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Abstract We give a nonequilibrium Green’s function (NEGF) perspective on thermodynamics formu-
lations for open quantum systems that are strongly coupled to baths. A scattering approach implying
thermodynamic consideration of a supersystem (system plus baths) that is weakly coupled to external
superbaths is compared with the consideration of thermodynamics of a system that is strongly coupled
to its baths. We analyze both approaches from the NEGF perspective and argue that the latter yields a
possibility of thermodynamic formulation consistent with a dynamical (quantum transport) description.

1 Introduction

In the last decade, tremendous progress in experi-
mental techniques resulting in the miniaturization of
devices for energy storage and conversion has created
the possibility of utilizing quantum effects on a practi-
cal level. One such experimental development has been
the nanoscale thermoelectric effect at single atom and
single molecule junctions [1–5]. Such quantum devices
are characterized by efficiency of their performance [6–
8], and traditional characteristics (e.g., figure of merit)
taken from studies on the macroscopic equilibrium ther-
moelectric systems are often utilized. Clearly, macro-
scopic thermodynamics underlying such characteristics
is not applicable at the nanoscale level. Meaningful
description of efficiency in nanoscale junctions requires
corresponding development of quantum nonequilibrium
thermodynamic theory. Moreover, in junctions with
molecules chemisorbed on (at least one of the) macro-
scopic contacts, thermodynamic theory should account
for non-negligible (strong) system-bath couplings.

Significant theoretical effort was undertaken to for-
mulate nanoscale thermodynamics at strong system-
bath couplings for both classical [9,10] and quan-
tum [11–13] systems. Arguably, there are two main
approaches to the problem: the first complements a
physical system strongly coupled to its baths with a
set of additional superbaths and implements standard
methods in consideration of the supersystem (system
plus baths) weakly coupled to its superbaths. A system
thermodynamics is defined as the difference between
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thermodynamic characterization of the supersystem
and that of the set of free baths weakly coupled to the
corresponding superbaths. The second approach builds
a thermodynamic description for the physical system,
that is, system strongly coupled to its baths. In addi-
tion to developments of thermodynamic formulations,
an interesting, widely debated question is the possibil-
ity of thermodynamics being consistent with underlying
system dynamics [14,15].

Here, we consider a generic model of a molecular
junction with non-negligible (strong) molecule–contact
couplings. We utilize the nonequilibrium Green’s func-
tion (NEGF) to describe dynamics of the system and
discuss compatibility of the dynamic consideration with
several suggestions for the thermodynamic characteri-
zation of such systems available in the literature. We
present general NEGF formulations (beyond the usu-
ally assumed slow driving) for thermodynamic char-
acteristics of the system. We argue that difficulties
of Green’s function-based analysis of supersystem–
superbath thermodynamic treatments are caused by
incompatibility of basic assumptions in the two theo-
ries: The thermodynamic system is associated with the
physical system in the former and with the supersystem
(physical system plus baths) in the latter. System-bath
thermodynamic formulations are found to be compati-
ble with NEGF dynamics. The structure of the paper
is as follows: Sect. 2 introduces the model and presents
the basics of the dynamical NEGF treatment. Ther-
modynamic NEGF-based formulations are presented in
Sect. 3 for supersystem–superbath and in Sect. 4 for
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system-bath considerations. Section 5 summarizes our
findings.

2 Dynamical consideration

We consider an open noninteracting nonequilibrium
quantum system S (e.g., molecule with its electronic
structure calculated using density functional theory)
strongly coupled to its baths {B} (e.g., metallic con-
tacts in the junction). The system is subjected to
an arbitrary external driving. The Hamiltonian of the
model is:

Ĥ(t) = ĤS(t) +
∑

B

(
ĤB + V̂SB(t)

)
, (1)

where ĤS(t) and ĤB are Hamiltonians of the system
S and bath B, respectively, and V̂SB(t) describes cou-
pling (electron transfer) between system S and bath B.
Explicit expressions are:

ĤS(t) =
∑

m1,m2∈S

H(S)
m1m2

(t)d̂†
m1

d̂m2 ,

ĤB =
∑

k∈B

εk ĉ†
k ĉk, (2)

V̂SB(t) =
∑

m∈S

∑

k∈B

(
Vmk(t)d̂†

mĉk + H.c.

)
, (3)

where d̂†
m (d̂m) and ĉ†

k (ĉk) create (annihilate) an elec-
tron in orbital m of the molecule (system) and single-
particle state k of a contact (bath), respectively.

For such a noninteracting model, one can easily sim-
ulate exact projections of the single-electron Green’s
function [16–18]:

Gn1n2(τ1, τ2) ≡ −i〈Tc ân1(τ1) â†
n2

(τ2)〉. (4)

Here, Tc is the Keldysh contour ordering operator, τi

are the contour variables, and ni are indices for single-
particle state either in the system or in the baths, that
is, ân is either d̂m or ĉk.

Dynamical (quantum transport) consideration defines
particle, IB, and energy, JB, fluxes at the S − B inter-
face as escape rates of particles and energy, respectively,
from bath B. Exact expressions for the fluxes in terms
of single particle Green’s functions are obtained follow-
ing Jauho–Wingreen–Meir [19] and similar [20] deriva-

tions:

IB(t) ≡ −
∑

k∈B

d

dt

〈
ĉ†
k(t)ĉk(t)

〉

= −Tr

[
N̂B

d

dt
ρ̂(t)

]
=

∑

k∈B

TrS

[
I
(+)
k (t) − I

(−)
k (t)

]

(5)

JB(t) ≡ −
∑

k∈B

εk
d

dt

〈
ĉ†
k(t)ĉk(t)

〉

= −Tr

[
ĤB

d

dt
ρ̂(t)

]
=

∑

k∈B

εk TrS

[
I
(+)
k (t) − I

(−)
k (t)

]
.

(6)

Here, N̂B ≡ ∑
k∈B ĉ†

k ĉk is the operator of particle num-
ber in bath B, ρ̂(t) is the total (system plus baths) den-
sity operator, Tr[. . .] and TrS [. . .] are traces over total
(system plus baths) and system (molecular) degrees of
freedom, and I(+)/(−)

k are matrices in subspace S repre-
senting k-resolved in-/out-scattering particle fluxes at
the S − B interface. These matrices can be expressed
as:

[
I(+)
k

]
m1m2

=
∑

m′∈M

∫ t

−∞
dt′

(
Vm1k(t) g<

k (t − t′)

Vkm′(t′)G>
m′m2

(t′, t)

+ G>
m1m′(t, t′)Vm′k(t′) g<

k (t′ − t)Vkm2(t)
)

(7)
[
I(−)
k

]
m1m2

=
∑

m′∈M

∫ t

−∞
dt′

(
Vm1k(t) g>

k (t − t′)

Vkm′(t′)G<
m′m2

(t′, t)

+ G<
m1m′(t, t′)Vm′k(t′) g>

k (t′ − t)Vkm2(t)
)
.

(8)

G
≶
m2m1 are lesser/greater projections of the molecular-

space single-particle Green’s function (4), while g
≶
k are

lesser/greater projections of the Green’s function of free
electron in state k of bath B:

gk(τ1, τ2) ≡ −i〈Tc ĉk(τ1) ĉ†
k(τ2)〉. (9)

It should be noted that definition (6) assumes 〈ĤB〉 to
be the energy of bath B, so that dynamical approach
sets:

ES(t) =
〈

ĤS(t) +
∑

B

V̂SB(t)
〉

(10)

as energy of the system S.
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3 Supersystem weakly coupled to
superbaths

At equilibrium, the thermodynamics of a system S that
is strongly coupled to its bath B (one bath is enough at
equilibrium) is modeled as the difference in the thermo-
dynamic description (difference of grand potentials) of
the supersystem (system S plus bath B) weakly coupled
to the superbath (additional external bath) and bath
B weakly coupled to the superbath. The approach was
pioneered in Refs. [21,22]. This allows the utilization of
standard (weakly coupled) thermodynamic description
to derive grand potential Ωeq

S , entropy Seq, and energy
Eeq

S of the system S as [23]:

Ωeq
S =

1
βB

∫
dE

2π
AB(E) ln[1 − fB(E)] (11)

Seq ≡ −∂Ωeq
S

∂TB

=
∫

dE

2π
AB(E)σB(E) (12)

Eeq
S ≡ Ωeq

S + μBNeq
B +

1
βB

Seq

= Ωeq
S − μB

∂Ωeq
S

∂μB
+

1
βB

Seq

=
∫

dE

2π
E AB(E) fB(E). (13)

Here, βB = 1/kBTB, σB(E) is the energy-resolved
Shannon entropy, where:

σB(E) = −kB

(
fB(E) ln fB(E)

+[1 − fB(E)] ln[1 − fB(E)]
)
, (14)

and AB(E) is the renormalized spectral function:

AB(E) = A(E) − 2 Im
∑

k∈B

[
Gr

kk(E) − gr
k(E)

]
(15)

with

A(E) = −2 Im
∑

m∈S

Gr
mm(E) (16)

representing the usual spectral function of the system.
We note that these expressions were first introduced in
Ref. [23] and that the gr

k contribution on the right side
of (15) stands to subtract the evolution of free bath B
from the total suspersystem dynamics.

At nonequilibrium, expressions (12) and (13) are used
as templates for ad hoc formulations of energy and
entropy. This is done by substituting spectral func-
tions and/or Fermi distributions with their nonequilib-
rium analogs at slow driving [23–25]. Expressions for
system characteristics at slow driving are obtained by
employing gradient expansion [16,26]. More consistent

approaches to nonequilibrium reformulate the equilib-
rium considerations of Refs. [21,22] using scattering
states [27]. In this formulation, superbaths provide ther-
mal distributions of the scattering states. Parametric
dependence of the scattering matrix on time developed
for adiabatic quantum pumps in Ref. [28] was utilized
to obtain nonequilibrium system behavior at slow driv-
ing. It was shown within these thermodynamic con-
siderations [23,29–31] that a consistent (dynamic-to-
thermodynamic) description can be obtained within the
wide-band approximation (WBA) and for driving con-
fined to the system Hamiltonian ĤS(t) if energy of the
system is taken as:

ES(t) =
〈

ĤS(t) +
1
2

∑

B

V̂SB(t)
〉

. (17)

Similar separation of the total Hamiltonian is assumed
in recent density matrix-based approaches [32–35].
Extension of the formulation to account for driving
in the system-bath coupling was claimed1 in Ref. [25].
Note that definition (17) deviates from the dynamical
definition (10).

Before proceeding to Green’s function-based analy-
sis, we want to stress several points. First, definition
(17) modifies the energies of the baths, adding half of
the system-bath coupling into the bath’s energy. This
addition makes it impossible to count at a particu-
lar system-bath interface, because V̂SB inter-couples
all baths via the system. In addition, adding system
degrees of freedom into the expression for the bath
energy destroys the possibility of counting in the bath
only. This makes the formulation of the full counting
statistics impossible, and thus, it is natural that defini-
tion (17) fails to describe energy fluctuations [36]. Sec-
ond, a simple single-particle scattering formulation is
only possible for noninteracting systems and adiabati-
cally slow driving when scattering channels are indepen-
dent of each other. Indeed, scattering theory yields the
famous Landauer–Büttiker formalism applicable in the
description of steady states in noninteracting systems.
Finite driving and/or presence of interactions requires
more elaborated description. Third, a consistent ther-
modynamic description employing definition (17) was
only possible in the WBA where renormalization of the
spectral function is dropped, that is, A(E) = A(E). As
we show below, extension of the formulation beyond the
WBA is impossible when (17) is taken as the energy of
the system.

We now turn to NEGF analysis of the two defini-
tions for system energy, Eqs. (10) and (17), with the

1 We note that the term introduced in Ref. [25] to account
for driving in the system-bath coupling—work done by the
system-bath coupling ẆB(t)—is an artifact of inconsistent
treatment: The term can be derived as a surface term, where
the limit of a wide band is taken first, while the limit of
energy going to infinity is considered second. The physically
relevant order of taking the limits is the opposite. In this
case, the term ẆB(t) is identical to zero.
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goal of establishing their consistency with the expected
limiting (equilibrium) expression, Eq. (13), as obtained
from general results for the noninteracting system (1)-
(3) under arbitrary driving and beyond the WBA. To
do so, we are going to express contributions to the total
energy, that is, averages of terms in the total Hamilto-
nian (1), in terms of Green’s functions utilizing Wigner
representation in time variables:

f(t; s) = F (t1, t2) and f(t;E) =
∫

ds e−iEsf(t; s),

(18)

where t = (t1 + t2)/2 and s = t1 − t2.
First, it is straightforward to see that:

〈
ĤS(t)

〉
= −i

∑

m1,m2∈S

H(S)
m1m2

(t)G<
m2m1

(t, t)

= −i

∫
dE

2π
TrS

[
H(S)(t)G<(t;E)

]
. (19)

Here, G<
m2m1

(t, t) is the lesser projection of the Green’s
function (4) taken at equal times.

Second, for system-baths coupling, we obtain:

∑

B

〈
V̂SB(t)

〉
= 2 Im

∑

B

∑

m∈S

∑

k∈B

Vmk(t)G<
km(t, t)

= 2 Im
∫ +∞

−∞
dt′ TrS

[
Σ<(t, t′)Ga(t′, t)

+ Σr(t, t′)G<(t′, t)
]

= 2 Im TrS

[(
i
∂G<(t, t′)

∂t

)

t=t′

− H(S)(t)G<(t, t)
]

≡ −2 i

∫
dE

2π
E TrS

[
G<(t;E)

]

− 2
〈
ĤS(t)

〉
. (20)

Here:

Σmm′(τ, τ ′) =
∑

B

ΣB
mm′(τ, τ ′)

≡
∑

B

∑

k∈B

Vmk(t) gk(τ, τ ′)Vkm′(t′)

(21)

is the system self-energy due to coupling to baths, where
gk(τ, τ ′) is defined in (9). The transition from the first
to second expression in the right side uses an integral
form of the Dyson equation for G<

km(t, t):

G<
km(t, t) =

∑

m′∈S

∫ +∞

−∞
dt′

[
g<

k (t, t′)Vkm′(t′)Ga
m′m(t′, t)

+gr
k(t, t′)Vkm′(t′)G<

m′m(t′, t)
]
. (22)

The third expression in the right side is obtained by
employing the differential from of the left-side Dyson
equation for G<

m1m2
(t, t):

(
i
∂G<

m1m2
(t, t′)

∂t

)
t=t′

=
∑

m′∈S

H
(S)
m1m′(t)G

<
m′m2

(t, t)

+
∑

m′∈S

∫ +∞

−∞
dt

′
[
Σ

<
m1m′(t, t

′)G
a
m′m2

(t′
, t)

+ Σ
r
m1m′(t, t

′)G
<
m′m2

(t′
, t)

]
. (23)

The last expression in the right side is obtained using
the Wigner representation (18) for the first term and
using Eq. (19) for the second term.

Third, for baths’ contributions to the total energy,
one has:

∑

B

〈
ĤB

〉
= −i

∑

B

∑

k∈B

εkG<
kk(t, t)

=
∑

B

∑

k∈B

Im
[(

i
∂G<

kk(t, t′)
∂t

)

t=t′

−
∑

m∈S

Vkm(t)G<
mk(t, t)

]

= Im

[
∑

B

∑

k∈B

(
i
∂G<

kk(t, t′)
∂t

)

t=t′

−
∑

m∈S

(
i
∂G<

mm(t, t′)
∂t

)

t=t′

+
∑

m1,m2∈S

H(S)
m1m2

(t)G<
m2m1

(t, t)

]

= −i

∫
dE

2π
E

(
TrB

[
G<(t;E)

]

− TrS

[
G<(t;E)

])
+

〈
ĤS(t)

〉
. (24)

Here, transitions from the first to second and from the
second to third and fourth expression in the right side
utilize differential forms of left-side Dyson equations
for G<

kk(t, t) and G<
mm(t, t), respectively. As previously

shown, the last expression is obtained using the Wigner
representation (18) for the first and second terms and
by using Eq. (19) for the last term. Similarly, for free
baths evolution, one has:
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∑

B

〈
ĤB

〉
0

= −i
∑

B

∑

k∈B

εk g<
k (t, t)

=
∑

B

∑

k∈B

Im
[(

i
∂g<

k (t, t′)
∂t

)

t=t′

]

= −i

∫
dE

2π
E TrB g<(E), (25)

where g<(E) does not contain dependence on t due to
the absence of driving in baths.

We note that, contrary to previous considerations,
expressions (19)–(25) are not limited to slow driving;
for the noninteracting model (1)–(3), they are exact.
Equations (19) and (20) show that the dynamical def-
inition (10) does not yield the equilibrium result (13)
expected within the approach. Meanwhile, scattering
theory-based suggestion, Eq. (17), leads to:
〈

ĤS(t) +
1
2

∑

B

V̂SB(t)
〉

= −i

∫
dE

2π
E TrS

[
G<(t;E)

]
.

(26)

At equilibrium, this expression yields results similar to
(13), but with A(E) substituted by A(E); that is, one
obtains the form of correct limiting expression in the
WBA. It is clear from the derivation above that gener-
alization beyond WBA is not possible when using (17)
as the definition for system energy.

To obtain the expected equilibrium behavior, Eq. (13),
one has to assume:

ES(t) =
〈

ĤS(t) +
∑

B

(
ĤB + V̂SB(t)

)〉

−
〈∑

B

ĤB

〉

0

(27)

as an expression for system energy. Here, 〈. . .〉 =
Tr[. . . ρ̂(t)] and 〈. . .〉0 = Tr[. . . ρ̂0], where ρ̂0 is the den-
sity operator of the free decoupled system and baths
evolution. Indeed, substituting (19)–(25) into (27) leads
to:

ES(t) = −i

∫
dE

2π
E

(
Tr

[
G<(t;E)

]

−TrB

[
g<(E)

])
, (28)

which yields the expected equilibrium behavior.
We note that expression (27) is highly logical in the

sense that it follows the philosophy of defining sys-
tem characteristics as the difference between those of
the supersystem and free baths. At the same time,
it reveals a basic incompatibility between the “super-
system weakly coupled to superbaths” thermodynamic
approach and standard NEGF dynamical formulation.
The lack of a superbath concept in the latter does
not allow heat to be meaningfully introduced in any
attempt to combine the two descriptions.

4 System strongly coupled to baths

A variant of the thermodynamic formulation for the
system strongly coupled to its baths was proposed in
Refs. [37,38]. As expected, in the absence of the super-
baths, the definition of the system S energy

ES(t) =

〈
ĤS(t) +

∑
B

V̂SB(t)

〉
−

〈
ĤS(0) +

∑
B

V̂SB(0)

〉
0

(29)

and the expression for energy flux are consistent with
dynamical NEGF results from Eqs. (10) and (6), respec-
tively. Similar to the supersystem–superbath thermo-
dynamics, the system-bath formulation is also based
on a set of ad hoc assumptions. In particular, Ref. [37]
assumes that entropy of the system strongly coupled to
its baths is given by the von Neumann entropy :

S(t) ≡ −TrS

[
ρ̂S(t) ln ρ̂S(t)

]
, (30)

where ρ̂S(t) = TrB [ρ̂(t)] is the many-body density
operator of the system. Below, we show how entropy,
Eq. (30), and the second law of themodynamics can be
expressed in terms of Green’s functions.

First, we note that, for quadratic Hamiltonian (1)–
(3), Wick’s theorem holds for the whole universe (sys-
tem plus baths) or any of its parts. This means that
the corresponding many-body density operator ρ̂S(t)
should have a Gaussian form. That is, system density
operator has the form:

ρ̂S(t) =
1

ZS(t)

× exp

⎛

⎝−
∑

m1,m2∈S

A(S)
m1m2

(t) d̂†
m1

d̂m2

⎞

⎠ ,

(31)

where ZS(t) is a normalization constant. The form
(31) is mathematically similar to the equilibrium case,
so that for fixed t standard tools of equilibrium,
path integral consideration can be applied. In par-
ticular, we can consider form (31) as an equilib-
rium density matrix with an “effective Hamiltonian”∑

m1,m2∈S A
(S)
m1m2(t)d̂†

m1
d̂m2 and the inverse tempera-

ture βS = 1. Note that t in the “effective Hamiltonian”
should be considered as a parameter.

Using the results of equilibrium consideration for
noninteracting Hamiltonians [39], one obtains:

ZS(t) = det
[
iG>(t, t)

]−1 and

e−A(S)(t) =
−iG<(t, t)
iG>(t, t)

. (32)
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Thus

ρS(t) =
1

ZS(t)
e−A(S)(t) = det

[
iG>(t, t)

]−iG<(t, t)
iG>(t, t)

.

(33)

Here, G≷(t, t) are matrices of the greater/lesser pro-
jection of Green’s function (4) in the system subspace
of the problem, and ρS(t) is the system density matrix
(representation of operator ρ̂S(t) in the single-particle
basis of S). Similar expressions were derived in Refs.
[40–43].

Using (33) in (30) and employing ln detM = Tr lnM
(M is a matrix) leads to:

S(t) = −TrS

[
− iG<(t, t) ln

( − iG<(t, t)
)]

−TrS

[
iG>(t, t) ln

(
iG>(t, t)

)]
. (34)

Here, −iG<(t, t) is the single-particle density matrix
ρS(t) and iG>(t, t) − iG<(t, t) = I (I is the unity
matrix). Note that (34) holds for any driving.

Taking the time derivative of the entropy (34) leads
to the second law of thermodynamics in the following
form:

d
dt

S(t) = TrS

[(
− i

d
dt

G<(t, t)
)

ln
iG>(t, t)

−iG<(t, t)

]

≡
∑

B

∑

k∈B

TrS

[
βB(εk − μB)

[
I(+)
k (t) − I(−)

k (t)
]

+
[
I(+)
k (t) − I(−)

k (t)
]

ln
G>(t, t) g<

k (t, t)
G<(t, t) g>

k (t, t)

]

=
∑

B

[
βB Q̇B(t) + ΔiṠB(t)

]
. (35)

Here, Q̇B ≡ JB(t) − μBIB(t) is the heat flux expressed
in terms of particle (IB) and energy (JB) fluxes at the
S − B interface, where the definitions are given by the
dynamical NEGF expressions (5) and (6), respectively.
The formula ΔiṠ(t) =

∑
B ΔiṠB , defined by the second

term in the second expression in the right side of (35), is
the rate of entropy production, which may be negative
(as was discussed in Ref. [37]).

5 Conclusion

We considered two different approaches to thermody-
namic formulations for open nonequilibrium quantum
systems strongly coupled to their baths. These were
a supersystem (system plus baths) weakly coupled to
superbaths and a system strongly coupled to its baths.
In particular, the former encompasses popular scatter-
ing theory formulations of quantum thermodynamics.
We analyzed the compatibility of the formulations with

a dynamical description of the system via the nonequi-
librium Green’s function approach. We presented the
thermodynamic formulation in NEGF beyond slow
driving. Results for adiabatic driving and equilibrium
can be derived from our consideration as limiting cases.
Our analysis showed that supersystem–superbath for-
mulations are based on a set of assumptions that are
incompatible with the basics of the dynamical NEGF
formulation. In particular, this is the cause of differ-
ences in definition of energy flux as accepted in the
two approaches. At the same time, the system-bath
formulation is consistent with NEGF, and definitions
of energy fluxes are equivalent in this thermodynamic
formulation to those of dynamic NEGF description.
For the system-bath formulation, we presented expres-
sions for entropy and entropy production in terms
of Green’s functions. It is interesting to note that,
while supersystem–superbath formulations postulated
energy resolved Shannon-like expression for entropy of
the system, the system-bath approach assumes entropy
of the system to be given by von Neumann expres-
sion constructed from system characteristics integrated
in energy. We note that both expressions for sys-
tem entropy, the nonequilibrium analog of Eq. (12)
and Eq.(34), are ad hoc formulations, and that the pos-
sibility of construction of energy-resolved formulation
consistent with dynamical NEGF description is still an
open question.
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