)]2 , (12)

with εT = e2

SCQ
, CQ = e2 dn0

dμ0
is the quantum capaci-

tance [22] and S is the area of the graphene stripe in
normal phase. The power spectrum of the critical cur-
rent takes the following analytical form

SIc(ω) =

∫ ∞

0

dt

π
cos(ωt)〈δIc(t)δIc(0)〉

=
A(μ, T )

ω
=

=

[(
dIc

dμ0

)2

F0 −
(

dIc

dμ0

)(
d2Ic

dμ2
0

)
εTF1 +

(
d2Ic

dμ2
0

)2
ε2T
4

F2

]

ε2T
S�0

2ω
W(ω) , (13)

where

Fj =
∫ Λ

−Λ

dεD(ε)fD(ε − μ0)[1 − fD(ε − μ0)]

[1 − 2fD(ε − μ0)]j , (14)

W(ω) =
2
π

[
arctan(ed/�0ω/λ0) − arctan(ω/λ0)

]
.

(15)

In the frequency range γ0e
−d/�0 � ω � γ0, it is easy to

verify that W(ω) ≈ 1, thus the critical current power
spectrum exhibits flicker noise. The power spectrum in
Eq. (13) is the main achievement of this work. This
expression has the same form obtained in the fixed gate-
voltage limit in Ref. [19]. The only difference is that in
the open-circuit regime εT = e2/(SCQ) enters the noise
amplitude instead of εQ = e2/[S(CQ+Cg)], where Cg =
εr/(4πd) is the geometric capacitance (εr is the rela-
tive dielectric constant of the substrate). For large dop-
ing, the quantum capacitance is approximately given
by CQ ≈ 2e2

π�2v2
D

|μ0| 	 Cg (where vD ∼ 106 m/s), there-
fore εQ ≈ εT and the noise amplitude A(μ, T ) does
not depend on the operating condition. In other words,
within the McWorther model, the critical current power
spectrum for large doping does not depend on the ther-
malization time of the carrier density in graphene. For
zero doping instead, the quantum capacitance is written
as CQ ≈ 2 ln(2)e2

π�2v2
D

kBT � Cg, which leads to εQ � εT.
This implies a substantial difference in the critical cur-
rent spectrum in the two operating conditions. In par-
ticular, the temperature dependence is qualitatively dif-
ferent. For zero doping it is dIc/dμ0|μ0=0 = 0 [10], thus
Eq. (13) reduces to

SIc(ω) ≈
(

d2Ic

dμ2
0

)2
ε4
TF2�0S

8ω

=
A(0, T )

ω
. (16)

The temperature dependence is included in εT and F2.
For low-temperatures Eq. (16) gives A(0, T ) ∝ T−3.
This singular behavior arises from εT ∝ 1/CQ ∝ 1/T
and from F2 ≈ D(0)kBT/3, valid for a smooth energy
dependence of the density of trap states D(ε). The sin-
gular temperature behaviour of the noise amplitude is
a striking consequence of the open-circuit limit. In the
fixed gate voltage regime instead the energy scale εQ

tends to the constant value εQ ≈ e2/(SCg) for low tem-
peratures and the noise amplitude depends linearly on
T [19].

3 Conclusions

In this manuscript, we have studied critical current
noise in short ballistic GJJ based on the phenomeno-
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logical McWhorter model [13] in the open-circuit limit
and compared with the fixed gate voltage regime inves-
tigated in Ref. [19]. We have found that in both operat-
ing conditions there is a wide frequency range [15,23],
2π × 10−10 s−1 � f � 2π × 1010 s−1, where the crit-
ical current spectrum displays the characteristic flicker
noise behavior, ∝ 1/f . In the large doping regime, the
temperature dependence of the power spectrum turns
out not to depend on the operating regime, or equiv-
alently on the charge equilibration time in graphene,
as expected. At the CNP instead, qualitative differ-
ences emerge leading to striking consequences in the
low-temperature behavior of the noise amplitude. In
the open circuit limit A(T, μ = 0) exhibits a singular
temperature dependence, unlike the fixed gate-voltage
regime which implies a linear temperature dependence.
Our results suggest a viable experimental validation of
the phenomenological McWorther noise mechanism in
short-ballistic GJJ by performing critical current noise
measurements in open or closed gate voltage circuits.
The ultra-sensitivity of the power spectrum close to the
CNP suggests the need for a microscopic modelization
of the critical current noise mechanism. The resulting
spectrum may have relevant implications on the coher-
ent time evolution of graphene-based gatemons, simi-
larly to qubit [16,24] and qutrit [25] realized with con-
ventional Josephson junctions.
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