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Abstract A Lie system is a non-autonomous system of ordinary differential equations describing the integral curves of a t-dependent
vector field that is equivalent to a t-dependent family of vector fields within a finite-dimensional Lie algebra of vector fields. Lie
systems have been generalised in the literature to deal with t-dependent Schrödinger equations determined by a particular class
of t-dependent Hamiltonian operators, the quantum Lie systems, and other systems of differential equations through the so-called
quasi-Lie schemes. This work extends quasi-Lie schemes and quantum Lie systems to cope with t-dependent Schrödinger equations
associated with the here-called quantum quasi-Lie systems. To illustrate our methods, we propose and study a quantum analogue of
the classical nonlinear oscillator searched by Perelomov, and we analyse a quantum one-dimensional fluid in a trapping potential
along with quantum t-dependent Smorodinsky–Winternitz oscillators.

1 Introduction

A Lie system is a non-autonomous system of first-order ordinary differential equations whose general solution can be written
via a (generally nonlinear) autonomous function, referred to as superposition rule, a finite set of particular solutions, and some
constants related to the initial conditions [1–4]. For instance, non-autonomous inhomogeneous linear systems of first-order ordinary
differential equations, Bernoulli equations, Riccati equations, and matrix Riccati equations are examples of Lie systems [3–5]. To
make the terminology simpler, non-autonomous systems will be hereafter called t-dependent systems. In physical applications, the
variable t will generally represent the time.

Lie systems are mathematically interesting due to their geometric and algebraic properties [5, 6]. In the theory of Lie systems and
in its generalisations, it is frequently used that a t-dependent system of ordinary differential equations on an n-dimensional manifold
M of the form

dxi

dt
� Xi (t, x), i � 1, . . . , n, t ∈ R, x ∈ M, (1.1)

amounts to a t-dependent vector field X : R × M → T M given by X � ∑n
i�1 Xi (t, x) ∂

∂xi , namely a t-parametric family of vector
fields on M of the form Xt : x ∈ M �→ X (t, x) ∈ T M with t ∈ R [3]. In fact, X is frequently used to refer to (1.1) and X ,
indistinctly. The Lie–Scheffers theorem establishes that a Lie system is equivalent to a t-dependent vector field X whose associated
vector fields {Xt }t∈R are contained in a finite-dimensional Lie algebra W of vector fields, known as a Vessiot–Guldberg Lie algebra
(VG Lie algebra henceforth) of the Lie system [2, 3]. As a consequence, it can be shown that the study of Lie systems leads to
the investigation of superposition rules through projective foliations on an appropriate bundle [2], generalised distributions [2], Lie
group actions [4, 6], etc. Furthermore, there has been a recent interest in Lie systems possessing VG Lie algebras of Hamiltonian
vector fields regarding different geometric structures [5, 7, 8].

The Lie–Scheffers theorem implies that being a Lie system is a very restrictive condition [3, 5, 9, 10]. For instance, all Lie
systems on the real line are locally diffeomorphic to subcases of the so-called Riccati equations [10]. Nonetheless, Lie systems play
a relevant rôle in mathematics, physics, and control theory, e.g. [3] cites more than 200 works on Lie systems and their applications.
In particular, the theory of Lie systems provides methods to determine the integrability of certain t-dependent systems of first-order
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differential equations [3, 11]. Furthermore, Lie systems have been proved to be very helpful in the study of geometric phases [12],
the solution of relevant nonlinear oscillators [3], the analysis of Wei–Norman equations [3, 13–15], and the research on problems
occurring in quantum mechanics [3, 7] and biology [5]. More particularly, Riccati equations and most of their generalisations are
examples of Lie systems that are ubiquitous in physics, occurring, for instance, in cosmology and financial models [3, 11, 16–18].
Riccati equations appear also in the study of epidemiological models [19].

A generalisation of the concept of Lie system has recently been proposed in [3], where the theory of quasi-Lie systems was
developed. Let us briefly explain the main elements of this theory. The theory of quasi-Lie systems is based on the so-called quasi-
Lie scheme notion. A quasi-Lie scheme consists of a finite-dimensional vector space of vector fields, V , on a manifold M and a
certain vector subspace W ⊂ V such that W is a Lie algebra of vector fields, which is denoted by writing [W, W ] ⊂ W , and the
Lie bracket of any vector field of W with any vector field of V belongs to V , which is represented by writing [W, V ] ⊂ V . The
quasi-Lie scheme consisting of W and V is denoted by S(W , V ).

A quasi-Lie scheme S(W , V ) may be employed to investigate certain related t-dependent systems of first-order differential
equations. More specifically, a quasi-Lie scheme S(W , V ) can be used to study any t-dependent vector field X whose associated
vector fields, {Xt }t∈R, are contained in the finite-dimensional linear space of vector fields V . As V is not in general a Lie algebra,
then X does not need to be a Lie system. The Lie algebra W of vector fields can be integrated to give rise to a local Lie group action
of an associated connected Lie group, which can be employed to transform, in certain cases, X into a Lie system with a VG Lie
algebra contained in V (cf. [3]). This idea allows one to analyse the integrability of non-harmonic classical oscillators, dissipative
Milne–Pinney equations, and other systems that cannot be studied through Lie systems (see [3, 20] and references therein). In fact,
quasi-Lie schemes are frequently used to transform a system X on manifold M that it is not a Lie system into a Lie system on M by
means of a t-dependent transformation on M.

To make the introduction more accessible and to clarify the advantages of our methods, let us detail a simple example. The
differential equations on R given by

dx

dt
� a0(t) + a1(t)x + a2(t)x2 + a3(t)x3, (1.2)

where a0(t), . . . , a3(t) are arbitrary t-dependent coefficients, appear in the study of Abel equations [20]. Geometrically, a differential
equation (1.2) is described by a t-dependent vector field on R of the form

X (t, x) � (
a0(t) + a1(t)x + a2(t)x2 + a3(t)x3) ∂

∂x
, (1.3)

which gives rise to a t-parametric family of vector fields {Xt }t∈R on R. For every t ∈ R, the vector field Xt is a linear combination
Xt � ∑3

α�0 aα(t)Xα of the vector fields

X0 � ∂

∂x
, X1 � x

∂

∂x
, X2 � x2 ∂

∂x
, X3 � x3 ∂

∂x
.

In other words, Xt belongs, for each t ∈ R, to the linear vector space V � 〈X0, . . . , X3〉. If we fix W � 〈X0, X1〉, then W is a
finite-dimensional Lie algebra of vector fields, and [W, V ] ⊂ V , which turns W and V into a quasi-Lie scheme S(W , V ). Note that V
is not a Lie algebra of vector fields. Moreover, it can be proved that V cannot be contained in any finite-dimensional Lie algebra of
vector fields [3]. Then, the theory of quasi-Lie schemes uses W and V to integrate and study equations (1.2) in a geometric, elegant,
and less ad-hoc manner than traditional methods (see [3, 20] and references therein).

Meanwhile, the theory of Lie systems has been extended to the quantum realm in [3, 21, 22]. A quantum Lie system is a t-
dependent Hamiltonian operator Ĥ (t) such that iĤ (t), for each fixed t ∈ R, is contained in a finite-dimensional real Lie algebra of
skew-Hermitian operators, a so-called Vessiot–Guldberg (VG) Lie algebra of Ĥ (t) [3, 21]. For instance, the t-dependent Hamiltonian
operator Ĥ (t) � p̂2/2+ω2(t )̂x2/2, where x̂ and p̂ are the position and momentum operators for a particle inR, respectively, describes
a one-dimensional quantum harmonic oscillator with a t-dependent frequency ω(t). Then, Ĥ (t) is a quantum Lie system because
iĤ (t) � iĤ2 + ω2(t)iĤ1, with

iĤ1 � îx2/2, iĤ2 � i p̂2/2.

Then, one can understand that, for each t ∈ R, the skew-Hermitian operator iĤ (t) belongs to W � 〈iĤ1, iĤ2, iĤ3〉, where
iĤ3 � i(̂x p̂ + p̂x̂)/4. In fact, W is a three-dimensional real Lie algebra of skew-Hermitian operators relative to the commutator
operator. The form of W is chosen so as to ensure that iĤ (t) belongs to W for every t ∈ R, which explains why iĤ1, iĤ2 ∈ W,
while iĤ3 was added to W so that it becomes a Lie algebra. In fact, −2iĤ3 � [iĤ1, iĤ2] and [iĤ3, iĤ1] � iĤ1, [iĤ3, iĤ2] � −iĤ2,
which turns W into a VG Lie algebra for a quantum Lie system.

The quantum Lie system notion allows for the development of powerful techniques to study their associated t-dependent
Schrödinger equations [3, 7, 21]. For instance, t-dependent Schrödinger equations associated with quantum Lie systems can be
investigated through Lie systems on Lie groups and the corresponding VG Lie algebras for quantum Lie systems are a clue to solve
them [3]. For instance, quantum t-dependent dissipative Calogero–Moser harmonic oscillators can be analysed via such techniques
[3]. Moreover, if a quantum Lie system is related to a solvable quantum VG Lie algebra, then its associated t-dependent Schrödinger
equation can be integrated by quadratures [3].
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To enlarge the field of applications of quantum Lie systems, we propose as a main result a quantum analogue of the theory of
quasi-Lie schemes based on the hereupon denominated quantum quasi-Lie schemes. Very roughly speaking, the basic idea to develop
the quantum quasi-Lie schemes theory is to mimic the quasi-Lie schemes theory via the substitution of t-dependent vector fields
and Lie brackets of vector fields by t-dependent skew-Hermitian operators and quantum commutators, respectively. In this manner,
a quantum quasi-Lie scheme consists of a Lie algebra W of skew-Hermitian operators on a Hilbert space H and a finite-dimensional
real linear space of skew-Hermitian operators on the same Hilbert space, V, so that W ⊂ V and [W,V] ⊂ V. Such a quantum
quasi-Lie scheme is denoted by S(W,V), and it can be then used to study a t-dependent Schrödinger equation on H when its
t-dependent Hamiltonian operator Ĥ (t) is such that each particular iĤ (t), for t ∈ R, belongs to V.

We prove that every quantum quasi-Lie scheme S(W,V) gives rise to a group of t-dependent gauge transformations determined
by W, the group of the quantum quasi-Lie scheme, which enables one to transform certain t-dependent Schrödinger equations
determined by the quantum quasi-Lie scheme into new ones that can be studied through quantum Lie systems. Such t-dependent
Schrödinger equations, described by the here defined quantum quasi-Lie systems (QQLS), cover the t-dependent Schrödinger
equations associated with quantum Lie systems as a particular case. In this manner, quantum quasi-Lie systems can be investigated
via the theory of quantum Lie systems.

One of the main uses of quantum quasi-Lie schemes in this work is to use an element U(t) of the group of a quantum quasi-Lie
scheme to map a t-dependent Hamiltonian operator −iĤ (t) described through it into a quantum Lie system or a simpler t-dependent
Hamiltonian operator −iĤ ′(t). Instead of applying straightforwardly a generic U(t) to transform −iĤ (t) into −iĤ ′(t), which is
operationally complicated and tedious but ubiquitous in the literature, we provide a series of results, e.g. Propositions 6.1 and
6.2, giving easy criteria to predict some interesting properties of −iĤ ′(t). This will eventually give hints on the form of U(t) to
simplify −iĤ ′(t) or to ensure that −iĤ (t) is a quantum quasi-Lie system. Mathematically, Propositions 6.1 and 6.2 concern the
study of real non-semi-simple Lie algebra representations. This is the least studied case in the literature, which mainly focuses upon
representations of complex semi-simple Lie algebras.

As applications, we show that quantum quasi-Lie schemes allow us to study the quantum evolution in problems in which the
theory of quantum Lie systems does not apply. In particular, we develop a quantum analogue of the classical anharmonic oscillator
formerly studied by Perelomov [23]. This solves the problem proposed by Perelomov of finding a quantum analogue of his oscillator.
Subsequently, we focus on the application of quantum quasi-Lie systems to t-dependent Schrödinger equations describing a one-
dimensional quantum fluid in a t-dependent trapping potential [24] and a quantum t-dependent frequency Winternitz–Smorodinsky
oscillator.

The paper is organised as follows. Section 2 reviews fundamental notions of differential geometry on Hilbert spaces. Section 3
presents quantum Lie systems and their properties. Section 4 introduces the theory of quantum quasi-Lie schemes, while the theory
of quantum quasi-Lie systems is presented in Sect. 5. Section 6 addresses the description of new methods to study t-dependent
Schrödinger equations by means of quantum quasi-Lie schemes. Subsequently, we present an application of the theory of quantum
quasi-Lie schemes and systems to quantum nonlinear oscillators with a homogeneous potential in Sect. 7. Section 8 is devoted
to the application of the theory of quantum quasi-Lie schemes to the particular case of homogeneous potentials of degree minus
two. In particular, this entails studying quantum t-dependent frequency Calogero–Moser systems, quantum fluids in a t-dependent
homogeneous trapping potential, and t-dependent quantum Smorodinsky–Winternitz systems. To conclude, Sect. 9 contains a
summary of the obtained results and a commentary on future research prospects. Table 1 summarizes many of the notions used
and/or introduced in this work.

2 Differential geometry in Hilbert spaces

This section surveys the differential geometry of (possibly infinite-dimensional) Hilbert spaces. For further details on the geometry
of infinite-dimensional manifolds and the theory of skew-Hermitian operators, we refer to [25–28].

Let H be a complex Hilbert space endowed with the topology inherited from the norm ‖·‖ associated with its scalar product 〈·|·〉.
It is hereupon assumed that H is separable, as it usually happens in quantum mechanics. The separability of H means that there
exists a countable orthonormal basis. The orthonormal basis, let us say {ψn}n∈N, gives rise to a global chart

ϕ : ψ ∈ H �→ {Re〈ψn |ψ〉, Im〈ψn |ψ〉}n∈N ∈ �2(R)

onto the real Hilbert space �2(R) of square summable sequences, which allows us to consider H as a manifold HR modelled over a
Hilbert space [3, 7].

Let C∞
φ (U ) be the space of germs of smooth real functions on an open U ⊂ H at φ ∈ U , i.e. the space of equivalence classes

of smooth functions on U that are equal on an open neighbourhood of φ. We call operational tangent vector at φ a linear mapping
Dφ : C∞

φ (U ) → R satisfying that Dφ( f g) � (Dφ f )g(φ) + f (φ)(Dφg) for every f, g ∈ C∞
φ (U ). Every ψ ∈ H induces a derivative

ψ̇φ : C∞
φ (U ) → R of the form

(ψ̇φ f ) � d

dt

∣
∣
∣
∣
t�0

f (φ + tψ), ∀ f ∈ C∞
φ (U ). (2.1)
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Table 1 Sketch of the main structures studied in the work. Note that cαβ
γ for α � 1, . . . , r and β, γ � 1, . . . , s are real constants. The b1(t), . . . , bs (t) and

d1(t), . . . , dr (t) are arbitrary real functions, while the c1(t), . . . , cs (t) are chosen to obtain a quasi-Lie system or a quantum quasi-Lie system. The dα,β
γ

for α, β, γ are real constants.

Lie system Quantum Lie system

X � ∑r
α�1 bα(t)Xα Ĥ (t) � ∑r

α�1 bα(t)Ĥα

[Xα, Xβ ] � ∑r
γ�1 cαβ

γ Xγ α, β � 1, . . . , r [iĤα, iĤβ ] � ∑r
γ�1 cαβ

γ iĤγ α, β � 1, . . . , r

W � 〈X1, . . . , Xr 〉 W � 〈X1, . . . , Xr 〉
Quasi-Lie scheme S(W, V ) Quantum quasi-Lie scheme S(W,V)

X � ∑s
α�1 bα(t)Xα Ĥ (t) � ∑s

α�1 bα(t)Ĥα

[Xα, Xβ ] � ∑s
γ�1 cαβ

γ Xγ α � 1, . . . , r, β � 1, . . . , s [iĤα, iĤβ ] � ∑s
γ�1 cαβ

γ iĤγ , α � 1, . . . , r, β � 1, . . . , s

W � 〈X1, . . . , Xr 〉, V � 〈X1, . . . , Xs 〉 W � 〈iĤ1, . . . , iĤr 〉, V � 〈iĤ1, . . . , iĤs 〉
GW Group of S(W, V ) GW Group of S(W,V)

Quasi-Lie system of S(W, V ) Quantum quasi-Lie system of S(W,V)

X � ∑s
α�1 cα(t)Xα Ĥ (t) � ∑s

α�1 cα(t)Ĥα

f (t) ∈ GW ⇒ f (t)� X (t) � ∑p
α�1 dγ (t)Yγ U (t) ∈ GW ⇒ U (t)�iĤ (t) � ∑p

α�1 dγ (t)iĤγ

V ⊃ 〈Y1, . . . , Yp〉, [Yα, Yβ ] � ∑p
γ�1 dαβ

γ Yγ V ⊃ 〈iĤ1, . . . , iĤp〉, [iĤα, iĤβ ] � ∑p
γ�1 dαβ

γ iĤγ

The derivative ψ̇φ is called a kinematic tangent vector at the foot point φ. There is, in general, no one-to-one relation between
both types of tangent vectors on infinite-dimensional manifolds (see e.g. [29, 30]). The term ‘kinematic’ will be hereafter skipped
to simplify the presentation of our results. The tangent space TφHR at φ ∈ HR is the space of all tangent vectors with foot point
φ [26–28]. It is immediate to prove, e.g. by inspection of (2.1) on smooth functions fψ̃ : φ̃ ∈ H �→ Re〈ψ̃ |φ̃〉 for ψ̃ ∈ H, that

ψ̇φ �� ψ̇ ′
φ , for ψ,ψ ′, φ ∈ H, if and only if ψ �� ψ ′. Hence, each TφHR is isomorphic to HR for every φ ∈ HR. The isomorphism

associates ψ ∈ HR with the tangent vector ψ̇φ ∈ TφHR. To simplify the notation, ψ̇φ will be denoted by ψ̇ if the foot point is
known from the context. The space TφHR admits a unique norm turning the isomorphism with HR into an isometry. Similarly, its
tangent bundle, THR :� ⊔

φ∈H TφHR, where
⊔

stands for a disjoint union [28, 31], is naturally diffeomorphic to HR ⊕ HR. The

space THR is indeed a vector bundle relative to π : ψ̇φ ∈ THR �→ φ ∈ HR.
A vector field is a mapping X : D(X ) ⊂ HR → THR from a dense subspace D(X ) ⊂ HR satisfying that π ◦ X � idHR

|D(X ).
For any vector field X on HR and φ ∈ D(X ), we denote X (φ) :� (φ, Xφ) ∈ TφHR ⊂ THR � HR ⊕ HR.

A vector field X admits a flow if there exists a continuous map Fl X : (t, φ) ∈ U ⊂ R × HR �→ Fl X
t (φ) ∈ HR such that

{0} × HR ⊂ U , Fl X
0 (φ) � φ for every φ ∈ HR, and

d

dt
Fl X (t, φ) � lim

s→0

Fl X (t + s, φ) − Fl X (t, φ)

s
� X

(
Fl X (t, φ)

)
,

where the limit is relative to the norm topology of HR [26, 32].
The main objects to be considered hereafter are the vector fields of the form

X Â : ψ ∈ D( Â) ⊂ HR �→ ˙( Âψ)ψ ∈ TψHR ⊂ THR

for a skew-Hermitian operator Â : D( Â) ⊂ H → A, where D( Â) is the domain of the operator Â. It is worth noting that an operator
on an infinite-dimensional Hilbert space only needs to be defined on a dense subspace of the Hilbert space [33]. Even if Â is not
bounded, which implies in virtue of the Hellinger–Toeplitz Theorem [26] that X Â can only be defined on a dense subset of HR, the

Stone’s Theorem ensures that Â gives rise to a strongly continuous one-parameter group {et Â}t∈R of operators [34, 35].
Previous results ensure that the integral curves of X Â, namely t �→ et Âφ for every φ ∈ H, are defined on the whole HR and X Â

is complete. This fact can be used to consider skew-Hermitian operators as fundamental vector fields relative to the standard action
of the unitary group U (H) on the Hilbert space H, relative to the strong topology. If Â :� −iĤ for an autonomous self-Hermitian
Hamiltonian Ĥ , then the solutions to the associated t-dependent Schrödinger equation describe the integral curves of X−iĤ [3, 36,
37].

Assume that B̂1 and B̂2 are two, possibly not bounded, operators acting on H admitting a common dense domain D that is also
invariant under B̂1 and B̂2, namely B̂1, B̂2 are defined on D and B̂1(D), B̂2(D) ⊂ D. The commutator of B̂1 and B̂2 is defined to be
[B̂1, B̂2]φ � (B̂1 B̂2 − B̂2 B̂1)φ for every φ ∈ D.

For two vector fields X B̂1
, X B̂2

∈ X(HR) satisfying that B̂1, B̂2 are skew-Hermitian operators having a common invariant dense
domain, we define
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[X B̂1
, X B̂2

] :� −X[B̂1,B̂2].

The above expression, when the integral curves of B̂1, B̂2 are smooth enough, arises as a consequence of the definition of the
geometric Lie bracket of vector fields on a Banach manifold. Let us analyse this fact in detail. Assume that X B̂1

, X B̂2
are such

that B̂1, B̂2 admit a common dense invariant domain. If the curve α(t) :� exp(−t B̂1) exp(−t B̂2) exp(t B̂1) exp(t B̂2)φ is smooth at
φ ∈ H, it is possible to retrieve the Lie bracket of the vector fields X B̂1

, X B̂2
geometrically [38, Theorem 1.33]:

[[X B̂1
, X B̂2

]](φ) � 1

2

∂2

∂t2

∣
∣
∣
∣
t�0

(

Fl
X B̂2−t ◦ Fl

X B̂1−t ◦ Fl
X B̂2
t ◦ Fl

X B̂1
t (φ)

)

� 1

2

∂2

∂t2

∣
∣
∣
∣
t�0

e−t B̂2 e−t B̂1 et B̂2 et B̂1φ.

In particular, the above always holds when H is finite-dimensional. A t-dependent vector field on HR is a mapping X : U ⊂
R × HR → THR, for a certain open subset U in R × HR, such that π ◦ X (t, ψ) � ψ on U and the domain of each Xt : φ ∈
U ∩ ({t} × HR) �→ X (t, φ) ∈ THR, with t ∈ R, is dense in HR. The integral curves of X are sections γ : R → R × HR of the
bundle πR : R × HR → R that are simultaneously integral curves of the vector field ∂t + X on R × HR. If π2 : R × HR → HR is
the projection onto the second manifold, the curves γ are given by the solutions to the differential equation

d(π2 ◦ γ )

dt
(t) � X ◦ γ (t).

Every t-dependent Hermitian operator Ĥ (t) onH gives rise to a t-dependent vector field X−iĤ (t) onHR and an associated t-dependent
Schrödinger equation

∂ψ

∂t
� −iĤ (t)ψ, ψ ∈ H, t ∈ R.

3 Quantum Lie systems

Let us survey the extension to quantum mechanics of the theory of Lie systems [3]. On a finite-dimensional manifold N , every
finite-dimensional real Lie algebra V of vector fields on N can be integrated to give rise to a local Lie group action on N . If N is
an infinite-dimensional manifold, additional technical conditions on V may be necessary to integrate V so as to give rise to a local
Lie group action on N . In particular, we are interested in the integration to a Lie group action of finite-dimensional real Lie algebras
of vector fields induced by skew-Hermitian operators on (possibly infinite-dimensional) manifolds (see [39–41] for details). In all
cases studied in this work, V can be found to be integrable to a local Lie group action. This Lie group action allows us to study
quantum Lie systems via the standard theory of Lie systems [22, 42]. To focus on the applications of our ideas, quantum quasi-Lie
schemes, and quantum Lie systems to be studied in next sections, further comments on the integrability of V to a Lie group action
will be omitted.

Definition 3.1 A quantum Lie system is a t-dependent operator Ĥ (t) on H of the form

Ĥ (t) :�
r∑

α�1

bα(t)Ĥα, (3.1)

where b1(t), . . . , br (t) are t-dependent real functions andW :� 〈iĤ1, . . . , iĤr 〉 is a r-dimensional real Lie algebra of skew-Hermitian
operators. We call W a Vessiot–Guldberg (VG) Lie algebra for the quantum Lie system (3.1) [3, 22, 42].

Each quantum Lie system (3.1) determines a t-dependent Schrödinger equation

∂ψ

∂t
� −iĤ (t)ψ � −

r∑

α�1

bα(t)iĤαψ, ψ ∈ H, t ∈ R. (3.2)

Its particular solutions are then integral curves of the t-dependent vector field X−iĤ (t) (see [3] for details).
Let us illustrate quantum Lie systems through an example. Consider the quantum one-dimensional Caldirola–Kanai oscillator

[43–46], which is determined by the t-dependent operator

ĤCK(t) :� exp (−2γ t)
p̂2

2
+ ω2 exp (2γ t)

x̂2

2
, γ ∈ R, ω ∈ R, (3.3)

where x̂ and p̂ refer to the usual position and momentum operators on R. This model is a quantum analogue of the classical harmonic
oscillator with a t-dependent mass m(t) :� exp (2γ t) and a constant frequency ω [3, 47].

The t-dependent operator ĤCK(t) can be written as a linear combination with t-dependent real functions of the Hermitian operators

Ĥ1 :� x̂2/2, Ĥ2 :� p̂2/2, Ĥ3 :� (̂x p̂ + p̂x̂)/4.
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The real linear space WCK :� 〈iH1, iH2, iH3〉 is a vector space of skew-Hermitian operators. Additionally,

[iĤ1, iĤ2] � −2iĤ3, [iĤ1, iĤ3] � −iĤ1, [iĤ3, iĤ2] � −iĤ2.

Hence,WCK is a finite-dimensional Lie algebra isomorphic to sl(2,R). Since iĤCK(t) takes values inWCK, the t-dependent operator
ĤCK(t) is a quantum Lie system.

The solutions of the t-dependent Schrödinger equation associated with (3.3), namely

∂ψ

∂t
� −iĤCK(t)ψ � −i

(

exp (−2γ t)
p̂2

2
+ ω2 exp (2γ t)

x̂2

2

)

ψ,

are the integral curves of XCK(t) :� ω2 exp (2γ t)X−iĤ1
+ exp (−2γ t)X−iĤ2

.
Similarly to standard Lie systems, the associated t-dependent Schrödinger equation related to a quantum Lie system can be solved

by means of a Lie system on a Lie group [1, 3]. Let us explain this fact (see [3] for applications). Reconsider again a general quantum
Lie system (3.1), which satisfies that

[iĤα, iĤβ ] �
r∑

γ�1

cαβ
γ iĤγ , cαβ

γ ∈ R, α, β, γ � 1, . . . , r.

Let ϕ : g → W be an isomorphism of Lie algebras, where g is an abstract Lie algebra, Gg is the connected and simply connected
Lie group related to g, and W is the Lie algebra relative to the commutator of skew-Hermitian operators (more precisely defined on a
common domain for all its elements given by a dense subspace DW ⊂ H). We define a continuous unitary action � : Gg ×H → H
(continuous relative to the norms induced by the one on H and the one in Gg), such that

ϕ(v)ψ � d

dt

∣
∣
∣
∣
t�0

�(exp(−tv), ψ), ∀ψ ∈ DW, ∀v ∈ g. (3.4)

Note that � amounts to a Lie group morphism �̂ : g ∈ G �→ �g ∈ U (H) where �g(ψ) :� �(g, ψ) for every g ∈ Gg and ψ ∈ H,
whilst U (H) amounts to the space of unitary operators on H. We define �ψ : g ∈ Gg �→ �(g, ψ) ∈ HR for every ψ ∈ HR. Note
that ϕ is the infinitesimal Lie algebra morphism induced by �. Due to the relation [X B̂1

, X B̂2
] � −X[B̂1,B̂2], it follows from (3.4)

that we can define X−ϕ(v) to be the fundamental vector field on HR corresponding to the element v ∈ g, and then, there exists a Lie
algebra isomorphism v �→ X−ϕ(v) between the elements of the Lie algebra g and the Lie algebra of vector fields W given by the
vector fields on HR induced by the skew-Hermitian operators ϕ(v) for v ∈ g.

Let {a1, . . . , ar } be the basis of TeG � g given by aα :� ϕ−1(iĤα) for α � 1, . . . , r . Then, a1, . . . , ar have the same commutation
relations, relative to the natural Lie bracket in TeG (see [48]), as the operators iĤ1, . . . , iĤr , which in turn have the opposite structure

constants of the vector fields X iĤα
. Hence, if [iĤα, iĤβ ] � ∑r

γ�1cαβ
γ iĤγ , then [X−iĤα

, X−iĤβ
] �

∑r

γ�1
cαβ

γ X−iĤγ
, where we

assume α, β � 1, . . . , r . Hence,

[aα, aβ ] �
r∑

γ�1

cαβ
γ aγ , cαβ

γ ∈ R, α, β, γ � 1, . . . , r,

and

�(exp(−λaα), ψ) � exp(−iλĤα)ψ, ∀ψ ∈ DW, ∀λ ∈ R, α � 1, . . . , r.

It is quite useful in applications to consider G to be a matrix Lie group. In such a case, the elements of g are matrices and the
commutator of the elements of TeG is the commutator of the corresponding associated elements of the Lie algebra. It is also worth
noting that ϕ(Adg(v)) � Ad�g ϕ(v), for all g ∈ G and v ∈ g, where Adg stands for the adjoint action of g on g, and Ad�g is the
adjoint action of �g ∈ U (H) relative to ϕ(v).

In particular, let us prove that solving the t-dependent Schrödinger equation associated with a quantum Lie system Ĥ (t) �∑r
α�1bα(t)Hα reduces to solving the Lie system in G given by

dg

dt
� −

r∑

α�1

bα(t)X R
α (g),

where X R
α (g) � Rg∗eaα for α � 1, . . . , r and Rg : g′ ∈ G �→ g′g ∈ G. Indeed, if we define ψ(t) � �(g(t), ψ(0)), with ψ(0) ∈ HR,

then for every t0 ∈ R, one has that

d

dt

∣
∣
∣
∣
t�t0

�(g(t), ψ(t0)) � d

dt
�(g(t)g(t0)

−1g(t0), ψ(t0))

� ϕ

(
dg

dt
(t0)g−1(t0)

)

�(g(t0), ψ(0)) � −iĤ (t0)ψ(t0),
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and ψ(t) is the general solution to (3.2).
In the particular case of ĤCK(t), which is related to a VG Lie algebra isomorphic to sl(2,R), the associated Lie system should be

associated with the universal covering group, S̃L(2,R), of the Lie group SL(2,R), which has a Lie algebra isomorphic to sl(2,R).
In consequence, it is defined on the Lie group G :� S̃L(2,R) and takes the form

dg

dt
� −e−2γ t X R

2 (g) − ω2e2γ t X R
1 (g), g ∈ S̃L(2,R), t ∈ R, (3.5)

where X R
α (g) :� Rg∗eaα for α � 1, 2, 3 and {a1, a2, a3} is a basis of TIdSL2 � sl(2,R) satisfying the same commutation relations

as iĤ1, iĤ2, iĤ3.
As SL(2,R) has a fundamental group isomorphic to Z, its universal covering, S̃L(2,R), is not a matrix Lie group, which is

complicated to deal with in practical applications (cf. [33, p. 127]).
In applications, one is frequently interested in solutions of (3.5) for the variable t taking values close to zero. By the Ado theorem,

every finite-dimensional Lie algebra can be written in a matrix form and, then, it admits a matrix Lie group [33]. Since all Lie groups
with isomorphic Lie algebras are locally diffeomorphic close to their neutral elements, one can define an analogue of (3.5) on the
matrix Lie group SL(2,R) given by

dg

dt
� −e−2γ t X R

2 (g) − ω2e2γ t X R
1 (g), g ∈ SL(2,R), t ∈ R.

4 Quantum quasi-Lie schemes

This section develops the theory of quantum quasi-Lie schemes as an extension of the theory of quasi-Lie schemes to the quantum
mechanical realm [3]. Its main aim is to investigate the integrability properties of a class of t-dependent Schrödinger equations
describing the t-dependent Schrödinger equations studied via quantum Lie systems as a particular case. Additionally, we provide a
criterion to ensure that a t-dependent Hermitian operator is not a quantum Lie system.

The following example illustrates the necessity of quantum quasi-Lie schemes. Consider an n-dimensional nonlinear quantum
oscillator with a t-dependent anharmonic potential described by

ĤN H (t) :� 1

2

n∑

i�1

p̂2
i + ω(t)

1

2

n∑

i�1

x̂2
i + ω̃(t)

n∑

i�1

x̂α
i , (4.1)

where α is a negative integer, the term NH stands for ‘non-harmonic’, and ω(t), ω̃(t) are real t-dependent functions such that the
points of the curve (ω(t), ω̃(t)) in R

2 span the whole space R
2. Let us prove that ĤN H (t) is not a quantum Lie system through the

following no-go proposition.

Proposition 4.1 (Quantum Lie systems no − go proposition). Let End(H) be the Lie algebra of operators from H to H. Let Ĥ (t)
be a t-dependent Hermitian operator on H such that there exist Ĥa, Ĥb ∈ 〈Ĥ (t)〉t∈R and a Hermitian operator Ĥc on H satisfying
that

[iĤc, iĤa] � caiĤa, [iĤc, iĤb] � cbiĤb,

for constants ca ∈ R and cb ∈ R\{0}. Let pr : U ⊂ End(H) → End(H) be a Lie algebra morphism from a (possibly infinite-
dimensional) Lie algebra U of operators on H containing 〈iĤ (t)〉t∈R and iĤc. If adn

pr(iĤb)
pr(iĤa) �� 0 for every natural number

n > 0, then Ĥ (t) is not a quantum Lie system.

Proof It follows by induction that [iĤc, adn
iĤb

iĤa] � (ncb + ca)adn
iĤb

iĤa for every n ∈ N. Moreover, every iĤn :� adn
iĤb

iĤa ,

with n ∈ N ∪ {0}, belongs to the domain of pr because iĤa and iĤb are contained in U and U is a Lie algebra of operators. Since
pr is a Lie algebra morphism, adn

pr(iĤb)
pr(iĤa) � pr

(
iĤn

)
and, then, Ĥn �� 0 for all n ∈ N. Let E :� 〈iĤn〉n∈N be an R-linear

space. Then, the operators {iĤn}n∈N are eigenvectors of the linear morphism adiĤc
: E → E with different eigenvalues. Hence, the

{iĤn}n∈N are linearly independent and dim E � +∞. In consequence, every Lie algebra of operators containing the iĤ (t) must be
infinite-dimensional since it contains iĤa, iĤb and all the {iĤn}n∈N. �

Let us apply the results of the above proposition to (4.1). Let L2(Rn) be the space of equivalence classes of square-integrable
complex functions on R

n that are equal almost everywhere in R
n . Define the Hermitian operators on L2(Rn) of the form

Ĥa :�
n∑

j�1

x̂α
j , Ĥb :�

n∑

j�1

p̂2
j , Ĥc :�

n∑

j�1

(̂x j p̂ j + p̂ j x̂ j )

2
.

Note that Ĥc is not included in (4.1). Its role in the quantum Lie systems no-go proposition is to ensure that an infinite family of its
eigenvectors with different eigenvalues must be contained in any real Lie algebra containing 〈iĤ (t)〉r∈R. Hence, iĤc does not need
neither to belong to U nor to appear in (4.1).

Let us define
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pr(iĤN H (t)) � i

2
p̂2

1 + ω(t)
i

2
x̂2

1 + iω̃(t )̂xα
1 , pr(iĤc) � i

(̂x1 p̂1 + p̂1 x̂1)

2
, pr(iĤa) � îxα

1 , pr(iĤb) � i p̂2
1 .

Since [iĤc, iĤa] � αiĤa , [iĤc, iĤb] � −2iĤb and
[
i p̂2

1, îxα
1 p̂k

1

]
� 2αîxα−1

1 p̂k+1
1 + α(α − 1)̂xα−2

1 p̂k
1,

it follows that

[pr(iĤb), pr(iĤa)] � 2αîxα−1
1 p̂1 + α(α − 1)̂xα−2

1 ,

and, by induction and recalling that α < 0, we obtain

adn
pr(iĤb)

(pr(iĤa)) �
n∑

k�0

ak x̂α−(n+k)
1 p̂n−k

1 ,

for certain complex constants a0, . . . , an . In particular, it can be proved that a0 � 2niα(α − 1) · · · (α − n + 1), while an �
(−i)n−1α(α − 1) · · · (α − 2n + 1), which are different from zero since α < 0. Since adn

pr(iĤb)
pr(iĤa) �� 0, the quantum Lie systems

no-go proposition ensures that (4.1) is not a quantum Lie system.
To fully understand the relevance of Proposition 4.1, it is worth stressing that it may be difficult to prove that {iĤ (t)}t∈R and the

successive Lie brackets of the elements of such a space span an infinite-dimensional Lie algebra and, hence, Ĥ (t) is not a quantum
Lie system. Instead, Proposition 4.1 gives conditions that ensure that Ĥ (t) is not a quantum Lie system. In particular, a Lie algebra
morphism pr : U ⊂ End(H) → End(H) can be used to simplify calculations by making pr(iĤa) and pr(iĤb) to be as simple as
possible, which in turn will turn the condition adn

pr(iĤb
pr(iĤa) �� 0 easier to be verified.

Note that the operators Ĥa , Ĥb, and Ĥc have been chosen so as to ensure that the conditions of the quantum Lie systems no-go
proposition hold. For instance, if we had chosen Ĥa � ∑n

j�1 x̂2
j instead of Ĥa � ∑n

j�1 p̂α
j , we would have obtained that ad3

pr(iĤb)
pr

(
i
∑n

j�1 x̂2
j

)
� 0, which would have shown that Proposition 4.1 cannot be applied.

Consider now a t-dependent Schrödinger equation

∂ψ

∂t
� −iĤ (t)ψ, ψ ∈ H, t ∈ R, (4.2)

where −iĤ (t) is a t-dependent operator such that every particular skew-Hermitian operator −iĤ (t), for any t ∈ R, belongs to a
finite-dimensional real linear space V of skew-Hermitian operators.

Hence, the t-dependent skew-Hermitian operator −iĤ (t) can be understood as a curve in V.
This time we do not impose the skew-Hermitian operators {−iĤ (t)}t∈R and their successive commutators to span a real finite-

dimensional Lie algebra of operators (with respect to the operator commutator) as in the case of quantum Lie systems. Instead,
suppose that the operators {−iĤ (t)}t∈R belong to a finite-dimensional real linear space of skew-Hermitian operators V and we also
assume that there exists a nonzero real Lie algebra W ⊂ V such that [W,V] ⊂ V.

Definition 4.2 A quantum quasi-Lie scheme, S(W,V), is a pair of nonzero finite-dimensional R-linear spaces W,V of skew-
Hermitian operators on a Hilbert space H satisfying that

W ⊂ V, [W,W] ⊂ W, [W,V] ⊂ V. (4.3)

To illustrate quasi-Lie schemes, let us consider the R-linear space of skew-Hermitian operators

VN H :�
〈

iĤ0 :� i
n∑

j�1

p̂2
j , iĤ1 :� i

n∑

j�1

x̂α
j , iĤ2 :� i

n∑

j�1

x̂2
j , iĤ3 :� i

n∑

j�1

(̂x j p̂ j + p̂ j x̂ j )

2

〉

,

for a fixed α ∈ N\{2} and WN H :� 〈iĤ2, iĤ3〉.
Since [iĤ2, iĤ3] � −2iĤ2, the linear space WN H is a two-dimensional real Lie algebra. We can see that [WN H ,VN H ] ⊂ VN H

since

[iĤ2, iĤ1] � 0, [iĤ2, iĤ0] � −iĤ3, [iĤ3, iĤ0] � −2iĤ0, [iĤ3, iĤ1] � αiĤ1.

It follows that WN H and VN H satisfy the conditions (4.3), and therefore, the pair WN H ,VN H gives rise to a quantum quasi-Lie
scheme S(WN H ,VN H ). Moreover, −iĤN H (t) takes values in VN H . Indeed,

ĤN H (t) � 1

2
Ĥ0 + ω(t)

1

2
Ĥ2 + ω̃(t)Ĥ1.

The last expression will be a clue to study the t-dependent Schrödinger equation related to ĤN H (t) through quasi-Lie schemes.
Indeed, it suggests us, along with other examples to be studied in the forthcoming sections, to propose the following definition.
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Definition 4.3 The t-dependent Schrödinger equation (4.2) admits a compatible quantum quasi-Lie scheme S(W,V) if −iĤ (t) is
such that every operator −iĤ (t) for a fixed t ∈ R belongs to V, namely −iĤ (t) can be considered as a curve in V.

Let us stress that the idea behind Definition 4.3 is that, given a t-dependent Schrödinger equation (4.2), we can apply the theory
of quantum quasi-Lie schemes to study it only via a quantum quasi-Lie scheme that is compatible with the t-dependent Schrödinger
equation in the sense given above. Note that a t-dependent skew-Hermitian operator can be understood as a function from R to the
space of skew-Hermitian operators from H to H. In this manner, one can say that −iĤ (t) is compatible with the quantum quasi-Lie
scheme S(W,V) if and only if −iĤ (t) takes values in V.

If not otherwise stated, we hereafter assume that every quantum quasi-Lie scheme and t-dependent skew-Hermitian operator is
defined on a generic (possibly infinite-dimensional) Hilbert space H.

5 Quantum quasi-Lie systems

Many of the works in the literature try to map a certain t-dependent operator into a simpler one by means of a t-dependent gauge
transformation (see, e.g. [24]). Similarly, we introduce quantum quasi-Lie systems in this section as a class of t-dependent Schrödinger
equations that can be transformed into a t-dependent Schrödinger equation related to a quantum-Lie system via a quantum quasi-Lie
scheme. To achieve this goal, we will extend some previous results on quantum Lie systems to a more general realm.

Definition 5.1 The representation of a quasi-Lie scheme S(W,V) is a Lie algebra morphism

ρ : W → End(V),

Â �→ ρ Â :� [ Â, ·],
where we recall that End(V) is the Lie algebra of endomorphisms on V relative to the operator commutator. A subrepresentation
of S(W,V) is a subspace V1 ⊂ V such that S(W,V1) is a quasi-Lie scheme.

As the subspace W of a quasi-Lie scheme S(W,V) is a real Lie algebra of skew-Hermitian operators on a Hilbert space H, there
exists a Lie group action � : (g, ψ) ∈ G × H �→ �(g, ψ) ∈ H such that the mappings �g : ψ ∈ H �→ �(g, ψ) ∈ H, with g ∈ G,
are unitary operators on H and, moreover, one has that

d

dt

∣
∣
∣
∣
t�t0

�(exp(tv), ψ) � ρ̃(v)�(exp(t0v), ψ), ∀ψ ∈ H,

where g is the Lie algebra of G, while ρ̃ : g → W is a Lie algebra isomorphism relative to the commutator operator on elements of
W.

Note that there may be other Lie group action �′ : G ′ × HR → HR, where the Lie algebra g′ of G ′ is isomorphic to g and G ′ is
connected, satisfying similar properties. Let us study the relations between such Lie group actions.

Let us consider �̂ : g ∈ G �→ �g ∈ U (H) and �̂′ : g ∈ G ′ �→ �′g ∈ U (H). Now, we aim to show that �̂(G) � �̂′(G ′). Due
to the fact that � and �′ are Lie group actions and ρ̃, ρ̃ ′ are their tangent maps at 0, respectively, one can consider the following
commutative diagram

(5.1)

where expG , expG ′ are the exponential maps from g, g′ into the Lie groups G, G ′, respectively, and exp stands for the exponential
of operators in W, which exists because the elements of W are skew-Hermitian operators and as a consequence of the Stone–von
Neumann theorem. Since G is connected, every element of G can be written as a product of elements in the image of the expG
[49, p. 224]. Hence, the group generated by the elements of �̂(expG (g)) is �̂(G). Repeating the same argument concerning the
right-hand side of diagram (5.1), using that it is commutative, and the fact that Im ρ̃ � Im ρ̃ ′, we obtain that �̂(G) � �̂′(G ′).

The space GW of curves U(t) in �̂(G) with U (0) � IdH is a group relative to the multiplication

(U1 � U2)(t) � U1(t)U2(t), U1(t), U2(t) ∈ GW, ∀t ∈ R.

Note that we will hereafter consider GW as an algebraic group. This implies that no additional manifold structure is assumed to
be defined on it. Moreover, the neutral element of GW is the curve in G mapping each t ∈ R to the neutral element, e, of G. The
previous ideas justify the following definition.

Definition 5.2 If S(W,V) is a quasi-Lie scheme and � : GW × HR → HR is a Lie group action obtained by integrating the Lie
algebra W, we call group of the quasi-Lie scheme S(W,V) the set GW of curves U(t) in �̂(GW) with U (0) � IdH.
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Recall that, given a t-dependent Schrödinger equation (4.2), one can define a family of unitary operators U (t2, t1), with t2, t1 ∈ R,
such that, given a certain ψ0 ∈ H, then U (t2, t1)ψ0 is the value of the particular solution ψ(t) to (4.2) for t � t2 with initial condition
ψ(t1) � ψ0. To simplify the notation, we will call t-dependent evolution operator of a Schrödinger equation (4.2) the t-dependent
family of unitary operators, U(t), with t ∈ R, such that U (t) � U (t, 0).

Proposition 5.3 The elements of the group GW of a quasi-Lie scheme S(W,V) are the t-dependent evolution operators of the
t-dependent Schrödinger equations of the form

∂ψ

∂t
� −iĤ0(t)ψ, ψ ∈ H, (5.2)

for a certain t-dependent operator −iĤ0(t) taking values in W. Conversely, the t-dependent evolution operator to (5.2) can be
described by a t-dependent evolution operator U(t) in GW.

Proof Let U be an open neighbourhood of the neutral element, e, of the Lie group GW, where canonical coordinates of the second-
kind can be defined. Consider a curve U(t) in GW. Then, U (0) � IdH and, if t is so close enough to 0, let us say t ∈ (−ε, ε) for
a certain real ε > 0, we can assume that U(t) takes values in �̂(U) for t ∈ (−ε, ε), where we recall that �̂ is the morphism of
groups �̂ : GW → U (H) related to the Lie group action � : GW × HR → HR induced by the integration of W. Using canonical
coordinates of second-kind in U in a particular basis {iĤ1, . . . , iĤr } of W, we obtain that U(t) can be written as

U (t) � exp
(
i f1(t)Ĥ1

) × . . . × exp
(
i fr (t)Ĥr

)
, (5.3)

for certain t-dependent real functions f1(t), . . . , fr (t) vanishing at t � 0.
A short calculation shows that

dU

dt
(t)ψ �

r∑

j�1

d f j

dt
(t)Ad∏ j−1

k�1 exp(i fk (t)Ĥk )
(iĤ j )U (t)ψ, ∀ψ ∈ H, (5.4)

where Adexp(i fk (t)Ĥk ) Ĥ j :� exp(i fk(t)Ĥk)Ĥ j exp(−i fk(t)Ĥk) for every j, k � 1, . . . , r and t ∈ R. Note that the exponentials are
arranged in ascending order relative to k. We also assume that Ad∏0

k�1 exp(i fk (t)Ĥk ) :� IdW. AsW is a real Lie algebra, each morphism
Adexp(λiĤ j ), with λ ∈ R and j � 1, . . . , r , leaves W invariant. Moreover, the right-hand side of (5.4) shows that

dU

dt
(t)U (t)−1 �

r∑

j�1

d f j

dt
(t)Ad∏ j−1

k�1 exp(i fk (t)Ĥk )
(iĤ j )

becomes a curve −iĤ0(t) taking values in W. Consequently, U(t) determines a curve −iĤ0(t) in W and the general solution to
its t-dependent Schrödinger equation has general solution U (t)ψ0 for ψ0 ∈ H. Recall that since fk(0) � 0, for k � 1, . . . , r , the
ψ0 ∈ H is the initial condition for the particular solution ψ(t) � U (t)ψ0 and U (0) � IdH.

Conversely, assume that we are given a curve −iĤ0(t) in W. Let us determine a curve U(t), defined at least for t in an open
neighbourhood around zero, describing the t-dependent evolution operator for (5.2). Around t � 0, the curve U(t) can be written
in the form (5.3) because U (0) � IdH. We can define a t-dependent family of mappings of the form Tt : W → W, for each t ∈ R,
such that

−i
r∑

j�1

λ j Ĥ j
Tt�→ −

r∑

j�1

λ j Ad∏ j−1
k�1 exp(i fk (t)Ĥk )

(iĤ j )

for every set λ1, . . . , λr ∈ R. The functions f1(t), . . . , fr (t) are undetermined now, but f1(0) � . . . � fr (0) � 0 and then
T (0) � IdW. Since Tt depends continuously on t, then each particular Tt0 will be invertible for t0 in a neighbourhood of zero. As a
consequence, the system of differential equations given by

−
r∑

j�1

d f j

dt
(t)Ad(∏ j−1

k�1 exp(i fk (t)Ĥk

)(iĤ j ) � −iĤ0(t)

amounts, after applying T −1
t , to

−i
r∑

k�1

d fk

dt
(t)Ĥk � T −1

t (−iĤ0(t)),

which always has a local solution f1(t), . . . , fr (t) for t in a neighbourhood of zero. This allows us to determine the values of
f1(t), . . . , fr (t) close to t � 0 ensuring that U(t) is the t-dependent evolution operator of (5.2).

�
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The main property of a quantum quasi-Lie scheme is given by the following theorem, which will be employed to simplify
t-dependent Schrödinger equations ’compatible’ with quantum quasi-Lie schemes.

Definition 5.4 Let S(W,V) be a quasi-Lie scheme and let U(t) be the t-dependent evolution operator related to a t-dependent
skew-Hermitian operator −iĤ (t) defining a curve in V. If U ′(t) stands for a curve in GW, then we write U ′(t)�(−iĤ (t)), for the
t-dependent skew-Hermitian operator associated with the t-dependent evolution operator (U ′ � U )(t). We also write WR and VR

for the spaces of curves in W and V, respectively.

Theorem 5.5 (The main theorem of quantum Lie systems). Let S(W,V) be a quantum quasi-Lie scheme and let −iĤ (t) be a curve
in V. If UW(t) is an element of GW, then

UW(t)�(−iĤ (t)) :� Â(t) + AdUW(t)(−iĤ (t)), (5.5)

where Â(t) is the t-dependent skew-Hermitian operator inWR whose evolution is determined by UW(t), is an element ofVR. If ψ(t) is
a particular solution to the t-dependent Schrödinger equation related to −iĤ (t), then the curve in H of the form ψ ′(t) � UW(t)ψ(t)
is a solution to the Schrödinger equation related to UW(t)�(−iĤ (t)).

Proof As UW(t) is the t-dependent evolution operator related to the t-dependent skew-Hermitian operator Â(t), one has that Â(t)
is an element of WR ⊂ VR.

Since −iĤ ′(t) :� UW(t)�(−iĤ (t)) is by definition the t-dependent skew-Hermitian operator admitting a t-dependent evolution
operator U ′(t) :� UW(t)U (t), where U(t) is the t-dependent evolution operator for Ĥ (t), then

dU ′

dt
(t)U ′†(t)ψ0 �

[
dUW

dt
(t)U †

W(t) + AdUW(t)

(
dU

dt
(t)U †(t)

)]

ψ0

� Â(t)ψ0 − AdUW(t)
(
iĤ (t)

)
ψ0 � Â(t)ψ0 +

( ∞∑

n�0

1

n!
adn

Â(t)
(−iĤ (t))

)

ψ0, (5.6)

for every ψ0 ∈ H. As S(W,V) is a quantum Lie system, the curve −[B̂, iĤ (t)] ⊂ V, for any B̂ ∈ W, is a curve in V and −i Â(t)
is a curve in W. By induction, adn

Â(t)
(iĤ (t)) is also a curve contained in V for every n ∈ N ∪ {0} and, in view of (5.6), one has that

dU ′

dt
(t)U ′†(t) � −iĤ ′(t)

and, for every t ∈ R, the skew-Hermitian operator −iĤ ′(t) belongs to V. �

Summarising, a quantum quasi-Lie scheme on a Hilbert space H induces a group of t-dependent transformations on H allowing
us to transform the t-dependent Schrödinger equation on H described by a t-dependent skew-Hermitian operator in VR of a quantum
quasi-Lie scheme S(W,V) into another t-dependent Schrödinger equations related to t-dependent skew-Hermitian operators in VR.
A particular relevant case occurs when the quantum quasi-Lie scheme enables us to transform, via an element of GW, the initial
t-dependent Schrödinger equation into a final one which can be described by means of the usual theory of quantum Lie systems.

This motivates the next definition.

Definition 5.6 The t-dependent skew-Hermitian operator −iĤ (t) is a quantum quasi-Lie system with respect to the quantum quasi-
Lie scheme S(W,V) if −iĤ (t) is a curve in V and there exists a curve U(t) in GW such that U (t)�(−iĤ (t)) is a quantum Lie
system.

To simplify the notation, we call quantum quasi-Lie system and quantum Lie system the t-dependent Schrödinger equations
related to a quantum quasi-Lie system or a quasi-Lie system, respectively.

6 Transformation properties of quantum quasi-Lie schemes

The group, GW, of a quantum quasi-Lie scheme S(W,V) allows us to map every t-dependent skew-Hermitian operator −iĤ (t) in
VR into new ones in VR. This fact may be helpful in integrating or, at least, simplifying t-dependent Schrödinger equations related
to t-dependent Hamiltonian operators [24]. This section depicts new easily implementable techniques to accomplish such a study.

Proposition 6.1 If S(W,V) is a quantum quasi-Lie scheme, −iĤ (t) belongs to VR, and P : V → W is any projection of V onto
W, then there exists U(t) in GW such that P[U (t)�(−iĤ (t))] � 0 at least for t in an open neighbourhood of 0 in R.

Proof An element U(t) in GW acts on a −iĤ (t) belonging to VR in the form (5.5). Applying the projection P in both sides of (5.5)
and using that dU (t)/dt(t)U †(t) takes values in W for every t ∈ R, one obtains

P[U (t)�(−iĤ (t))] � P

(
dU

dt
(t)U †(t) − AdU (t)(iĤ (t))

)

� dU

dt
(t)U †(t) − P(AdU (t)(iĤ (t))).
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Consider the differential equation for U(t) of the form

dU

dt
(t)U †(t) � P(AdU (t)iĤ (t)). (6.1)

Any particular solution U(t) of this equation with U (0) � IdH will map −iĤ (t) into a new t-dependent skew-Hermitian operator
−iĤ ′(t) :� U (t)�(−iĤ (t)) such that P[U (t)�(−iĤ (t)] � 0.

Let us consider a linear space,V , isomorphic toV via � : V → V. Consider alsoW ⊂ V to be the linear subspace V :� �−1(W).
Then, W inherits via � a Lie algebra structure that makes that W can be considered as the Lie algebra of a Lie group GW. The
isomorphism � : V → V allows us to define a projector P : V → V onto W of the form P :� �−1 ◦ P ◦ �. Consider the system
of differential equations on GW of the form

Rg−1∗g
dg

dt
� P(Adga(t)), (6.2)

where a(t) :� �−1(iĤ (t)). Let us prove that the solution to this system satisfying that g(0) � e is such that the related U(t) is a
solution to (6.1). Let � : GW × HR → HR be the Lie group action induced by the Lie algebra isomorphism �|W : W → W. If
we define U (t) � �g(t) and ψ ∈ H, we have that

d

dt

∣
∣
∣
∣
t�t0

U (t)ψ � d

dt

∣
∣
∣
∣
t�t0

�(g(t)g−1(t0),�(g(t0), ψ)) � �(P(Adg(t0)a(t0)))U (t0)ψ.

Since �(Adga(t)) � �giĤ (t)�g−1
, we get from the definition of P that

P(�giĤ (t)�g−1
) � P(�(Adga(t))) � �(P(Adga(t))).

Hence,

d

dt

∣
∣
∣
∣
t�t0

U (t)ψ � �(P(Adga(t0)))U (t0)ψ � P(U (t)iĤ (t)U−1(t))U (t)ψ.

Since the differential equation (6.2) admits a local solution for every initial condition, the same is true for the differential equation
(6.1). �

If V is a Lie algebra, namely −iĤ (t) is a quantum Lie system, then we can chose W � V and the previous proposition ensures
that there exists U(t) in GW such that −U (t)�iĤ (t) � 0. Hence, U−1(t)ψ , for any ψ ∈ H becomes the general solution to the
t-dependent Schrödinger equation related to −iĤ (t).

Let us use Proposition 6.1 to simplify or to integrate −iĤ (t) in VR when V is not a Lie algebra. In such a case, if −iĤ (t) �∑r+s
α�1bα(t)iHα for certain t-dependent functions b1(t), . . . , br+s(t) and a basis {iH1, . . . , iHr+s} of V such that the first r elements

form a basis for W, then Proposition 6.1 ensures that there exists an U(t) in GW such that U (t)�iĤ (t) � ∑r+s
α�r+1bα(t)iHα . This

simplifies the expression of the initial t-dependent Schrödinger equation related to −iĤ (t).
To provide further techniques to integrate t-dependent Schrödinger equations determined by a t-dependent skew-Hermitian

operator −iĤ (t) in VR when V is not a Lie algebra, let us extend to the quantum case some structures defined for standard quasi-Lie
schemes in [20].

The result of the following theorem allows us to determine when a t-dependent skew-Hermitian operator, −iĤ (t), belonging to
the space VR related to a quantum quasi-Lie scheme S(W,V) cannot be mapped into zero via an element UW(t) of the group GW.
In this case, we will use a quantum quasi-Lie scheme to study the form of −U (t)�iĤ (t) for each U(t) in GW.

Theorem 6.2 Let S(W,V) be a quantum quasi-Lie scheme with a subrepresentationV1 of codimension one, namely dimV/V1 � 1,
and let τV1 : V → V/V1 be the canonical projection onto V/V1. If −iĤ (t) belongs to VR while τV1 (−iĤ (t)) �� 0 and
τV1 (W) � 0, then τV1 (−U (t)�iĤ (t)) �� 0 for every U(t) in GW.

Proof To make the notation clearer, we will simply denote elements of W and V by lower-case letters, e.g. w ∈ W, v, v1 ∈ V

and the elements of GW by curves of the form g(t). Since [W,V1] ⊂ V1, each Lie algebra morphism ρw � [w, ·], with w ∈ W,
induced by the representation of S(W,V) leads to a well-defined morphism ρ̂w : τV1 (v) ∈ V/V1 �→ τV1 (ρw(v)) ∈ V/V1. In fact,
if v1, v2 ∈ V and τV1 (v1) � τV1 (v2), then [w, v1 − v2] ∈ V1 for every w ∈ W, τV1 ([w, v1 − v2]) � 0, and

ρ̂w(τV1 (v1)) :� τV1 ([w, v1]) � τV1 ([w, v2]) �: ρ̂w(τV1 (v2)).

This allows us to define a Lie algebra morphism ρ̂ : w ∈ W �→ ρ̂w ∈ End(V/V1). Indeed,

[ρ̂w1 , ρ̂w2 ](τV1 (v)) :� ρ̂w1 (ρ̂w2 (τV1 (v))) − ρ̂w2 (ρ̂w1 (τV1 (v))) � ρ̂w1 (τV1 ([w2, v])) − ρ̂w2 (τV1 ([w1, v])),

for all w1, w2 ∈ W and every v ∈ V. Using the Jacobi identity and the definition of τV1 ,

[ρ̂w1 , ρ̂w2 ](τV1 (v)) :� τV1 ([w1, [w2, v]] − [w2, [w1, v]]) � ρ̂[w1,w2](τV1 (v)), ∀w1, w2 ∈ W,∀v ∈ V.
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Hence, [ρ̂w1 , ρ̂w2 ] � ρ̂[w1,w2] and ρ̂ is a Lie algebra morphism. Moreover, ρ̂ and ρ : w ∈ W �→ [w, ·] ∈ End(V) are equivariant
relative to τV1 , namely ρ̂w ◦ τV1 � τV1 ◦ ρw , for all w ∈ W. In fact,

ρ̂w ◦ τV1 (v) � τV1 ([w, v]) � τV1 ◦ ρw(v), ∀w ∈ W,∀v ∈ V =⇒ ρ̂w ◦ τV1 � τV1 ◦ ρw, ∀w ∈ W.

Using that ρ and ρ̂ are equivariant relative to τV1 , we are going to finally prove that if v(t) takes values in V and τV1 (v(t)) �� 0, then
τV1 (g(t)�v(t)) �� 0 for every g(t) in GW. Since dimV/V1 � 1, there exists a unique function θ ∈ W∗ such that ρ̂w(τV1 (v)) �
θ (w)τV1 (v).

Consider the case of g(t) � exp( f (t)w) for some w ∈ W, a t-dependent function f (t), and an element v(t) in VR. It is clear that

g(t)�v(t) � dg

dt
(t)g(t)−1 + Adg(t)v(t) � d f

dt
(t)w + v(t) + f (t)[w, v(t)] +

f 2(t)

2
[w, [w, v(t)]] + . . .

Applying τV1 on both sides, using the assumptions on W and V, and recalling the ρ̂ is equivariant relative to τV1 , we obtain

τV1 (g(t)�v(t)) � τV1

(
dg

dt
g(t)−1

)

+ τV1 (v(t)) + τV1

(

[ f (t)w, v(t)] +
f 2(t)

2
[w, [w, v(t)]] + . . .

)

� (1 + f (t)θ (w) +
f 2(t)

2
θ2(w) + . . .)τV1 (v(t))

� e f (t)θ (w)τV1 (v(t)).

Therefore, if τV1 (v(t)) �� 0, then τV1 (g(t)�v(t)) �� 0. Since every g(t) in GW can be written as a product of elements of the form
g(t) � ∏s

i�1 exp( fi (t)wi ) for some elements w1, . . . , ws of W and functions f1(t), . . . , fs(t), it follows from the above result that
if τV1 (v(t)) �� 0, then τV1 (g(t)�(v(t))) �� 0 for every g(t) in GW. �

As an immediate consequence of the proof of Proposition 6.2, we obtain the following corollary.

Corollary 6.3 Let us assume the same conditions of Theorem 6.2 and let iĤ1, . . . , iĤr be a basis of V such that iH1, . . . , iHr−1 is
a basis of V1. If θ is the element of W∗ associated with the induced representation ρ̂ : W → End(V/V1), namely if τV1 : V →
V/V1 � 〈iĤr 〉, the θ is the only element in W∗ such that τV1 ([a, iĤr ]) � θ (a)τV1 (iĤr ) for every a ∈ W, then, for any functions
a1(t), . . . , ar (t), we have

U (t) �
r∏

i�1

exp(ai (t)iĤi ) =⇒ τV1 (U (t)�iĤ (t)) �
[

r∏

i�1

exp(ai (t)θ (iĤi ))

]

iĤr .

7 Applications of quantum quasi-Lie schemes

This section concerns the application of the theory of quantum quasi-Lie schemes to the quantum anharmonic oscillator model given
by n interacting particles via a t-dependent Hermitian operator of the form

ĤnH (t) :� 1

2

n∑

i�1

(
p̂2

i + ω2(t )̂x2
i

)
+ c(t)UnH (̂x1, . . . , x̂n), (7.1)

where c(t) is a non-vanishing real function, ω(t) is any real t-dependent function describing a sort of t-dependent frequency, and
UnH (̂x1, . . . , x̂n) is a quantum potential determined by an homogeneous polynomial of order k depending on the position operators
x̂1, . . . , x̂n , i.e. UnH (λx̂1, . . . , λx̂n) � λkUnH (̂x1, . . . , x̂n) for every λ ∈ R. As a particular instance, (7.1) covers many types of
anharmonic quantum oscillators, which have been extensively studied in the literature [50–52].

Perelomov found some conditions ensuring the existence of a t-dependent change of variables mapping a classical analogue of
(7.1) onto an autonomous Hamiltonian system, up to a trivial time-reparametrisation, related to the Hamiltonian

HnH � 1

2

n∑

i�1

p2
i + UnH (x1, . . . , xn), (7.2)

where UnH is now understood as a real homogeneous polynomial of order k on the position variables x1, . . . , xn (see [23] for
details). As many Hamiltonians of the form (7.2) are known to be explicitly integrable, the t-dependent change of variables found
by Perelomov relates the solutions of such Hamiltonians with the solutions of an associated non-autonomous one HnH [23].

Perelomov left as an open problem to look for a quantum analogue of his results (cf. [23]). Additionally, the classical anharmonic
oscillator related to the t-dependent Hamiltonian (7.1) was briefly analysed via quasi-Lie schemes in [3]. Subsequently, these results
are extended to the quantum realm by means of a quantum quasi-Lie scheme, resulting in a solution to Perelomov’s open problem.

Let us build up a quantum quasi-Lie scheme S(WnH ,VnH ) to deal with the t-dependent Hamiltonian operator −iĤnH (t). This
demands to determine subspacesWnH ,VnH of skew-Hermitian operators satisfying (4.3) and such that −iĤc(t) belongs to (VnH )R.
The construction of S(WnH ,VnH ) is accomplished in the following lemma.
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Lemma 7.1 The spaces VnH :� 〈iĤ1, iĤ2, iĤ3, iĤ4〉 and WnH :� 〈iĤ2, iĤ3〉, with

Ĥ1 :�
n∑

i�1

p̂2
i

2
, Ĥ2 :� 1

4

n∑

i�1

(̂xi p̂i + p̂i x̂i ), Ĥ3 :�
n∑

i�1

x̂2
i

2
, Ĥ4 :� UnH (̂x1, . . . , x̂n),

give rise to quantum quasi-Lie scheme S(WnH ,VnH ) such that −iĤnH (t) belongs to (VnH )R.

Proof Let us prove first that S(WnH ,VnH ) is a quantum quasi-Lie scheme. It is immediate thatVnH andWnH are finite-dimensional
real linear spaces of skew-Hermitian operators.

Since [iĤ2, iĤ3] � iĤ3, the space WnH is a real Lie algebra of skew-Hermitian operators as demanded by the definition of a
quantum quasi-Lie scheme. Let us verify the only left property of quantum quasi-Lie schemes, namely [WnH ,VnH ] ⊂ VnH . It is
immediate that

[iĤ2, iĤ1] � −iĤ1, [iĤ3, iĤ1] � −2iĤ2, [iĤ3, iĤ4] � 0.

The only non-immediate part to corroborate the condition [WnH ,VnH ] ⊂ VnH is to show that [iĤ2, iĤ4] ⊂ VnH . As [̂x j , p̂ j ] � iI
for j � 1, . . . , n, then p̂ j x̂ j � x̂ j p̂ j − i Î and

n∑

j�1

(̂x j p̂ j + p̂ j x̂ j ) � 2
n∑

j�1

x̂ j p̂ j − in Î , (7.3)

where Î is the identity operator on H. Consequently,

[iĤ2, iĤ4] � −1

2

⎡

⎣
n∑

j�1

x̂ j p̂ j , UnH (̂x1, . . . , x̂n)

⎤

⎦ � i

2

n∑

j�1

x̂ j ∂UnH

∂x j
(̂x1, . . . , x̂n).

In view of the Euler’s homogeneous function theorem [53] and recalling that UnH is a homogeneous function of degree k, it follows
that

n∑

j�1

x j ∂UnH

∂x j
� kUnH =⇒ [iĤ2, iĤ4] � i

2
kUnH (̂x1, . . . , x̂n).

This yields [iĤ2, iĤ4] � i
2 k Ĥ4 and

[WnH ,VnH ] ⊂ VnH . Thus, WnH ,VnH give rise to a quantum quasi-Lie scheme S(WnH ,VnH ).
Finally, the form of VnH and −iĤnH (t), which is given by (7.1), ensures that −iĤnH (t) takes values in VnH , which finishes the

proof. �

Once it is been stated that S(WnH ,VnH ) is a quantum quasi-Lie scheme and it can be used to describe the t-dependent Hamiltonian
operators in (7.1), it is time to apply the group of S(WnH ,VnH ) to analyse −iĤnH (t). In particular, a relevant case occurs when an
element U(t) of GWnH allows us to map −iĤnH (t) into a t-dependent skew-Hermitian operator −iĤ ′

U (t) :� −U (t)�iĤnH (t) that
can be considered as a curve on a one-dimensional subspace of VnH . In such a case, a time-reparametrisation allows us to solve
the transformed t-dependent Schrödinger equation related to −iĤ ′

U (t) and, applying U−1(t) to the general solution of the latter, we
obtain the general solution of the initial t-dependent Schrödinger equation.

Lemma 7.2 The t-dependent operator −U (t)�iĤnH (t) is a curve on a one-dimensional subspace of VnH if and only if U(t), which
is assumed without loss of generality to take the form

U (t) � exp
(
iα(t)Ĥ2

)
exp

(
iβ(t)Ĥ3

)
, (7.4)

is such that c(t)e
α(t)(k+2)

2 is a nonzero constant.

Proof In view of the Lie algebra representation of S(WnH ,VnH ), namely ρ : w ∈ WnH �→ [w, ·] ∈ End(VnH ), the quantum
quasi-Lie scheme S(WnH ,VnH ) admits two subrepresentations given by V1 :� 〈iĤ1, iĤ2, iĤ3〉 and V2 :� 〈iĤ2, iĤ3, iĤ4〉.

Since c(t) �� 0, the t-dependent operator −iĤnH (t) has no zero projection neither onto V/V1 nor onto V/V2. Then, Theorem 6.2
yields that the t-dependent skew-Hermitian operator of the form −U (t)�iĤnH (t) will never take values neither in V1 nor in V2 for
any U(t) in GW. In other words, if we write −U (t)�iĤnH (t) in the basis iH1, . . . , iH4 of VnH , then the t-dependent coefficients
relative to iH1 or iH4 will never vanish. Moreover, as we want −U (t)�iĤnH (t) to take values in a one-dimensional subspace ofVnH ,
the t-dependent coefficients relative to iH4 and iH1 must be proportional. Let us determine their values exactly without determining
the exact form of −U (t)�iĤnH (t).

As in the proof of Theorem 6.2, the representation of S(WnH ,VnH ) induces a representation ρ̂V2 : WnH → End(V/V2) such
that (ρ̂V2 )iĤ3

(iĤ1) � 0 i (ρ̂V2 )iĤ2
(iĤ1) � −iĤ1. Hence, θ ∈ W∗

nH given by θ (iĤ3) � 0 and θ (iĤ2) � −1 is the unique element of

123



Eur. Phys. J. Plus         (2023) 138:339 Page 15 of 19   339 

W∗
nH such that τV2 [ Â, B̂] � θ ( Â)τV2 (B̂) for every Â ∈ WnH and B̂ ∈ VnH . If U(t) has the form (7.4), then Corollary 6.3 gives

that τV2 (U (t)�iĤ (t)) � e−α(t)iĤ1.

Meanwhile, the induced representation ρ̂V1 : WnH → End(V/V1) by the second subrepresentation V1 is such that
(ρ̂V1 )iĤ3

(iĤ4) � 0 i (ρ̂V1 )iĤ2
(iĤ4) � ik/2Ĥ4. Hence, θ is determined by θ (iH3) � 0 and θ (iĤ2) � k/2. Thus, if U(t) has

the form (7.4), then Corollary 6.3 gives that τV1 (U (t)�iH (t)) � ekα(t)/2iĤ4.

Since the t-dependent coefficients of τV1 (U (t)�iĤ (t)) and τV2 (U (t)�iĤ (t)) must be proportional, it follows that c(t)e
α(t)(k+2)

2

must be a constant. �

Lemma 7.2 provides an easily derivable necessary condition to map −iĤnH (t) into a new t-dependent operator −iĤ ′
nH (t) giving

rise to a curve on a one-dimensional subspace of VnH via an U(t) belonging to GWnH . Nevertheless, the determination of sufficient
conditions to obtain such a −iĤ ′

nH (t) demands to determine the action of a generic U(t) on −iĤnH (t). If U(t) is in GWnH , then

−iĤ ′
nH (t) � U (t)�(−iĤnH (t)) � dU

dt
(t)U (t)−1 + Ad(U (t))(−iĤnH (t)),

and Theorem 5.5 ensures that U (t)�(−iĤnH (t)) takes values in VnH . Every element U(t) in GWnH can be written in the form

U (t) :� exp
(
iα(t)Ĥ2

)
exp

(
iβ(t)Ĥ3

)
. (7.5)

To obtain −iĤ ′
nH � U (t)�(−iĤnH (t)), it is necessary to use that

Ad
[
exp

(
iλĤ2

)]
Ĥ1 � e−λ Ĥ1, Ad

[
exp

(
iλĤ3

)]
Ĥ1 � Ĥ1 − 2λĤ2 + λ2 Ĥ3,

Ad
[
exp

(
iλĤ2

)]
Ĥ3 � eλ Ĥ3, Ad

[
exp

(
iλĤ3

)]
Ĥ2 � Ĥ2 − λĤ3,

Ad
[
exp

(
iλĤ2

)]
Ĥ4 � e

kλ
2 Ĥ4, Ad

[
exp

(
iλĤ3

)]
Ĥ4 � Ĥ4.

Then,

−Ĥ ′
nH (t) � −e−α(t) Ĥ1 +

(
dα

dt
(t) + 2β(t)

)

Ĥ2 + eα(t)
(

dβ

dt
(t) − β2(t) − ω2(t)

)

Ĥ3 − e
kα(t)

2 c(t)Ĥ4, (7.6)

where we recall that ω(t) is the t-dependent frequency of our initial t-dependent Hermitian operator (7.1).
Note also that Proposition 6.1 ensures that the group of S(WnH ,VnH ) allows us to map −iĤnH (t) into a new −iĤ ′

nH (t) giving
rise to a curve on 〈iĤ1, iĤ4〉 for some U(t) in GWnH . For instance, suppose that β(t) and α(t) are such that

dβ

dt
(t) � β2(t) + ω2(t),

dα

dt
(t) + 2β(t) � 0, (7.7)

and we recall that α(0) � β(0) � 0. Under such conditions,

Ĥ ′
nH (t) � e−α(t) Ĥ1 + e

α(t)k
2 c(t)Ĥ4.

To ensure that −iĤ ′
nH (t) takes values in a one-dimensional subspace of VnH , we have to recall the condition in (7.2), i.e.

c(t)e
kα(t)

2 � e−α(t)l =⇒ c(t)e
α(t)(k+2)

2 � l, (7.8)

for a nonzero constant l ∈ R. Note that we can assume without loss of generality that l � 1 by redefining Ĥ4.
Using (7.8) in (7.7), we obtain that if k �� 2 and there exist α(t) and β(t) satisfying the previous conditions, then

(k + 2)
d2c

dt2 (t) � (k + 3)
(dc/dt)2(t)

c(t)
+ ω2(t)(k + 2)2c(t). (7.9)

Conversely, if (7.9) holds, then there exist α(t) and β(t) satisfying (7.7) and (7.8).
It is worth noting that the definition of a new variable vc :� dv/dt allows us to transform (7.9) into a Lie system related to a VG

Lie algebra isomorphic to sl(2,R). In fact, if k � 0, this is indeed a type of Kummer–Schwarz equation of second-order studied in
[54].

Assume that (7.9) is satisfied. Then, the t-dependent Schrödinger equation related to Ĥ ′
nH (t) reads

i
∂ψ

∂t
� Ĥ ′

nH (t)ψ � e−α(t)(Ĥ1 + Ĥ4)ψ.

and by means of the time-reparametrisation

τ (t) :�
∫ t

e−α(t ′)dt ′ �
∫ t

[c(t ′)l−1]
2

k+2 dt ′,

the previous t-dependent Schrödinger equation can be mapped into

∂ψ ′

∂τ
� −i(Ĥ1 + Ĥ4)ψ ′,
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whose solution is

ψ ′(t) � exp
(−iτ (t)(Ĥ1 + Ĥ4)

)
ψ ′(0),

and ψ ′ is the transformed solution and ψ ′(0) is an arbitrary element ofL2(Rn). Hence, the solution of the initial Schrödinger equation
determined by the t-dependent Hamiltonian operator ĤnH (t) can be obtained by inverting the unitary transformation (7.5), namely

ψ(t) � exp
(−iβ(t)Ĥ3

)
exp

(−iα(t)Ĥ2
)

exp
(−iτ (t)(Ĥ1 + Ĥ4)

)
ψ ′(0). (7.10)

Therefore, we have mapped a non-autonomous Schrödinger equation into a new one determined by a t-independent Hermitian
Hamiltonian operator, similarly to what it was done by Perelomov in [23], but in a quantum mechanical way. Our result is summarised
in the proposition below.

Proposition 7.3 Every t-dependent Schrödinger equation related to a t-dependent Hermitian Hamiltonian operator ĤnH (t) of the
form (7.1), with a homogeneous potential of order k �� −2 and a non-vanishing function c(t) that is a particular solution of (7.9),
has a general solution (7.10), where

α(t) � − 2

k + 2
log c(t), β(t) � dc/dt

c(t)(k + 2)
, τ (t) �

∫ t

c(t ′)
2

k+2 dt ′.

Note 7.4 It was already noted that to transform −iĤnH (t) into an autonomous system up to a time-reparametrisation via the group
of S(WnH ,VnH ), the condition (7.8) is necessary. Despite that, the condition (7.7) is not mandatory and other alternative ones
could be developed. This would lead to new integration methods for (7.1).

8 Homogeneous potentials of degree minus two

Proposition 7.3 cannot be applied to t-dependent Hamiltonian operators of the form (7.1) with a homogeneous potential of degree
minus two. These potentials include the relevant potential

UnH (̂x1, . . . , x̂n) :�
∑

j<k

g

(̂x j − x̂k)2 , g ∈ R\{0},

of a fluid in a t-dependent homogeneous trapping potential [24], which is also a type of Calogero–Moser potential, or the celebrated
Smorodinsky–Winternitz potentials

UnH (̂x1, . . . , x̂n) �
n∑

j�1

g j

x̂2
j

, g j ∈ R,

n∑

j�1

g2
j �� 0.

Nevertheless, the procedure to prove Proposition 7.3 can be modified to deal with these pathological potentials with k � −2. This
is the main aim of this section.

Lemma 7.1, Lemma 7.2, and the expression for −iĤ ′
nH (t) � U (t)�(−iĤnH (t)) given by (7.6) are still valid when the potential

under study is homogeneous of degree minus two. Hence, to map −iĤnH (t) into a new t-dependent skew-Hermitian operator
−iĤ ′

nH (t) � −U (t)�iHnH (t) taking values in a one-dimensional subspace of VnH , it is mandatory to apply the condition

c(t)eα(t)(k+2)/2 � l,

for a certain nonzero constant l ∈ R. Since k � −2, the function c(t) becomes a constant c. If we assume that α(t) and β(t) are
particular solutions to (7.7), the transformed t-dependent Hamiltonian operator (7.6) takes the form Ĥ ′

nH (t) � e−α(t)(Ĥ1 + cĤ4).
Hence, the general solution to the t-dependent Schrödinger equation related to Ĥ ′

nH (t), whose explicit t-dependence can be removed
after a t-reparametrisation, reads

ψ ′(x, t) � exp

(∫ t

0
e−α(t ′)dt ′(Ĥ1 + Ĥ4)

)

ψ ′(x),

where ψ ′(x) is an arbitrary element of L2(Rn) and ψ ′(x, 0) � ψ(x). Hence, the general solution to (7.1) for a homogeneous potential
of degree minus two reads as (7.10) for some solutions α(t), β(t) to equations to (7.7), (7.8) and (7.9). This result is summarised in
the following proposition.

Proposition 8.1 Every t-dependent Hamiltonian operator Ĥ (t) of the form (7.1) with a homogeneous potential of order minus
two and c(t) � c ∈ R has a general solution (7.10) where β(t) is a particular solution to the Riccati differential equation
dβ/dt � β2 + ω2(t) and

α(t) � −2
∫ t

β(t ′)dt ′, c0 ∈ R\{0}, τ (t) �
∫ t

e−α(t ′)dt ′.
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Let us apply Proposition 8.1 to the t-dependent Hamiltonian

ĤnH (t) � 1

2

n∑

j�1

(
p̂2

j + K (t )̂x2
j

)
+
∑

j<k

λ(λ − 1)

(̂x j − x̂k)2 ,

whose potential is homogeneous of degree minus two. This t-dependent Hamiltonian operator was analysed in [24] to study a
quantum one-dimensional fluid in a Paul trap [55]. Sutherland provided an Ansatz [24] to get a particular solution. Here, we recover
some of his results from an algorithmic point of view and show that more useful solutions can be derived to study the properties of
the quantum system.

Suppose that we take a t-dependent transformation of GW with functions β(t) and α(t) satisfying the differential equations

dβ

dt
(t) � β2(t) + K (t),

dα

dt
(t) + 2β(t) � 0. (8.1)

In view of Proposition 8.1, the t-dependent Schrödinger equation related to ĤnH (t) reads

ψ(x, t) � exp(−β(t)iĤ3) exp(−α(t)iĤ2) exp

(∫ t

0
e−α(t ′)dt ′(Ĥ1 + Ĥ4)

)

ψ ′(x, 0).

In particular, if we assume

ψ(x, 0) �
∏

j<k

(x j − xk)λ,

we obtain

(Ĥ1 + Ĥ4)
∏

j<k

(x j − xk)λ � 0.

and hence

ψ(x, t) � exp(−β(t)iĤ3) exp(−α(t)iĤ2)
∏

j<k

(x j − xk)λ.

Since
∏

j<k(x j − xk)λ is a homogeneous function with degree λn(n − 1)/2 and in view of (7.3), it follows that

iĤ2

∏

j<k

(x j − xk)λ �
(

n

4
+

λn(n − 1)

4

) ∏

j<k

(x j − xk)λ,

and

ψ(x, t) � exp(−β(t)iĤ3) exp

(

−α(t)n
(1 + λ(n − 1))

4

) ∏

j<k

(x j − xk)λ.

In view of the expression of Ĥ3, it follows that

ψ(x, t) � exp

(

−i β(t)

∑n
j�1 x2

j

2

)

exp

(

−α(t)n
(1 + λ(n − 1))

4

) ∏

j<k

(x j − xk)λ.

From equation (8.1), it turns out that dφ/dt(t) � β(t)φ(t), with φ(t) :� e−α(t)/2. Hence,

ψ(x, t) � exp

(

−i β(t)

∑n
j�1 x2

j

2

)

φ(t)−n 1+λ(n−1)
2

∏

j<k

(xk − x j )
λ,

recovering, in this way, the particular solution given in [24]. Nevertheless, our approach is more general and our solution is not
retrieved through a particular Ansatz as in previous literature.

9 Conclusions and relevance of achieved results

We have proposed the theory of quantum quasi-Lie schemes as a way to transform an initial t-dependent Schrödinger equation
compatible with a quasi-Lie scheme into another one that is compatible with the same quasi-Lie scheme. In particular, the transfor-
mation has been accomplished so that the transformed t-dependent Schrodinger equation will be simpler or could be described by
means of the usual theory of quantum Lie systems. Our new theory enables us to investigate a larger set of t-dependent Schrödinger
equations than just those related to quantum Lie systems using methods generalising those for quantum Lie systems. We have also
shown that the theory of quasi-Lie systems admits a generalisation to the quantum framework.
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As a particular instance, we have applied in Sect. 7 our theory to solve a problem posed by Perelomov [23] in 1978 about the
possibility of relating a quantum t-dependent Hamiltonian for a nonlinear oscillator to a quantum t-independent one of the same
type. We have also obtained in Sect. 8 the solution of a quantum one-dimensional fluid in a Paul trap.
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