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This topical issue of The European Physical Jour-
nal E brings together several papers at the interface
of several disciplines dealing with the interpretability,
superiority and usability of artificial intelligence algo-
rithms as tools for both theoretical and applied fluid
mechanics problems with applications in several fields
such as engineering, geophysics and biophysics. The col-
lection addresses open problems, challenges, and bench-
marks for data-driven/equation-informed tools for data
assimilation, (subgrid-scale) modeling, classification,
and (optimal) control of Eulerian and Lagrangian prob-
lems in complex flows. The goal is to move from proof-
of-concept to quantitative benchmarks and grand chal-
lenges, including scaling of algorithms and complexity
of datasets. A typical challenge in data analysis of com-
plex systems is to extract hidden information from par-
tial observations; in this issue, these aspects have been
addressed to infer unknown physical parameters in the
context of turbulence on a rotating frame using a deep
convolutional neural network [5], to identify and track
the position of moving bubbles in microfluidics using
a state-of-the-art object detector algorithm [9], and to
infer relative permeability curves from sparse satura-
tion data using an ensemble Kalman method [18]. The
problem of designing control strategies is another aspect
where AI is getting increasing attention; in this topi-
cal issue, machine learning and genetic algorithm have
been investigated in air jets to control rotating stall in
axial compressors [11], while deep reinforcement learn-
ing algorithms have been designed and benchmarked
to reduce drag in turbulent channel flows [12]. Sim-
ilarly, a typical data assimilation problem is to infer
missing data from partial observations of Euler fields.
Four papers have directly considered different machine
learning approaches to tackle this problem. On the one
hand, purely data-driven generative adversarial net-
works (GANs) have been designed to infer one veloc-
ity component from the measurement of the other two
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in the case of 3D turbulence under rotation, and show
to outperform the results of standard approaches both
in terms of pointwise and statistical reconstructions
[14]. On the other hand, physics-informed neural net-
works have been investigated to reconstruct turbulent
Rayleigh–Bénard flows using only temperature infor-
mation [7] and to generate turbulent states satisfying
given statistical conditions [2]. It has also been pre-
sented a new computational method for solving inverse
problems in fluid mechanics, incorporating a multigrid
technique into the Optimizing a DIscrete Loss (ODIL)
framework [13]. Several papers are focused on solving
optimal navigation tasks. Q-learning was employed so
that an active particle could learn to navigate on the
fastest path toward a target while experiencing external
forces given by two different flow fields, a potential well
and a uniform Poiseuille flow [17]. A multi-objective
reinforcement learning (RL) approach was shown supe-
rior to heuristic strategies in optimizing the multi-
objective goal of minimizing both the dispersion rate
and the control cost of active particles [6]. RL has also
been used to find optimal navigation policies for thin,
deformable microswimmers moving in viscous fluids by
propagating a sinusoidal wave along their body [10],
and to optimize the control of a kite towing a vehicle
over long distances by providing a simple list of maneu-
vering instructions able to maximize the power extrac-
tion from the wind [16]. Deep reinforcement learning
was used to generate policies for sniffing robots designed
to mimic the task of insects searching for an odor source
in a turbulent environment [15]. Regarding turbulent
modeling in [4], the idea of curriculum learning has
been exploited to design ad hoc protocols for structur-
ing the training data set to improve the quality of long-
term model predictions. In [8], a deep learning approach
was implemented to learn from data collision opera-
tors for the Lattice Boltzmann method, demonstrating
the possibility of embedding physical properties, such
as conservation laws and symmetries, directly into the
deep learning model and proving its superiority over
physics-agnostic models. Other two papers have con-
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tributed in this direction. One has studied a hybrid
data-driven/finite volume method for 2D and 3D ther-
mal convective flows, showing the success of a machine
learning model in reducing the errors in the prediction
of the heat flux [1], and the other discusses the results
and the open challenges in the application of neu-
ral network-based methods to improve the accuracy of
large eddy simulations of incompressible wall-bounded
turbulent flows [3]. The diversity of AI approaches and
applications presented in these papers provides a broad
perspective on AI challenges and future advances in
the fluid dynamics landscape. This highlights an active
research area with great potential and rich of interdisci-
plinary collaborations, fostering exciting prospects and
opening new avenues for cross-fertilization between dif-
ferent fields. To overcome some of today’s challenges
related to the need for quantitative AI, driven by sev-
eral critical factors such as validation and generalization
benchmarks, it is highly desirable in the future to have
similar combined actions between groups, also driven
in the future by well-formulated challenges and stan-
dardized open access databases, such as Smart-Turb
(https://smart-turb.roma2.infn.it) is a first example.
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