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Abstract We demonstrate that the supercurrent can be strongly enhanced in cross-like superconducting
hybrid nanostructures (X-junctions) exposed to a temperature gradient. At temperatures T exceeding the
Thouless energy of our X-junction, the Josephson current decays algebraically with increasing T and can
be further enhanced by a proper choice of the circuit topology. At large values of the temperature gradient,
the non-equilibrium contribution to the supercurrent may become as large as the equilibrium one at low
T . We also predict a variety of transitions between 0- and π-junction states controlled by the temperature
gradient as well as by the system geometry. Our predictions can be directly verified in modern experiments.

1 Introduction

Equilibrium Josephson current between two supercon-
ductors depends periodically on the phase difference
χ between them [1]. The magnitude of this current
also depends on temperature T . This dependence varies
in different types of superconducting weak links and
is perhaps most strongly pronounced in superconduct-
ing junctions containing a sufficiently thick layer of a
normal metal [2–5]. In these so-called SNS junctions,
the supercurrent reaches its maximum value IC(0) �
10.82ETh/(eRn) [3] at T → 0, whereas at higher tem-
peratures T > ETh, this current reduces exponentially
as ∝ e−

√
2πT/ETh , where ETh and Rn are, respectively,

an effective Thouless energy and a normal state resis-
tance of an SNS device.

The supercurrent flowing across an SNS junction can
be significantly affected by driving the electron distribu-
tion function out of equilibrium. Such non-equilibrium
conditions can be achieved, e.g., by applying an exter-
nal ac signal [6,7] or a dc voltage V in the cross-like
geometry considered in [8–11]. In the first case, one can
observe a strong supercurrent stimulation at T > ETh,
while in the second one by tuning V , one can realize
the transition to a π-junction state.

Yet another way to drive the electron distribution
function inside an SNS junction out of equilibrium is
to expose it to a thermal gradient. Recently, it was
demonstrated [12] that by doing so one can effectively
support long-range phase coherence of quasiparticles
inside the N-layer at temperatures above the Thou-
less energy where the equilibrium supercurrent already
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becomes vanishingly small. Specifically, for the so-called
X-junction geometry illustrated in Fig. 1 in the high-
temperature limit T1,2 � ETh—up to some geometry
factors—one finds IC ∼ IC(0)ETh|1/T1 − 1/T2|, where
T1 and T2 are different temperatures at which two nor-
mal terminals N1 and N2 are maintained, see Fig. 1.
Hence, this current turns out to be a lot bigger than
the equilibrium one at any of the two temperatures T1

or T2.
Furthermore, under such non-equilibrium conditions,

the junction is described by a non-sinusoidal current-
phase relation and may exhibit a pronounced π-
junction-like behavior. It was argued [12] that all these
non-trivial features are caused by the presence of non-
equilibrium low energy quasiparticles suffering little
dephasing, while propagating across the N-layer. We
also note that a somewhat similar situation was encoun-
tered for the Aharonov-Bohm effect in superconducing
heterostructures containing a normal metallic loop, see,
e.g., Refs. [4,13,14].

In this paper, we will extend the work [12] in sev-
eral important aspects. In particular, here we will lift
the symmetry restrictions adopted in [12] and evaluate
the Josephson current across a general asymmetric X-
junction exposed to an arbitrary temperature gradient.
We will demonstrate that, on one hand, the presence of
electron–hole asymmetry weakly affects the Josephson
current and, on the other hand, that the effect of super-
current stimulation can be substantially enhanced by a
proper choice of the circuit topology.
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Fig. 1 X-junction structure under consideration

2 The model and basic formalism

Following Ref. [12] we are going to consider an X-
junction which consists of two superconducting and two
normal terminals interconnected by four normal metal-
lic wires of lengths LS1,2 , LN1,2 and cross-sections AS1,2 ,AN1,2 , respectively, as shown in Fig. 1. The two normal
terminals are disconnected from any external circuit
and are maintained at different temperatures T1 and
T2. The supercurrent IS(χ) can flow between supercon-
ducting terminals S1 and S2 with the phase difference
χ = χ1 − χ2.

In what follows we will employ the standard quasi-
classical formalism based on the Usadel equations com-
bined with the Keldysh technique [4]

iD∇ (
Ǧ∇Ǧ

)
=

[
Ω̌, Ǧ

]
, ǦǦ = 1̌, (1)

where D is the diffusion constant, Ω̌ is 4 × 4 matrix

Ω̌ =
(

Ω̂R 0
0 Ω̂A

)
, Ω̂R = Ω̂A =

(
ε + eV Δ
−Δ∗ −ε + eV

)
,

(2)

where ε, V and Δ denote respectively quasiparti-
cle energy, electrostatic potential and superconducting
order parameter. Equations (1) allow to evaluate the
quasiclassical Green function Ǧ, which is represented
by the 4 × 4 matrix in the Keldysh⊗Nambu space

Ǧ =
(

ĜR ĜK

0 ĜA

)
, ĜR,A =

(
GR,A FR,A

F̃R,A −GR,A

)
, (3)

where ĜR,A are retarded and advanced Green func-
tions. It is convenient to parametrize the Keldysh
matrix function ĜK as

ĜK = ĜRĥ − ĥĜA, ĥ = hL + τ̂3h
T , (4)

where hL and hT are the parts of the quasiparticle dis-
tribution function. The current density can be calcu-
lated by means of standard relation

j = − σ

8e

∫
dε Sp(τ̂3Ǧ∇Ǧ)K . (5)

Inside the normal wires the functions hL and hT obey
the equations

iD∇ [
DT ∇hT + Y∇hL + jεh

L
]

= 0, (6)

iD∇ [
DL∇hL − Y∇hT + jεh

T
]

= 0, (7)

which follow directly from Eq. (1). Here

DT =
1
4

Sp(1 − τ̂3Ĝ
Rτ̂3Ĝ

A)

=
1
4

[
2 − 2GRGA + FRF̃A + F̃RFA

]
, (8)

DL =
1
4

Sp(1 − ĜRĜA)

=
1
4

[
2 − 2GRGA − FRF̃A − F̃RFA

]
(9)

denote dimensionless diffusion coefficients,

Y =
1
4

[
F̃RFA − FRF̃A

]
(10)

is the kinetic coefficient which accounts for the presence
of the particle-hole asymmetry in our system and

jε =
1
2

Re
(
FR∇F̃R − F̃R∇FR

)
(11)

defines the spectral supercurrent.

3 General analysis

For quasi-one-dimensional geometry of the normal
wires adopted here the kinetic equations (6), (7) can
be solved exactly. Let us first rewrite these equations
in the matrix form

D̂

(
hT

hL

)′
+ jετ̂1

(
hT

hL

)
= − e

σA
(

IT

IL

)
, (12)

where A is the cross section of the corresponding wire
segment.

D̂ =
(

DT Y
−Y DL

)

The spectral currents IT and IL represent the integra-
tion constants independent of the coordinate along the
wire. Below, we will use the convention according to
which the current is positive if it flows from the corre-
sponding terminal to the crossing point c.

As the spectral supercurrent jε vanishes identically
in the wires attached to the normal terminals, Eq. (12)
can be easily integrated, and we get

ĜNi

(
hT

c − hT
Ni

hL
c − hL

Ni

)
=

(
IT
Ni

IL
Ni

)
, (13)
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where

ĜNi
=

(
GT

Ni
GY

Ni

−GY
Ni

GL
Ni

)
=

[∫

LNi

D̂−1dx

σANi

]−1

.

The spectral conductances GT
Ni

, GL
Ni

and GY
Ni

all
exhibit a nontrivial energy dependence in the vicinity
of the Thouless energy, whereas for |ε| � ETh, the con-
ductance GY

Ni
tends to zero and GT

Ni
, GL

Ni
just reduce to

their normal state values Gn
Ni

≡ 1/Rn
Ni

= σANi
/LNi

.
In the wires attached to the superconducting termi-

nals and at subgap energies, the spectral currents IL
Si

vanish identically. With this in mind, we obtain

GT
S1

hT
c + GhL

c = −eIT
S1

, GT
S2

hT
c − GhL

c = −eIT
S2

, (14)

where

G(ε) = AS1σj1ε = −AS2σj2ε. (15)

Here we also made use of the condition hT = 0 which
holds for both SN interfaces at subgap energies. In
general, the spectral conductances GT

S1,2
depend on

the kinetic coefficients DT,L and Y in a complicated
manner. These conductances demonstrate a nontrivial
energy dependence below the Thouless energy and tend
to their normal state values Gn

S1,2
= σAS1,2/LS1,2 in the

high energy limit.
The spectral current conservation conditions at the

crossing point c take the form

IT
S1

+ IT
S2

+ IT
N1

+ IT
N2

= 0, IL
N1

+ IL
N2

= 0. (16)

Resolving the above equations, we can express all the
spectral currents IT,L in terms of the distribution func-
tions in the normal terminals

h
T/L
N1,2

=
1
2

[
tanh

ε + eV1,2

2T1,2
∓ tanh

ε − eV1,2

2T1,2

]
. (17)

As soon as the spectral currents are established, the
electric currents IXi

in all four normal wires can be
recovered with the aid of a simple formula

IXi
=

1
2

∫
IT
Xi

dε, X = S,N, i = 1, 2. (18)

4 Supercurrent in the presence of a
temperature gradient

Without any temperature gradient, no voltage drop
across the normal terminals N1 and N2 can occur. How-
ever, different electrostatic potentials V1 and V2 at these
terminals are in general induced provided they are kept
at different temperatures T1 and T2. This is a mani-
festation of the so-called thermoelectric effect [15]. To

evaluate thermoelectric voltages V1 and V2, it is neces-
sary to bear in mind that no currents can flow trough
the normal terminals, i.e. IN1 = IN2 = 0. Making use
of these conditions, in the limit ETh � T1,2 � Δ one
arrives at the result [12]

eV1 = −1

4

(
1

T1
− 1

T2

) ∫
εdε

Gn
N1

{
GY

N1
GL

N2

GL
N1

+ GL
N2

+
GY

N2
GL

N1 − GY
N1

GL
N2

det |ĜS1 + ĜS2 + ĜN1 + ĜN2 |[
GT

N1 −Gn
N1

GS1 + GS2

Gn
S1

+ Gn
S2

+
GY

N1
(GY

N1
+ GY

N2
)

GL
N1

+ GL
N2

]}
,

(19)

which allows to express V1 in terms of the spectral con-
ductances. The thermoelectric voltage V2 is determined
simply by interchanging the indices 1 ↔ 2 in Eq. (19).

We observe that the voltages V1,2 may differ from
zero only provided the conductances GY

N1,2
do not van-

ish, which is the case in the presence of electron–hole
asymmetry. It is straightforward to demonstrate [12]
that under extra symmetry conditions (1) LS1 = LS2

and (2) AS1 = AS2 the kinetic coefficient Y equals to
zero everywhere in the N-wires attached to normal ter-
minals N1 and N2. Hence, no electron–hole asymmetry
occurs in this case and V1,2 ≡ 0. The Josephson current
across our X-junction was analyzed in Ref. [12] only
under the conditions (1) and (2), i.e. in the absence of
any induced thermoelectric potentials.

In this work, we lift both symmetry conditions (1)
and (2) and evaluate the supercurrent IS in the pres-
ence of electron–hole asymmetry and the thermoelec-
tric effect. The magnitude of thermoelectric potentials
|V1,2| may be not small in this case, in some special lim-
its reaching the values of up to ∼ ETh/e [12]. Hence,
this effect should in general be included into our con-
sideration.

Employing the quasiclassical formalism outlined in
the previous sections, after some algebra, we obtain

IS = − 1
4e

∫
GS1 − GS2

det |ĜS1 + ĜS2 + ĜN1 + ĜN2 |
×

{
[(GL

N1
+ GL

N2
)GT

N1
+ (GY

N1
+ GY

N2
)GY

N1
]hT

N1

−[GL
N1

GY
N2

− GY
N1

GL
N2

](hL
N1

− hL
N2

)

+[(GL
N1

+ GL
N2

)GT
N2

+ (GY
N1

+ GY
N2

)GY
N2

]hT
N2

}
dε

−1
4

∫
2G

det |ĜS1 + ĜS2 + ĜN1 + ĜN2 |
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×
{

[GY
N2

GT
N1

− GY
N1

(GT
N2

+ GS1 + GS2)]h
T
N1

+[(GT
N1

+ GT
N2

+ GS1 + GS2)G
L
N1

+ (GY
N1

+GY
N2

)GY
N1

]hL
N1

+[GY
N1

GT
N2

− GY
N2

(GT
N1

+ GS1 + GS2)]h
T
N2

+[(GT
N1

+ GT
N2

+ GS1 + GS2)G
L
N2

+ (GY
N1

+ GY
N2

)

×GY
N2

]hL
N2

}
dε. (20)

This cumbersome expression can be cast to the form

IS = rn
N2

IJ(T1, χ) + rn
N1

IJ(T2, χ) + IneS , (21)

where rN1,2 = Rn
N1,2

/(Rn
N1

+ Rn
N1

) and

IJ(T, χ) = − 1
2e

∫
G(ε) tanh

ε

2T
dε (22)

is the equilibrium Josephson current across our X-
junction. At sufficiently high temperatures T � ETh

Eq. (22) yields

IJ =
16κ

3 + 2
√

2
ETh

eRa
n

(
2πT

ETh

)3/2

e−
√

2πT/ETh sinχ, (23)

where we defined κ = 4
√AS1AS2/(AS1 +AS2 +AN1 +

AN2), Ra
n = LS/(σ

√AS1AS2) and LS = LS1 +LS2 . For
equal cross sections AS1 = AS2 the parameter Ra

n coin-
cides with the normal state resistance of our junction
Rn and the result (23) immediately reduces to that of
Ref. [12], cf. also Ref. [2].

The last term IneS in Eq. (21) represents an extra
non-equilibrium contribution to the supercurrent which
differs from zero provided T1 �= T2. In the limit T1,2 �
ETh this term reduces to

IneS =
1
e

(
1
T1

− 1
T2

)
K(χ), (24)

where

K(χ) = −1
4

∫
G (GL

N1
Gn

N2
− GL

N2
Gn

N1
)

(GL
N1

+ GL
N2

)(Gn
N1

+ Gn
N2

)
εdε

+
1
4

∫ [
GS1G

n
S2

− GS2G
n
S1

Gn
S1

+ Gn
S2

+ G GY
N1

+ GY
N2

GL
N1

+ GL
N2

]

× [GL
N1

GY
N2

− GY
N1

GL
N2

]εdε

det |ĜS1 + ĜS2 + ĜN1 + ĜN2 |
. (25)

Our detailed numerical analysis of Eq. (25) demon-
strates that the effect of electron–hole asymmetry on
the function K(χ), though exists, always remains very
small and, hence, can be safely neglected for any geom-
etry of our X-junction. This is an important conclusion
which allows to drop the conductance GY from Eq. (25)

and significantly simplify our further calculations. Set-
ting GY to zero, from Eq. (25) we obtain

K(χ) = −1
4

∫
G(ε)W (ε)εdε,

W (ε) =
(GL

N1
Gn

N2
− GL

N2
Gn

N1
)

(Gn
N1

+ Gn
N2

)(GL
N1

+ GL
N2

)
, (26)

Proceeding along the lines with Ref. [12] one can
directly evaluate the functions G and W in the high
energy limit. Extrapolating this high energy expansion
to the whole energy interval, evaluating the integral in
Eq. (26) and combining the result with Eq. (24), we
get

IneS =
4κ

3

(3 + 2
√

2)2
1101
1250

rN1rN2

(
1
T1

− 1
T2

)

×
(

LS

LN2

− LS

LN1

)
ETh

eRa
n

×
{ AS1

2AS2

P1(LS1/L) +
AS2

2AS1

P1(LS2/L)

+ P2(LS1/L) cos χ

}
sinχ, (27)

where the universal functions P1 and P2 are displayed
in Fig. 2 (left panel).

Equation (27) demonstrates that in a wide temper-
ature interval T1,2 > ETh the non-equilibrium contri-
bution to the Josephson current is described by a uni-
versal power law dependence ∝ 1/T1 − 1/T2, whereas
the phase dependence of IneS depends on the junction
geometry only. In Fig. 3, we display the results of our
numerical solution of the Usadel equation together with
those defined by Eq. (27).

For partially symmetric junction with LS1 = LS2 and
AS1 = AS2 , we have P1 = P2 = 1 and the phase depen-
dence of IneS reduces to the peculiar form cos2(χ/2) sin χ
[12]. For strongly asymmetric junctions, the function P1

increases by about an order of magnitude, whereas P2

varies slightly (see Fig. 2). In this case, the current-
phase relation approaches a sin-like form. The results
displayed in Fig. 3 demonstrate that our analytic for-
mula (27) is in a good agreement with numerically exact
results for IneS as long as the lengths LS1,2 remain not
very small min(LS1 , LS2) � 0.2LS .

5 Supercurrent stimulation and π-junction
states

The above results demonstrate that in the presence of
a temperature gradient and at sufficiently high temper-
atures the supercurrent is not anymore exponentially
small due to the non-equilibrium contribution (27). In
other words, at T1,2 � ETh, the Josephson current in
our X-junction is stimulated by the temperature gradi-
ent. The relative magnitude of IneS —as compared to the
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Fig. 2 Universal functions P1,2(LS1/LS) (left panel) and P3,4(LS1/LS) (right panel). We observe that P1(1/2) = P2(1/2) =
1, while P3(1/2) = P4(1/2) = −1

Fig. 3 Phase dependence of the non-equilibrium term
Ine
S (χ), normalized by the factor (1/T1 − 1/T2)E

2
Th/eRa

n.
Thick black lines represent our analytical results, whereas
numerically exact results are shown by thin color lines.
Top left panel: the parameters LS1 = 0.4LS and T1 =
65ETh apply to all curves, different thin color curves corre-
spond to different temperatures T2 (40ETh, 50ETh, 60ETh,
70ETh, 80ETh, 90ETh). Top right panel: the parameters
LS1 = 0.3LS and T1 = 60ETh apply to all curves, dif-
ferent thin color curves correspond to different tempera-

tures T2 (35ETh, 45ETh, 55ETh, 65ETh, 75ETh, 85ETh).
Bottom left panel: the parameters LS1 = 0.2LS andT1 =
55ETh apply to all curves, different thin color curves corre-
spond to different temperatures T2 (30ETh, 40ETh, 50ETh,
60ETh, 70ETh, 80ETh). Bottom right panel: the parameters
LS1 = 0.1LS and T1 = 50ETh apply to all curves, differ-
ent thin color curves correspond to different temperatures
T2 (25ETh, 35ETh, 45ETh, 55ETh, 65ETh, 75ETh). Other
parameters are: Δ = 1000ETh, LN1 = LS , LN2 = 3LS ,
AS1 = AS2 = AN1 = AN2
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equilibrium term IJ (23)—can further be enhanced by
a proper choice of the junction geometry. For instance,
in a strongly asymmetric limiting case, LS1 � LS2 and
AS1 � AS2 + AN1 + AN2 we obtain

IneS =
32κ

(3 + 2
√

2)2
1101
1250

rN1rN2

×
(

1
T1

− 1
T2

)(
LS

LN2

− LS

LN1

)

×ETh

eRa
n

P1(LS1/L) sin χ. (28)

It is easy to verify that this term dominates the super-
current already at minT1,2 � 30ETh, i.e. at consider-
ably lower temperatures than in symmetric junctions
with LS1 = LS2 and AS1 = AS2 = AN1 = AN2 , where
the analogous condition reads T1,2 � 70ETh, cf. Ref.
[12]. We also observe from Figs. 4 and 5 below that
for partially asymmetric junctions with LS1 � LS2

and AS1 = AS2 = AN1 = AN2 nonequilibrium effects
become visible only at T1,2/ETh � 40 ÷ 50. Thus, we
conclude that strongly asymmetric X-junctions with
LS1 � LS2 and AS1 � AS2 + AN1 + AN2 appear
to be most suitable candidates for observing the non-
equilibrium Josephson current defined in Eq. (28).

Our general analysis also applies provided the tem-
perature difference becomes large. To address this par-
ticular situation, let us set T1 → 0 and T2 � ETh.
As before, the effect of electron–hole asymmetry on IS

remains weak and can be neglected in this case. Then,
Eq. (21) reduces to the form (cf. also Ref. [12]):

IS = rn
N2

IJ(0, χ) + IneS ,

IneS = − 1
2e

∫
G(ε)W (ε) sgn εdε. (29)

To obtain a simple analytic estimate for the equilib-
rium Josephson current at zero temperature IJ(0, χ),
we again employ the high energy solution of the Usadel
equation extending it to all energies. Then from Eq.
(22), we get

IJ(0, χ) =
32κ

3 + 2
√

2
ETh

eRa
n

sinχ. (30)

Remarkably, in the case of SNS junctions (with κ = 2
and Ra

n ≡ Rn), this simple estimate provides a very
accurate value of the critical current IC(0) (cf., Ref. [3]).
As expected, it cannot capture the non-sinusoidal char-
acter of the current-phase relation in this case, which
is, however, unimportant for our present purposes.

Evaluating the non-equilibrium term IneS , we employ
the same approximation combined with the expression
for W (ε) (26) and find

IneS =
0.72κ

3

(3 + 2
√

2)2
rN1rN2

(
LS

LN2

− LS

LN1

)

ETh

eRa
n

{
AS1

AS2

P3(LS1/L) +
AS2

AS1

P3(LS2/L)

+2P4(LS1/L) cos χ

}

sinχ, (31)

where the functions P3 and P4 are displayed in Fig. 2
(right panel).

In particular, in strongly asymmetric X-junctions
with LS1 � LS2 and AS1 � AS2 + AN1 + AN2 , this
result reduces to

IneS =
11.52κ

(3 + 2
√

2)2
rN1rN2

×
(

LS

LN2

− LS

LN1

)
ETh

eRa
n

P3(LS1/L) sin χ. (32)

We observe that for large temperature gradients the
magnitude of the non-equilibrium contribution to the
Josephson current IneS —apart from some geometry
factors—can be of the same order as that of the equilib-
rium supercurrent IJ (30). These two contributions to
IS can have either the same or opposite signs depending
on whether LN1 is longer or shorter than LN2 .

To analyze the temperature dependence of the crit-
ical Josephson current IC = max IS(χ), we will again
employ Eq. (21). At the temperatures exceeding the
Thouless energy, we have IJ ∝ sinχ with a positive
prefactor (see Eq. (23)), whereas the phase dependence
of the non-equilibrium term IneS (27) is described by a
somewhat distorted sin χ function with either positive
or negative sign in front of it depending on the sign of
the product (T2 − T1)(LN1 − LN2).

Keeping one of the two temperatures (e.g., T1) fixed
and varying T2, we observe that the junction behavior
strongly depends on the relation between the lengths
LN1 and LN2 . For LN1 < LN2 , the sign of IneS remains
positive at T2 < T1 and turns negative at T2 > T1,
implying that at sufficiently high temperatures this
term dominates over exponentially decaying contribu-
tions containing IJ (23) and, hence, our X-junction
switches to the π-junction state. This behavior is illus-
trated in Fig. 4 (left panel). In the right panel of Fig.
4 we display typical current-phase dependencies corre-
sponding to both 0- and π-junction states realized in
our structure.

For LN1 > LN2 , our X-junction may already exhibit
two transitions between 0- and π-junction states. In
this case, our system remains in the 0-junction state
provided T2 remains low enough to keep the quasi-
equilibrium term larger than IneS . However, since with
increasing T2 (albeit still T2 < T1) the contribution
∝ IJ decays much faster than the non-equilibrium one
(now having a negative sign), the X-junction eventu-
ally switches to the π-junction state. Increasing T2 fur-
ther, we reach the point T2 = T1 where IneS changes
its sign, thus signaling the transition back to the 0-
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Fig. 4 Left panel: Josephson critical current IC ≡ max |IS |
as a function of T2. Solid lines correspond to our numerically
exact solution, dashed lines indicate the result (21) com-
bined with (24) and (27), dotted line represent the quasi-
equilibrium contribution rN2IJ(T1, π/2)+rN1IJ(T2, π/2) to

IS . Right panel: the phase dependencies of the Josephson
current IS(χ) for T2 = 50ETh (“a” curves) and T2 = 70ETh

(“b” curves). Other parameters are the same for both pan-
els: T1 = 55ETh, LN1 = LS , LN2 = 3LS , LS1 = 0.2LS and
AS1 = AS2 = AN1 = AN2

Fig. 5 Left panel: the same as in Fig. 4 (left panel). Right
panel: the phase dependencies of the Josephson current
IS(χ) for T2 = 40ETh (“a” curves), T2 = 50ETh (“b”

curves), and T2 = 70ETh (“c” curves). Other parameters
are the same for both panels: T1 = 65ETh, LN1 = 3LS ,
LN2 = LS , LS1 = 0.2LS and AS1 = AS2 = AN1 = AN2

junction state at T2 slightly below T1. This behavior is
illustrated in Fig. 5.

In summary, we evaluated the Josephson current IS

across an X-junction exposed to a temperature gradient
and demonstrated that the effect of supercurrent stim-
ulation can be further enhanced by a proper choice of
geometric parameters for our device. We also predicted
a non-trivial power-law temperature dependence of IS

and showed that our X junction may exhibit transi-
tions between 0- and π-junction states controlled both
by the temperature gradient and the circuit topology.
Note that the junction topology can further be mod-
ified to embrace, e.g., the one addressed in Ref. [16]
in the context of the thermoelectric effect. The whole
analysis (published elsewhere [17]) becomes much more
involved but some of our key observations remain appli-
cable also in this case. It would be interesting to test
our predictions in future experiments.
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