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Abstract Dynamical systems modeling tumor growth have been investigated to analyze the
dynamics between tumor and healthy cells. Recent theoretical studies indicate that these
interactions may lead to different dynamical outcomes under the effect of particular cancer
therapies. In the present paper, we derive a system of nonlinear differential equations, in
order to investigate solid tumors in vivo, taking into account the impact of chemotherapy on
both tumor and healthy cells. We start by studying our model only in terms of deterministic
dynamics under the variation of a drug concentration parameter. Later, with the introduction of
noise, a stochastic model is used to analyze the impact of the unavoidable random fluctuations.
As a result, new insights into noise-induced transitions are provided and illustrated in detail
using techniques from dynamical systems and from the theory of stochastic processes.

1 Introduction

The term cancer designates generically a group of diseases involving abnormal cell growth
with the potential for spreading to new locations and invade other parts of the body. This
process contrasts with benign tumors, which do not spread. Cancer can be detected by certain
signs and symptoms or screening tests. Nevertheless, despite the encouraging progresses, we
have only a limited understanding of cancer and there is no known effective cure for the
disease [1]. As a matter of fact, in 2015, about 90.5 million people had cancer. In very recent
years, annually, it caused about 8.8 million deaths (15.7% of deaths) (additional information
can be found in [2] and [3]). Metastasis is the spread of cancer to other locations in the body.
The dispersed tumors are called metastatic tumors. As a matter of fact, most cancer deaths are
due to cancer that has metastasized. In order to control this tragic outcome, different types of
therapeutic methodologies have been adopted by oncologists, such as surgery, radiotherapy,
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anti-angiogenic drugs, immunotherapy, chemotherapy, among others. The chance of survival
depends on the type of cancer and extent of disease at the start of treatment.

In order to gain revealing insights into important phenomena involved in tumor growth and
to predict its future behavior, different cancer models have been used. Complex interactions
among different body cells, namely tumor cells, healthy tissue cells and activated immune
cells, are considered in the modeling process, which usually includes a treatment strategy.
Key factors that influence the treatment choice are: tumor severity, age, sex and immune
system state of the patient. It has been shown in the literature that cancer growth models are
particularly complex in its dynamics (see, for instance, [1,4,5] and references therein).

Depending on the type of cancer and stage, particularly when cells seem to be resistant to
immune elimination ([6,7]), chemotherapy is often applied against tumor progression. Even
with their limitations and side effects, chemotherapy may be useful to reduce symptoms such
as pain or to reduce the size of an inoperable tumor in the hope that surgery will become
possible in the future. It is a fact that the application of chemotherapy remains an important
and sensitive research topic to improve [8].

In order to study the reduction of tumor population in an optimal manner, particular
treatment protocols, mainly chemotherapy, immunotherapy or radiotherapy, have been taken
into consideration on cancer models. Some recent works have focused their attention on solid
tumors in vitro [9].

In the present study, with the purpose of enhancing our understanding of tumor growth
in vivo in the presence of traditional therapies, we will be concerned with the effect of
chemotherapy on both the healthy tissue and tumor cells. In particular, our main goal is to
illustrate in simple terms and to provide insights into the dynamical effect of adding noise
to a two-dimensional deterministic model, studying a stochastic system under the usage of
chemotherapy. More specifically, these insights correspond to a deeper understanding and a
wider perspective into the different dynamical scenarios that can emerge from the suggested
numerical simulations in a stochastic context, when noise is added to a deterministic system.
Accordingly, as a contribution to the literature, we will discuss the use of bifurcation analysis
to design treatment protocols of different stages. More precisely, the values of specific param-
eters at the bifurcation points are biologically meaningful and will offer us the possibility
for recognizing the sufficient drug concentration to be used in order to suppress tumor cells.
In fact, throughout our work, the bifurcation values of the drug concentration C , precisely
C = C1 andC = C2, allow us to characterize dynamical scenarios corresponding toC < C1,
C1 < C < C2 and C > C2 that guide the entire discussion on the impact of the considered
noise intensity. Biologically speaking, this noise intensity corresponds to the amount of ran-
dom variability in different quantities (e.g., dynamical variables and parameters) arising in
cellular biology.

The subsequent part of this article is organized as follows. In Sect. 2, we describe the basic
features and dynamical properties of the deterministic version of the model. Divided into two
subsections, Sect. 3 is devoted to the analysis of the main topic of the present work—the
stochastic effects on the tumor growth model provided by the noise-induced dynamics. The
closing Sect. 4 is devoted to the usual final considerations about the undertaken study.

2 Deterministic model

The mathematical model that we are using was developed in [10], and it corresponds to the
one described in [11], though no constant input of effector immune cells is considered. Each
variable represents a cell population, where T (t) corresponds to the tumor cells, H(t) to the
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healthy host cells, and E(t) to the effector immune cells. The growth of cancer and host cells
follows a logistic curve with growth rate ri and carrying capacity ki . As a competitive model,
the parameters ai j represent the competitive parameters.

The parameter r3 represents the immune effector cell production rate related to the response
of the presence of tumor cells. On the other hand, k3 corresponds to the steepness of the
response curve; that is, the value of the tumor cells at which the immune response rate is
half of the maximum production, threshold for which the response curve saturates. Immune
effector cells only compete with cancer cells. In the absence of these cells, they die off with
a constant per capita rate d3. Thus, the system reads as follows:

Ṫ = r1T

(
1 − T

k1

)
− a12T H − a13T E

Ḣ = r2H

(
1 − H

k2

)
− a21HT

Ė = r3
ET

T + k3
− a31ET − d3E . (1)

The nondimensionalization and parameter reduction of this system is thoroughly studied
in [5,10], yielding the set of equations

ẋ = x (1 − x) − a12xy − a13xz

ẏ = r2y (1 − y) − a21yx

ż = r3
zx

x + k3
− a31zx − d3z, (2)

where x is the density of population of tumor cells, y is the density of population of healthy
cells, z is the density of population of immune cells, and a12, a13, a21, a31, r2, r3 and d3 are
the dimensionless parameters of the system. For our purpose, we take the two-dimensional
system obtained after making z = 0 from Eq. 2. This means that we do not consider the
existence of the immune cells. In this situation, our system can be written as

�
x = x(1 − x) − a12xy
�
y = ry(1 − y) − a21xy, (3)

where we fix the parameters a12 = 0.5, a21 = 4.8 and r2 = r = 1.2 following [12].
On the other hand, to take into account the impact of chemotherapy, we follow the fractional

cell kill law used in [9] and derive the model

�
x = x(1 − x) − a(1 − e−ρ1C )x

1 + s1x
− a12xy

�
y = ry(1 − y) − a21xy − b(1 − e−ρ2C )y

1 + s2y
(4)

where the dynamical variables and parameter values are listed and described in Table 1. Terms
associated with the treatment contain six parameters: a, b, ρ1, ρ2, s1 and s2, which have no
units since they are dimensionless quantities. We suppose a >> b, because the tumor must
be more sensitive to drugs than the healthy cells. The behavior of Eq. 4 is studied under a
variation of the parameter C of the drug concentration. Notice that, in the context of our
study, we do not need to pay attention with the pharmacokinetics of the drug itself since here
the drug concentration is treated as a parameter. As far as the administration of chemotherapy
is concerned, this model allows us to represent the so-called Norton–Simon hypothesis. As
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Table 1 Description of the dynamical variables and parameters of the model of Eq. 3 and their values

Variables/Parameters Biological meaning Default values

x Density of tumor cells

y Density of healthy cells

a Relative maximum fractional tumor cell kill 2

b Relative maximum fractional healthy cell kill 0.1

ρ1 Sensitivity of the tumor cells to the drugs 1.0

ρ2 Sensitivity of the healthy cells to the drugs 2.0

s1, s2 Control of the extent to which the Norton–Simon effect is operating 1.0

a12 Tumor cells inactivation rate by the healthy cells 0.5

a21 Healthy cells inactivation rate by the tumor cells 4.8

r Intrinsic growth rate of the healthy tissue cells 1.2

C Drug concentration (control parameter under study)

Notice that both the variables and the parameters have not units since they are dimensionless quantities

pointed out in [9], this hypothesis states that the rate of destruction of a cytotoxic agent is
proportional to the rate of growth of the unperturbed tissue (tumor cells/healthy cells). The
fractional cell kill by cytotoxic agents can then be described by means of an exponential kill
model, which has been tested against experimental results. This model describes the rate of
cell kill by using the mathematical functions a(1 − e−ρ1C ) and b(1 − e−ρ2C ), corresponding
to the tumor cells and healthy tissue, respectively.

In order to gain direct insights into the dynamics of the system in the absence of noise,
we first examine the equilibria and perform a phase plane analysis, having C as the most
relevant parameter. Indeed, Eq. 3 possesses several equilibrium points called Mn(x, y) where
n = 0, 1, 2. The trivial one, M0(0, 0), is unstable for the considered choice of parameters.
On the other hand, coordinates of equilibria M1(x, 0) and M2(0, y) can be obtained from the
equations:

(1 − x)(1 + s1x) − a(1 − e−ρ1C ) = 0, (5)

r(1 − y)(1 + s2y) − b(1 − e−ρ2C ) = 0. (6)

Here, we consider only nonnegative roots; that is, the ones that are biologically meaningful.
For s1 = s2 = 1, we have:

x =
√

1 − a(1 − e−ρ1C ), y =
√

1 − b(1 − e−ρ2C )

r
. (7)

Moreover, the system can possess the equilibrium point M3(x, y) in which x, y > 0 and they
are governed by the equations:

r(1 − ϕ(x)) − b(1 − e−ρ2C )

1 + s2ϕ(x)
− a21x = 0, y = ϕ(x), (8)

where

ϕ(x) = (1 − x)(1 + s1x) − a(1 − e−ρ1C )

(1 + s1x)a12
. (9)
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(a) (b)

Fig. 1 Bifurcations diagrams versus parameterC of drug concentration. a Bifurcation diagram of the variable
x versus C . b Bifurcation diagram of the variable y versus C . We have fixed the rest of the parameter values
as a = 2, b = 0.1, ρ1 = 1, ρ2 = 2, s1 = s2 = 1

We evaluate now how the chemotherapy with increasing drug concentration C affects the
changes in the density of tumor cells x and in the density of healthy cells y. The key dynamical
regimes of Eq. 4 under the variation of C in the interval 0 ≤ C ≤ 1 are well seen in the
bifurcation diagram shown in Fig. 1. Here, C1 = 0.2939 and C2 = 0.6394 are bifurcation
points. The equilibrium M1 (red color) is stable in the interval 0 ≤ C < C2. The equilibrium
M2 (blue color) is stable in the interval C1 < C ≤ 1. The equilibrium M1 corresponds,
according to [9], to the state of an active tumor (AT), while M2 stands for the dead tumor
(DT).

Three dynamical regimes can be described in biological terms: (i) in the interval 0 ≤
C < C1, that can be interpreted as weak therapy, Eq. 4 is monostable—independently of
the initial state, the system transits to the state of AT; (ii) in the interval C2 < C ≤ 1 of the
strong therapy, the system is also monostable, and all solutions tend to the state of DT; (iii)
in the interval C1 < C < C2 of intermediate strength of therapy, the system (4) is bistable:
situation where both regimes, AT and DT, coexist. Depending on the ratio of the tumor and
healthy cells, the solution converges either to M1 (AT) or to M2 (DT). These two equilibria,
M1 and M2, are biologically meaningful. The active tumor (AT) equilibrium corresponds to
a malignant attractor for which the tumor has an unacceptable level of tumor cells and can
develop an increased metastatic potential. Actually, the DT equilibrium represents the tumor
extinction.

For the three dynamical scenarios above mentioned, phase portraits are shown in Fig. 2 for
different values of the drug concentration C , namely for C = 0.2 (AT), C = 0.5 (AT + DT)
and C = 0.7 (DT). In the bistability case (Fig. 2b), the saddle equilibrium M3 (empty point)
plays an important role: its stable manifold (green dashed) separates basins of attraction of
the stable equilibria M1 and M2.

Based on results of the bifurcation analysis depicted in Fig. 1, the following protocol of
two-stage treatment can be proposed. At the first stage, we use drug concentration slightly
above C2. This allows us to suppress tumor cells independently of the initial values of tumor
and healthy cells. In the second stage, to provide this state of DT, it is sufficient to use drugs
with concentration C slightly above C1. Such a protocol of treatment is valid only from the
point of view of the deterministic model, since the presence of random disturbances can
significantly change the behavior comparing with the deterministic prediction.

At this moment of our study, and in the sequence of the previous deterministic approach,
it is necessary to consider the dynamical behavior of system of Eq. (4) under the effect of
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(a) (b)

(c)

Fig. 2 The figure shows the phase portraits of Eq. (4) for different values of the drug concentration C . We
have fixed the rest of the parameters as a = 2, b = 0.1, ρ1 = 1, ρ2 = 2, s1 = s2 = 1. a C = 0.2, bC = 0.5,
and c C = 0.7

random disturbances, since the tumor growth does not usually take place in a deterministic
manner.

3 Stochastic model

To study the impact of random fluctuations, we will use the following stochastic model

ẋ = x(1 − x) − a(1 − e−ρ1C )x

1 + s1x
− a12xy + ε1ξ1(t)

ẏ = ry(1 − y) − a21xy − b(1 − e−ρ2C )y

1 + s2y
+ ε2ξ2(t). (10)

Here, ξ1(t) and ξ2(t) are uncorrelated Gaussian white noises with values of noise intensity
ε1 and ε2. In what follows, we consider ε1 = ε2 = ε and use a Euler–Maruyama scheme [13]
with the time step 10−3 for numerical simulation of the random solutions. With the purpose
of preserving both the physical and the biological sense, we have to keep the variables x and
y nonnegative and use a corresponding truncation procedure. Different dynamical scenarios
can emerge in a stochastic context, as a result of adding noise to a deterministic system. In
this sense, some recent works have been focused on the influence of random fluctuations on
the recruitment of effector cells toward a tumor (please see [5,14] and references therein).
For the sake of clarity, the following subsections are devoted to noise-induced dynamical
scenarios of different nature.
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(a)

(b) (c)

Fig. 3 a The figure represents a stochastic trajectory in phase space b Time series of the stochastic model
Eq. 10 with C = 0.5 and ε = 0.01 (blue for M1 and red for M2) c Time series of the stochastic model, Eq. 10
with C = 0.5 and ε = 0.1 (green)

3.1 Noise-induced transitions in the bistability zone

Firstly, we consider the influence of noise in the parameter zone C1 < C < C2, where Eq. 4
possesses two stable equilibria, M1 and M2. Results of our stochastic modeling are presented
in Fig. 3 for C = 0.5 and two values of the noise intensity. For an initial value of noise
ε = 0.01 random trajectories starting from M1 (blue) and M2 (red) exhibit small-amplitude
noisy fluctuations near the initial deterministic equilibria.

For increasing values of noise, the solutions start to intersect the separatrix between basins
of coexisting equilibria, transiting between these basins. Such intermittent behavior is shown
in green color in Fig. 3 for ε = 0.1. Here, three stages can be seen: (i) small-amplitude
stochastic oscillations in the basin of M1; (ii) small-amplitude stochastic oscillations in the
basin of M2 and (iii) large-amplitude jumps between basins.

Details of noise-induced transformations of the dynamics of Eq. 10 are shown in Figs. 4–
5 for different values of the drug concentration C within the bistability zone. In these two
figures, random states of the system of Eq. 10 for solutions starting from M1 (AT) are shown
in red color and for solutions starting from M2 (DT) are plotted in blue color. Corresponding
mean values of the densities x and y, varying the noise intensity ε, are shown in light blue.

As we can see, near the left point C1 = 0.2939 of the bistability interval (see Fig. 4 for
C = 0.3), firstly increasing noise induces one-way transitions from M2 to M1. Therefore,
among coexisting stable equilibria M1 and M2, we can observe how the noise induces the
tumor into the state of active tumor. With further increase in the noise intensity ε, the stochastic
system exhibits an intermittency with repetitive transitions between M1 and M2.
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(a) (b)

(c) (d)

Fig. 4 Random states of the variables x and y described in the stochastic model, Eq. 10, versus ε withC = 0.3.
In figures a and b, the trajectories start from M1 (AT), while in figures c and d start from M2 (DT). The mean
values, plotted by a light blue color, are calculated over a period of t = 100

Near the right point C2 = 0.6394 (see Fig. 5 for C = 0.63 ), before the onset of stochastic
mixing, the system demonstrates noise-induced transition to the state of M2 (DT).

3.2 Noise-induced excitement in the monostability zone

Now, let us consider the influence of noise in the parameter zone C > C2, where the system
described in Eq. 4 possesses a single stable equilibrium M2 corresponding to the state of DT.

For that purpose, we plot Figs. 4, 5 and 6. In Fig. 6, random states (blue) of the stochastic
system starting from M2 are plotted versus the noise intensity along with the mean values of
the dynamical variables x and y (light blue).

Even in the monostable system with a singular equilibrium, large-amplitude stochastic
oscillations can be induced by noise with increasing intensity. An example of a such excite-
ment is shown in Fig. 7, where time series of stochastic solutions starting from M2 are plotted
for C = 0.7 and ε = 0.01 (blue), ε = 0.1 (green). As we can observe, for ε = 0.01 the sys-
tem shows small-amplitude noisy oscillations near M2. For a larger intensity noise, ε = 0.1,
the system exhibits large-amplitude spiking oscillations of complex form.

The transition from small- to large-amplitude stochastic oscillations with increasing noise
are accompanied by the significant changes of the form of the probability density. In Fig. 8,
one can see these changes for C = 0.64 and C = 0.7 under increasing values of ε.

Here, it should be noted that the form of the probability density function of the variable
y, p(y), changes its modality: one peak → two peaks → one peak. Such a qualitative
deformation of the form of p(y) is commonly interpreted as an stochastic P-bifurcation.
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(a) (b)

(c) (d)

Fig. 5 Random states of the variables x and y described in the stochastic model, Eq. 10, versus ε with
C = 0.63. In figures a and b, the trajectories start from M1 (AT), while in the figures c and d start from M2
(DT). The mean values, plotted by a light blue color, are calculated over a period of t = 100

(a) (b)

Fig. 6 Random states of the variables x and y described in the stochastic model, Eq. 10, versus ε withC = 0.7
starting from M2 (DT). The mean values, plotted by a light blue color, are calculated over a period of t = 100

Finally, we consider how these amplitude changes are connected with the frequency char-
acteristics. When studying spikes (which represent quantitative changes in the biological
dynamical variables), the mean values of random interspike intervals (ISI), 〈τ 〉, constitute
basic statistics that are worth taking in consideration. In practical terms, a short interspike
interval means that it has occurred a rapid change and, similarly, a wide interspike interval
means that a significant change only occurred after a long period of time. Having established
that, in Fig. 9 we plot mean values of ISI, 〈τ 〉, for three values of C versus the noise intensity
ε. For weak noises, i.e., low values of ε, the mean values of random interspike intervals, 〈τ 〉,
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(a) (b)

Fig. 7 Stochastic excitement. The figures show the time series of the system described in the stochastic model,
Eq. 10, with C = 0.7 and different values of the noise intensity: ε = 0.01 (blue), ε = 0.1 (green)

(a) (b)

(c) (d)

Fig. 8 Plots of the probability density functions p of the stochastic system described by Eq. 10 in function
of the variables x and y for different values of the noise intensity. a Probability density function p(x) for
C = 0.64. b Probability density function p(y) for C = 0.64. c Probability density function p(x) for C = 0.7.
d Probability density function p(y) for C = 0.7

are higher, which indicates that spikes (biological changes) are rare. Therefore, in biological
terms, sudden significant changes of the dynamical variables are only expected to occur for
increasing values of the noise intensity. The ε-interval, where plots of 〈τ 〉 sharply decrease,
marks the onset of the noise-induced generation of spikes. The larger the C , the stronger
the noise necessary to generate the spiking regime. Biologically, this means that increasing
values of the drug concentration require higher values of the noise intensity for significant
changes (spikes) of the dynamical variables take place (please observe the three curves of
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Fig. 9 Mean values of the interspikes intervals, 〈τ 〉, given by the stochastic model given by Eq. 10 forC = 0.7
(red curve), C = 1 (blue curve) and C = 1.2 (green curve)

Fig. 9, and their corresponding ranges of values ε, for C = 0.7 (red curve), C = 1 (blue
curve) and C = 1.2 (green curve)).

4 Concluding remarks

In order to shed light into the study of in vivo tumors, we have designed a two-dimensional
mathematical model of nonlinear differential equations, taking into account the impact of
chemotherapy on both the tumor and the healthy cells. Studying the model adopting the
deterministic and the stochastic approaches allowed us to provide valuable insights into
noteworthy and eye-catching features of the dynamics.

Interestingly, primary results of the deterministic bifurcation analysis lead us to imme-
diately propose a protocol of a two-stage treatment, involving two distinct levels of drug
administration. Taking into account that the tumor growth does not usually take place in
a deterministic manner, the addition of noise brings more realism to our study. As a con-
sequence, the discussion of the noise-induced dynamics of the system became particularly
relevant. As a matter of fact, it is well known that stochasticity can be found at early stages
of tumorigenesis.

Striking features of the dynamical behavior have been pointed out and illustrated within the
framework of both the nonlinear dynamics and the theory of stochastic processes using mainly
bifurcation diagrams, phase portraits, time series and probability density plots, among others.
We found that the dynamics is particularly sensitive to the variation of the drug concentration
(chemotherapy), as well as to the noise intensities that have been used in the problem. As
a consequence, it has a very important effect on the overall dynamics of the system. In this
sense, our theoretical results suggest that a careful control of these parameters from a medical
point of view could have a significant role in the fate of tumor cell populations.

This study provides another illustration of how an integrated approach, involving numer-
ical evidences and theoretical reasoning, within the theory of deterministic and stochastic
systems, can contribute to our understanding of important biological models. In addition,
our work aims to offer a trustworthy explanation of complex phenomena (series of chemical
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reactions, among other possible events, that result in a transformation) witnessed in biological
systems.
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