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Abstract. The dynamics of inertial particles in Rayleigh-Bénard convection, where both particles and
fluid exhibit thermal expansion, is studied using direct numerical simulations (DNS) in the soft-turbulence
regime. We consider the effect of particles with a thermal expansion coefficient larger than that of the fluid,
causing particles to become lighter than the fluid near the hot bottom plate and heavier than the fluid
near the cold top plate. Because of the opposite directions of the net Archimedes’ force on particles and
fluid, particles deposited at the plate now experience a relative force towards the bulk. The characteristic
time for this motion towards the bulk to happen, quantified as the time particles spend inside the thermal
boundary layers (BLs) at the plates, is shown to depend on the thermal response time, τT , and the thermal
expansion coefficient of particles relative to that of the fluid, K = αp/αf . In particular, the residence time
is constant for small thermal response times, τT � 1, and increasing with τT for larger thermal response
times, τT � 1. Also, the thermal BL residence time is increasing with decreasing K. A one-dimensional
(1D) model is developed, where particles experience thermal inertia and their motion is purely dependent
on the buoyancy force. Although the values do not match one-to-one, this highly simplified 1D model does
predict a regime of a constant thermal BL residence time for smaller thermal response times and a regime
of increasing residence time with τT for larger response times, thus explaining the trends in the DNS data
well.

1 Introduction

Inertial particles in thermally driven flows are abundant
in both nature and technological applications. In nature
typical examples are aerosols in the atmospheric bound-
ary layer [1], the dynamics of droplets in clouds [2, 3] or
plankton in oceanic flows [4,5], while in technological ap-
plications one can think of spray combustion [6,7] or solar
collectors [8]. Particles in flows occur in a wide range of
densities; while plankton and algae in the ocean have a
density close to that of the carrier fluid, droplets in clouds
are in general much heavier than the surrounding fluid.
When the particle density is different from the fluid den-
sity, inertia will cause particle trajectories to deviate from
the fluid streamlines, resulting in a non-homogeneous dis-
tribution of particles in the flow [9–12]. When heat transfer
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between particles and fluid is not instantaneous, also ther-
mal inertia plays a role. Thermal inertia takes into account
the time particles need to adjust their internal tempera-
ture to that of the surrounding fluid, which is typically
referred to as the thermal response time.

The effect of thermal inertia will be visible in the tem-
perature statistics of the particles. The larger the thermal
response time of particles, the more the temperature of
particles will deviate from the underlying fluid tempera-
ture (at the particle position). When considering a dilute
suspension (where particles are not expected to influence
the fluid flow or temperature) where the size of particles
is independent of temperature, thermal inertia will not in-
fluence the motion of the inertial particles. However, when
the volume of the particles does depend on the tempera-
ture, thermal inertia can drastically change the trajecto-
ries of the inertial particles. For example, bubbles in boil-
ing convection will grow in the warmer spots of the flow
and shrink in the cooler spots [13–15], affecting their buoy-
ancy and therefore changing the upward and downward
motion of these bubbles. This behavior is not restricted
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to bubbles, but also, e.g., trajectories of (phase changing)
oil droplets [16] or gel-like particles in non-isothermal
flows are expected to be influenced by thermal inertia.

Here we conduct a numerical study on the dispersion of
thermally and mechanically inertial particles in Rayleigh-
Bénard convection (RBC), a fluid layer heated from be-
low and cooled from above. The typical flow structure in
such a RBC set-up is a large-scale circulation (LSC) of ris-
ing hot fluid and descending cold fluid [17]. We focus on
the higher end of the “soft-turbulence” Rayleigh-Bénard
regime, according to the classification of [18].

The temperature dependence of the particle size is in-
cluded as thermal expansion. This method is not restricted
to bubbles but can also deal with fluid-fluid systems or gel-
like particles in non-isothermal flows. Not only the ther-
mal expansion of particles, but also that of the fluid is
taken into account, such that the volume of both particles
and fluid increases (linearly) with increasing temperature.
In particular, we study particles with an average density
equal to that of the fluid and a thermal expansion coeffi-
cient larger than that of the fluid. In this setting, particles
become lighter than the fluid near the hot bottom plate
and heavier than the fluid near the cold top plate. This
is expected to induce an enhanced upward or downward
motion to the particles, respectively, on top of the motion
of plumes near the plates. These plumes were shown to be
able to transport inertial particles away from the plates,
however (without thermal expansion) particles were even-
tually deposited at the plates again due to the gravita-
tional force [19]. By including thermal expansion we ex-
pect particles to be transported towards the plates by the
LSC, be deposited on the plate due to their mechanical
inertia, and stay there for some characteristic residence
time to then re-suspend due to their enhanced thermal
expansion compared to the fluid.

In this way, thermal expansion of particles prevents
them from definitively settling at the horizontal plates.
In experiments, even a very small mismatch between fluid
and particle density leads to particles getting deposited at
the top and bottom plates (as, e.g., in [20]). This settling
of particles will not only reduce the number of particles
inside the bulk flow, but could also have significant effects
on the heat transfer. The effect of thermally conductive
particles with density very close to that of the fluid on
the heat transfer in RBC was investigated experimentally
by Joshi et al. [20]. Particles were found to settle at the
walls, depleting the RBC bulk flow of particles and form-
ing a porous layer at the plates that eventually would
cause a decrease of the heat transfer. In numerical stud-
ies particles are often prevented from getting stuck at the
plates by neglecting gravity [21–23], by pointing gravity in
the direction parallel to the walls [24, 25] or by removing
particles from the flow as soon as they reach one of the
plates [14,15,26]. Here, the larger thermal expansion coef-
ficient of particles alone ensures that particles eventually
move away from the plates again.

The dynamics of thermally inertial particles (without
thermal expansion) in RBC has already been studied
numerically in the limit of bubbles (light particles) [13–15]
and in the limit of particles which are heavier than the

fluid [26]. In these studies a two-way coupling approach
is used, i.e. the feedback reaction of particles on the fluid
velocity and temperature is included in the momentum
and energy equations. It was found that these two-way
coupled inertial particles significantly affect the heat
transfer due to the mismatch between fluid and particle
density. However, as a result of this density mismatch
particles will get stuck at the horizontal plates. Here
we consider particles with a temperature-dependent
density but with an average density equal to that of
the fluid. In this regime of density ratios particles are
not expected to significantly influence the heat transfer
and flow structures. A one-way coupling treatment is
then sufficient. An example of a system where particles
have a density very close to that of the fluid, but also a
larger thermal expansion coefficient than the fluid, is a
configuration of gel-like particles in water; these particles
can consist of a rubber coating filled with a mineral or
silicon gel [27]. We study how thermal inertia affects the
dynamics and the distribution of such particles in RBC.

In the remainder of this paper we first introduce the
numerical set-up in sect. 2.1 by explaining both the RBC
flow set-up and the modeling of thermally and mechani-
cally inertial particles. In sect. 3, we discuss our results,
focusing on the distribution and dynamics of these ther-
mally responsive particles in RBC. Results will be pre-
sented for a wide range of thermal response times and for
different ratios between the thermal expansion coefficient
of the particles and of the fluid. In the last sect. 4 we will
summarize and conclude our findings.

2 Numerical methods

We study RBC, seeded with thermally and mechani-
cally inertial particles, using direct numerical simulations
(DNS). Below we will discuss both the numerical model
for RBC and the modeling of the inertial particles.

2.1 Rayleigh-Bénard convection

In RBC a fluid is heated from below and cooled from
above, inducing a buoyancy driven flow. Control parame-
ters for the RBC set-up are the Rayleigh number, Ra =
αfgΔTH3/(κν), and the Prandtl number, Pr = ν/κ, with
αf the thermal expansion coefficient of the fluid, g the
gravitational acceleration, ΔT the temperature difference
between the plates, H the height of the RBC cell and κ
and ν the thermal diffusivity and the kinematic viscosity
of the fluid, respectively. The numerical Rayleigh-Bénard
set-up studied here is bounded by top and bottom walls
and has periodic boundary conditions in the horizontal
directions. The governing dimensionless equations are the
incompressible Navier-Stokes and energy equations in the
Boussinesq approximation:

∇ · uf = 0, (1)

∂uf

∂t
+ (uf · ∇)uf = −∇p +

√
Pr

Ra
∇2uf + T ẑ, (2)

∂Tf

∂t
+ (uf · ∇)Tf =

1√
PrRa

∇2Tf , (3)
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Table 1. Fluid properties of the Rayleigh-Bénard convection flow studied here (at the average fluid temperature). The reported
dimensionless properties are: the kinematic viscosity, ν = ν̄/(UH), the thermal diffusivity, κ = κ̄/(UH), the thermal expansion
coefficient, αf = ᾱfΔT , the energy dissipation, ε = ε̄H/U3, the Kolmogorov length scale, η = η̄/H, the Kolmogorov time scale,
τη = τ̄ηU/H, the gravitational acceleration, g = ḡH/U2, the Prandtl number, Pr, the Rayleigh number, Ra, and the Taylor
Reynolds number, Reλ. The dimensional properties, indicated by the bar, are non-dimensionalized using the cell height H, the
free-fall velocity U and the temperature difference ΔT . The Taylor Reynolds number is defined as Reλ = u′2p15/(εν), with

u′ = (urms
x + urms

y + urms
z )/3 and urms

i = 〈[ui − 〈ui〉]2〉1/2, where the average is taken over over the full volume and over time.

ν κ αf ε η τη g Pr Ra Reλ

5.8 · 10−4 8.6 · 10−5 0.0025 1.7 · 10−3 0.019 0.59 400 6.7 2 · 107 17

with uf the fluid velocity vector, t time, p pressure, Tf the
fluid temperature and ẑ the vertical unit vector. The equa-
tions are non-dimensionalized using H for length, ΔT for
temperature and tc = H/U for time, based on the free-fall
velocity U ≡

√
gαfΔTH. The non-dimensionalization of

the temperature is such that the hot bottom plate has a di-
mensionless temperature of T (z = 0) = 1 and the cold top
plate has a dimensionless temperature of T (z = 1) = 0.
The equations are solved with no-slip boundary conditions
(BCs) and a fixed temperature at the top and bottom
plates, while the domain is periodic in the horizontal di-
rections. The domain size is 2H × 2H × H in the x-, y-
and z-directions, respectively, resulting in an aspect ratio
of Γ = 2. This domain is discretized with 256× 256× 128
grid points and to also ensure at least ten grid points in
the thermal and viscous boundary layers (BLs), grid re-
finement is used in the vertical direction. The discretiza-
tion is performed on a staggered grid using a second-order
finite-difference scheme and for the integration a third-
order Runge-Kutta method is applied. Details of the nu-
merical scheme can be found in [28,29]. In this study the
Prandtl number was chosen equal to Pr = 6.7 (corre-
sponding to water) and the Rayleigh number was chosen
equal to Ra = 2 · 107, i.e. at the higher end of the “soft-
turbulence” regime, according to the classification intro-
duce in [18]. All fluid properties, corresponding to the av-
erage fluid temperature Tm = 0.5, are reported in detail
in table 1.

2.2 Thermally expanding inertial particles

Particles which experience both thermal and mechanical
inertia are evolved in the RBC flow. We treat these parti-
cles as point particles, a reasonable assumption when the
radius of particles, rp, is smaller than the smallest length
scale of the flow, η, the Kolmogorov length scale. Note
that in RBC a second length scale is involved related to
the temperature field; the Batchelor length ηB. In the set-
up studied here this length scale is smaller than η, since
ηB = η/

√
Pr ≈ 0.4η. To derive the equation for the ther-

mal inertia it is additionally assumed that the thermal
conductivity of the particles is much larger than that of
the fluid, such that the Biot number of the particles is
small, Bi � 1, and temperature gradients within the par-
ticles can be neglected [30]. The equation for the velocity
of one particle, up, is based on the Maxey-Riley equa-
tion [31] and for the temperature of that particle, Tp, the

approach proposed by Michaelides in [30] is used, such
that(

1 +
1
2β

)
dup

dt
=

1
τp

(uf (xp) − up) (1 + 0.15Re0.687
p )

+
1
2β

Duf

Dt
−

(
1 − 1

β

)
gẑ, (4)

dTp

dt
=

1
τT

(Tf (xp) − Tp) (1 + 0.3Re1/2
p Pr1/3),

(5)

where uf (xp) and Tf (xp) are the fluid velocity and the
fluid temperature at the position of the particle, xp, re-
spectively. Here β = ρp/ρf is the ratio between the den-
sity of that particle and the fluid density, Rep = 2rp|up −
uf (xp)|/ν is the particle Reynolds number and τp and τT

are the viscous and thermal response times, respectively.
These are defined as

τp =
2βr2

p

9ν
, (6)

τT =
βγr2

p

3κ
, (7)

where γ = cp/cf is the ratio between the specific heats of
the particle material, cp, and the fluid, cf , [30, 31]. The
forces, included on the right-hand side (rhs) of eq. (4),
are the Stokes drag, the added mass (also responsible for
the pre-factor on the left-hand side) and the gravitational
force. In eq. (5), the term on the rhs is analogue to the
drag force. Since the particles simulated here have a parti-
cle Reynolds number of about Rep ∼ 10 it is necessary to
include non-linear effects in the drag forces, represented
by the factors (1 + 0.15Re0.687

p ) in eq. (4) [32] and (1 +

0.3Re
1/2
p Pr1/3) in eq. (5) [33]. The pressure gradient force

and the Basset history force are not included in eq. (4),
while these forces might be important in a system where
particle and fluid density are similar and β ≈ 1 [34, 35].
We verified that ignoring these terms is not influencing
the (statistical) measures discussed in this paper and that
the most important contributions actually come from the
Stokes drag force, added mass force and the buoyancy
force. For clarity we therefore choose to not include the
Basset history force and the pressure gradient force. In the
equation for the thermal inertia we neglect both the his-
tory force and the force analogue to the added mass con-
tribution [30], again after verifying that the contribution
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of these terms is minor and that the most important con-
tribution comes from the term analogue to the drag force.

As mentioned above eq. (5) is valid for Bi � 1. The
Biot number of the particles is defined as Bi = 2hprp/kp,
with hp and kp the heat transfer coefficient and the ther-
mal conductivity of particles, respectively. It is possi-
ble to express hp in terms of a particle-Nusselt number,
Nup = 2rphp/kf , with kf the thermal conductivity of the
fluid. The Biot number thus becomes Bi = Nupkf/kp,
proportional to the ratio between the thermal conductiv-
ity of the fluid and the particles. In a suspension of solid
particles in a fluid, kp � kf and the assumption of Bi � 1
is indeed valid. However, in fluid-fluid systems Bi ∼ O(1)
making temperature differences between the core and the
surface of particles possible. We expect that this will not
significantly effect our results and will at most result in an
additional delay in the heat transfer between the particle
and the surrounding fluid. This will lead to a larger “effec-
tive” thermal response time and since results are presented
in a wide range of thermal response times we expect that
our results are also applicable to the case of Bi ∼ O(1).

Particles and fluid both exhibit thermal expansion
with different thermal expansion coefficients, where the
thermal expansion coefficient of the particles is chosen to
be larger than that of the fluid, such that αp > αf . The
densities of the fluid and the particles are assumed to de-
crease linearly with the temperature fluctuations of the
fluid (T ′

f = Tf − Tm) and the fluctuations in the particle
temperature (T ′

p = Tp − Tm):

ρ̃f = 1 − αfT ′
f , (8)

ρ̃p = 1 − αpT
′
p, (9)

where the densities of the particles and the fluid at the
average temperature are set to unity, ρp(Tp = Tm) =
ρf (Tf = Tm) = 1, without loss of generality. Now also
the density ratio is temperature dependent, as

β̃ = (1 − αpT
′
p)/(1 − αfT ′

f ). (10)

Due to the thermal expansion also the size of the particles
depends on the temperature fluctuations. Under the as-
sumption that temperature fluctuations are small (as also
assumed by the Boussinesq approximation for eq. (2)) and
by using the Taylor expansion, the radius of particles fol-
lows as

r̃p = rp

(
1 +

1
3
αpT

′
p

)
, (11)

where r̃p is the temperature-dependent radius, while rp is
the radius of particles at Tp = Tm and where higher order
terms have been ignored.

Since the viscous and thermal response times depend
on both the density ratio and the particle radius, they
have to be updated accordingly such that

τ̃p =
2r2

p

9ν

1 − αpT
′
p

1 − αfT ′
f

(
1+

1
3
αpT

′
p

)2

≈τp

1 − 1
3αpT

′
p

1 − αfT ′
f

, (12)

τ̃T =
γr2

p

3κ

1 − αpT
′
p

1 − αfT ′
f

(
1+

1
3
αpT

′
p

)2

≈τT

1 − 1
3αpT

′
p

1 − αfT ′
f

, (13)

Table 2. Particle properties of the thermally responsive par-
ticles (TRP), simulated in Rayleigh-Bénard convection. Three
different simulations are performed with tracers (family 0) and
thermally responsive particles (families 1–9), for three different
ratios between the thermal expansion coefficient of the parti-
cles and that of the fluid, K = αp/αf . Here rp, τp and β are
the particle radius, the drag response time and the ratio be-
tween the particle and fluid density at the mean temperature
Tm, respectively. The properties of the different particle fami-
lies at the average particle and fluid temperature, are reported
at the bottom of the table, where γ = cp/cf , with cp and cf

the specific heat of the particles and the fluid, respectively, and
τT is the thermal response time.

K rp αp τp β

1.1 0.01 0.00275 0.038 1

2 0.01 0.005 0.038 1

10 0.01 0.025 0.038 1

Particle family γ τT Type

0 – – tracer

1 0.13 0.05 TRP

2 0.26 0.1 TRP

3 0.65 0.25 TRP

4 1.3 0.5 TRP

5 2.6 1 TRP

6 5.2 2 TRP

7 10 4 TRP

8 16 6 TRP

9 26 10 TRP

where τp and τT are the particle and thermal response
times at Tp = Tf = Tm, respectively, and we again
neglect higher order terms. To complete the implemen-
tation of thermal expansion, the parameters β, τp and
τT , in eqs. (4) and (5) have to be replaced by the
temperature-dependent variables β̃, τ̃p and τ̃T , respec-
tively. Also the particle Reynolds number is now based
on the temperature-dependent radius r̃p.

The typical time these thermally responsive particles
spend at the plate in order to adjust their density enough
to escape the BLs, is expected to depend on the ratio be-
tween the specific heats of the particle material and the
fluid, γ. Therefore we study particles in a wide range of
thermal response times, τT . On top of this, we introduce a
key parameter for this study, K = αp/αf , being the ratio
between the thermal expansion coefficient of the particle
and that of the fluid. Three different values of this pa-
rameter K are studied: K = 1.1, K = 2 and K = 10, as
also reported in table 2. The applications mentioned in the
introduction, gel-like like particles in water and oil-water
configurations, would fall in the range of 1.1 � K � 2.
Here, K = 10 is added to also study a more extreme case.
For each value of K, ten different particle families are in-
cluded in the simulation; one family consisting of passive
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tracers and nine families of thermally responsive particles,
with 0.05 ≤ τT ≤ 10 as reported in table 2. These thermal
response times correspond to a range of 0.13 ≤ γ ≤ 26. In
general γ ∼ O(1) for solid-fluid or fluid-fluid systems. To
give an estimate of the corresponding thermal response
times; in a range of 0.3 ≤ γ ≤ 3 the thermal response
times would be 0.12 ≤ τT ≤ 1.2. Here we again add ex-
treme values of both smaller and larger γ to understand
how the systems converges in the limit of very small and
very large thermal response times. In this parameter range
the density ratio varies between 0.96 < β̃ < 1.04. Within
this range of density ratios particles are not expected to
influence the flow structures and the heat transfer and
therefore a one-way coupling approach is sufficient. In to-
tal nine different particle families are simulated for 300
dimensionless time units, where the number of particles
in each family is 1.6 · 105. A detailed overview of the par-
ticle properties is given in table 2.

3 Results

3.1 Spatial distribution of thermally expandable
particles

We investigate the dynamics of thermally responsive in-
ertial particles in Rayleigh-Bénard convection, where we
include thermal expansion of both particles and of fluid.
In particular, the thermal expansion coefficient of particles
is larger than that of the fluid, so that particles react to
the temperature fluctuations stronger. Since in RBC the
temperature gradients are largest in the thermal BLs while
the temperature in the bulk fluctuates around the average
temperature [17, 36], particles are expected to distribute
differently in the bulk than in the thermal BLs when ther-
mal expansion is included. To study the vertical distribu-
tion of particles, we compute the particle number density,
ni, as a function of z. First the RBC cell is subdivided into
250 horizontal slabs of size Δz = 0.004H, with central ver-
tical position zi. The number density in each slab is com-
puted as the time averaged number of particles in the slab
divided by the slab volume; 〈Ni〉/Vi, where Vi = ΔzLxLy.
Finally, this number density is normalized by the total
number density Ntot/Vtot, where Ntot = 1.6 · 105 (for
each particle family) and Vtot = HLxLy. In summary this
means ni = 〈Ni〉

Vi
/Ntot

Vtot
.

In fig. 1, we show ni for the three different values of
K: K = 1.1, K = 2 and K = 10 and different values of
τT between τT = 0.05 and τT = 10. As a reference the
distribution of fluid tracers is also shown with gray lines
with crosses. As expected, fluid tracers are distributed uni-
formly such that ni = 1. Note that these fluid tracers have
no thermal and mechanical inertia (τT = τp = 0) and
that they are therefore not affected by thermal expansion.
The thermal BL thickness, δT = 0.022H, is computed as
the position of the maximum root-mean-square tempera-
ture and is indicated in fig. 1 by the vertical black lines.
First, we observe that the number of particles inside the
thermal BL is increasing with increasing thermal response

Fig. 1. The vertical distribution, ni, of tracers (gray crosses)
and thermally responsive particles (different colors) in the
Rayleigh-Bénard cell. Results are shown for three different val-
ues of K: (a) K = 1.1, (b) K = 2 and (c) K = 10 and for
different τT as reported in the legend of panel (a) (see also
table 2). The solid vertical line shows the thermal boundary
layer thickness, δT = 0.022H. Because of symmetry we only
show the lower half of the domain, where 0 < z < 0.5H. Error
bars are estimated as the deviation from this symmetry and
are falling within the symbol size.
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times compared to the uniform distribution ni = 1. Par-
ticles with a larger thermal response time need more time
to heat up (cool down) at the bottom (top) plate, hence
there will be more particles close to the plates on average.
Furthermore, when comparing the three different panels,
it is observed that this number of particles at the plate is
larger for lower values of K. Particles with a larger ther-
mal expansion coefficient compared to that of the fluid
react very strongly to temperature fluctuations and even
a small temperature change can lead to a huge change
in their mass density. Consequently, particles move away
from the plates faster and the number of particles at the
plates decreases. For K = 2 and K = 10 we observe a
regime where ni < 1 for τT � 2 and τT � 4, respectively.
Here particles escape the BLs so fast that there is a de-
pletion of particles in the thermal BLs, compared to the
average distribution ni = 1. A depletion in the BLs re-
sults in an increase of particles in the bulk, indicated by
the peaks in figs. 1(b) and (c) for z � δT , which become
more prominent for larger K and for smaller τT .

The particle number density, as shown in fig. 1, is an
average quantity and does not give information on the
particle distribution in the horizontal directions. To under-
stand how particles distribute horizontally with respect to
the typical temperature profiles in the RBC cell, we visual-
ize the temperature field at z = 0.012H without particles
in fig. 2(a) and with different types of thermally responsive
particles with vertical position zp < 0.015H in figs. 2(b)–
2(g), where particles are colored by their temperature. For
each value of K (K = 1.1, K = 2 and K = 10), a situ-
ation with a low thermal response time of τT = 0.1 and
a situation with a large thermal response time of τT = 4
are shown. First, when focusing on the effect of the ther-
mal response time, it is observed that there are more par-
ticles at the plate for larger thermal response times (as
already discussed above) and that particles with a lower
thermal response time are only found in the colder spots.
These particles have a temperature very close to that of
the fluid and it is expected that colder heavier particles
stay at the plates longer, explaining why in this regime
colder particles are found, clustered in the colder spots of
the fluid at the bottom plate in panels (b), (d) and (f). For
larger thermal response times, particle and fluid tempera-
ture are less correlated and, especially for lower values of
K, particles are less restricted to the colder areas of the
fluid, see panels (c), (e) and (g).

3.2 Temperature statistics

From fig. 2 we expect that the distribution of particles
is related to the temperature of the particles, relative to
the temperature of the surrounding fluid. This tempera-
ture difference is quantified as Tp − Tf (xp). The average
profile of 〈Tp − Tf (xp)〉zi

is computed in vertical slabs of
size Δz = 0.004H with central vertical position zi and
probability density functions (PDFs) of this quantity are
constructed in the BL at the bottom plate (zp < δT ).
From the left panels of fig. 3 we observe that for all values
of K the difference between the (average) particle tem-

perature and the (average) fluid temperature is indeed
increasing with increasing τT at the bottom plate. The
PDFs clearly become wider for larger τT , again confirm-
ing that more extreme temperature differences are found
for larger thermal response times as expected. Further-
more, there is an enhanced probability on larger devia-
tions |Tp − Tf (xp)| for larger values of τT , when focusing
on the left-hand side (lhs) of the PDFs. The temperature
difference of the particles with respect to the fluid at xp

near the bottom plate is also slightly increasing with in-
creasing K as evident when comparing the top, central
and bottom panels of fig. 3. A peak develops on the lhs
of the PDFs for increasing K, suggesting that there is in-
deed a larger probability of larger absolute temperature
differences for larger values of K. This is a result of par-
ticles with a large thermal expansion coefficient escaping
the warm bottom plate region already for a slight tem-
perature increase. Now, only particles that have a much
lower temperature with respect to the fluid temperature
stay at the plates longer, resulting in a larger absolute
temperature difference Tp − Tf (xp).

3.3 Thermal boundary layer residence time

The thermal response time, τT , not only influences the
temperature difference between particles and the sur-
rounding fluid, but also the time particles reside at the
plates before they will escape from the BL due to the
buoyancy force. To understand this relation, statistics of
the residence time of particles inside the thermal BLs, tδT

,
are computed for different values of τT and K, where the
resulting PDFs are shown in fig. 4. For τT � 1, the PDFs
display a clear peak suggesting that there is a well-defined
characteristic time that particles spend inside the thermal
BLs. This peak shifts to the right for increasing τT , so this
characteristic residence time increases with increasing τT

as expected. For τT � 1, the PDFs overlap indicating that
here tδT

is largely independent of τT . When comparing the
different values of K, it is observed that smaller values of
tδT

are measured for larger values of K, due to particles
with a larger thermal expansion coefficient having a quan-
titatively larger response on temperature fluctuations in
the fluid in terms of their mass density.

From the PDFs in fig. 4 it is expected that tδT
depends

strongly on τT and K. In fig. 6(a) we show the average
residence time of particles inside the thermal BLs at the
horizontal plate, 〈tδT

〉, as a function of τT and for different
values of K. Each individual particle can cross the BL
multiple times and the average is therefore taken over the
total number of times all particles accumulatively cross
the BLs. Two regimes can be distinguished in fig. 5, where
for τT � 1 the thermal BL residence time is constant,
for τT � 1 the values are increasing with increasing τT .
Also, when comparing the three different values of K, the
residence time is found to decrease with increasing K.
These trends are consistent with the PDFs shown in fig. 4
and confirm that the number of particles inside the BL in
fig. 1 is indeed directly related to the time particles spend
inside the thermal BL.
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Fig. 2. (a) The fluid temperature, Tf , in a horizontal plane at z = 0.012H in the Rayleigh-Bénard cell. (b)–(g) The same
temperature field, together with particles with vertical position zp < 0.015H for different values of K and τT : (b) K = 1.1,
τT = 0.1, (c) K = 1.1, τT = 4, (d) K = 2, τT = 0.1, (e) K = 2, τT = 4, (f) K = 10, τT = 0.1 and (g) K = 10, τT = 4. Axes and
colorbars are as in panel (a) and the color of the particles encodes their temperature, Tp.
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Fig. 3. (a) The temperature difference 〈Tp − Tf (xp)〉zi , averaged horizontally and in time within horizontal slabs at central
vertical position zi for fluid tracers (gray lines with crosses) and thermally responsive particles (different colors) in Rayleigh-
Bénard convection for K = 1.1. (b) PDFs of Tp −Tf (xp), measured in the thermal boundary layer (BL) at the bottom plate for
K = 1.1. Panels (c) and (d) show similar results as (a) and (b) but for K = 2. Panels (e) and (f) show similar results as (a) and
(b) but for K = 10. Because of symmetry we only show the first half of the domain in panels (a), (c) and (e) and only results
obtained in the BL at the bottom plate in panels (b), (d) and (f), where the thermal BL thickness is δT = 0.022H. Error bars
are estimated as the deviation from this symmetry. In the left panels the error bars fall within the symbol size.
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Fig. 4. PDFs of the particle residence time, tδT , inside the
thermal boundary layer (BL) at the plates for different values
of K: (a) K = 1.1, (b) K = 2 and (c) K = 10 and various
τT as reported in the legend of panel (a) (see also table 2).
The thermal BLs have a thickness of δT = 0.022H. Errors are
estimated as the deviation between the PDFs measured in the
thermal BL at the top and bottom plates. Error bars fall within
the symbol size.
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Fig. 5. The average residence time, 〈tδT 〉 of thermally respon-
sive particles in the thermal boundary layers at the plates as
a function of τT , for K = 1.1 (blue), K = 2 (red) and K = 10
(green) for DNS (symbols). The dashed lines show fits of the
function y = a(K)+ b(K)x, where the fitting coefficients a(K)
and b(K) are as reported in the legend.

Based on the transition from a constant to a ballistic
regime, we can estimate the thermal BL residence time as

tδT
= a(K) + b(K)τT , (14)

where both a(K) and b(K) are coefficients depending on
K. In the limit of small thermal response times, τT → 0,
this equation becomes tδT

= a(K) and thus a constant
depending only on K. When τT → ∞ a ballistic behavior
tδT

= b(K)τT is found. We perform a fit based on eq. (14)
on the DNS data as shown by the dashed lines in fig. 5 and
find that the thermal BL residence time indeed depends
on τT as in eq. (14).

3.4 Simple 1-dimensional model

To understand in more detail how the dynamics of ther-
mally responsive particles depends on τT and K, we de-
velop a simple 1-dimensional (1D) model for the thermally
responsive particles. The thermal response time, τT , in-
fluences the temperature of particles through the thermal
inertia (eq. (5) for the DNS), while the parameter K deter-
mines the density ratio β̃, which is determining the buoy-
ancy force in eq. (4). Therefore, we develop a 1D model for
their vertical position in which particles experience both
thermal inertia and a buoyancy force:

dz

dt
= w(t), (15)

dw(t)
dt

= −g

(
1 − 1

β̃(t)

)
, β̃ =

1 − αp(Tp(t) − 0.5)
1 − αf (Tf − 0.5)

,

(16)
dTp(t)

dt
=

1
τT

(Tf − Tp(t)) , (17)

where w is the velocity of particles and we use that
〈Tp〉 = 〈Tf 〉 = Tm = 0.5. The velocity, w, is set to zero
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Fig. 6. (a) The average residence time, 〈tδT 〉, for the DNS (symbols) and the residence time, tδT , for the 1D model (lines)
of thermally responsive particles in the thermal boundary layers at the plates as a function of τT , for K = 1.1 (blue), K = 2
(red) and K = 10 (green). (b) The same data, but now the axes are re-scaled for the 1D model data where the vertical axis is
multiplied by 3 and the horizontal axis is multiplied by 50.

at z = 0 and z = 1. The fluid temperature Tf is now
an input parameter of this simple 1D model. In RBC the
temperature profile typically shows a large temperature
gradient in the thermal BLs, while the temperature in the
bulk equals the average temperature [17,36]. Therefore we
prescribe a constant mean temperature profile with linear
temperature gradients inside the thermal BLs and a con-
stant temperature of Tf = 0.5 in the bulk:

Tf (z) =

⎧⎪⎨
⎪⎩

1 − 0.5z/δT , z ≤ δT ,

0.5, δT < z < 1 − δT ,

0.5(1 − z)/δT , z ≥ 1 − δT .

The thermal BL thickness is set to δT = 0.022H, equal to
the thermal BL thickness measured from the DNS.

From the 1D model, we compute the residence time in-
side the BLs in the same parameter range as in the DNS,
0.05 < τT < 10 and K = {1.1; 2; 10}, by numerically
integrating eqs. (15)–(17) using a second order Adams-
Bashforth scheme. Note that the model gives one unique
solution and therefore the output is given in terms of tδT

and not as an ensemble average 〈tδT
〉 as in the DNS. The

model results (lines), together with the DNS data (sym-
bols), are shown in fig. 6(a). We observe that the model
captures the trend of decreasing tδT

with increasing K as
observed in the DNS. Also the trend with τT is recovered
where tδT

is constant for smaller τT and is monotonically
increasing with τT for larger τT .

Let us discuss these two regimes in more detail by look-
ing at the behavior of the model in the limit of i) small
thermal response times, τT → 0, and ii) large thermal
response times, τT → ∞:

i) τT → 0: When the thermal response time is zero, parti-
cles are instantaneously adapting their temperature to
that of the surrounding fluid such that always Tp = Tf .

Substituting this into eq. (16) gives us

a =
dw(t)

dt
= −g

(
1 − 1 − αf (Tf − 0.5)

1 − αp(Tf − 0.5)

)
. (18)

Given that αp > αf and αpT
′
p < 1, we find that in the

BL at the top plate where Tf > 0.5 the acceleration
is negative (a < 0) while in the bottom BL where
Tf > 0.5 it is positive (a > 0). Equation (18) does
not depend on τT and consequently also the residence
time inside the BL (for τT → 0) is expected to be
independent of τT and to only depend on the thermal
expansion coefficient and thus on K. This is exactly
what we found in fig. 6(a) for both the 1D model and
the DNS in the limit of small τT .

ii) τT → ∞: For very large thermal response times
eq. (17) becomes dTp/dt = 0 and the temperature
of particles will be constant and independent of time,
such that Tp = Tp(t = 0). The initial temperature
condition is thus fully determining the particle tem-
perature. A particle initially positioned in the bulk
will start to move upwards or downwards depending
on its initial temperature condition, Tp(t = 0). It can
be computed that when a particle initially moves up-
wards, the acceleration and velocity in the top BL are
positive such that a particle will end up in the top BL
and will get stuck there. Oppositely, an initially down-
wards moving particle will experience a downwards ac-
celeration and velocity in the bottom BL and will get
stuck inside the bottom BL. This means that in the
limit of τT → ∞, tδT

→ ∞.

These limits are consistent with eq. (14), that was shown
to capture the trend of the DNS data. Although not shown
here, we verified that the same fitting procedure works for
the 1D model confirming that also tδT

computed from the
1D model follows eq. (14).
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So, both in the model and in the DNS we observe a
transition from a constant residence time to a ballistic
regime, where the residence time is increasing with in-
creasing thermal response time. However, the transition
between the constant and ballistic regimes, occurs at a
different value of τT ≈ 0.1 in the 1D model, compared to
the DNS (where the transition occurs around τT ≈ 1) in
fig. 6(a). This might be related to the model being in 1D,
while in the DNS particles move in a 3D flow field. As a
result the time scales might not be one-to-one compara-
ble. Moreover in the DNS particles are additionally trans-
ported towards and away from the plates by the LSC, an
effect that is not included in the simple 1D model. Since
we do not expect the model and DNS data to match one-
to-one, we can re-scale the vertical and horizontal axis for
the model results in fig. 6(a). The DNS data, together with
the re-scaled data of the 1D model, are shown in fig. 6(b)
and now the model matches the DNS results within the
error bars. All together we argue that this, though very
simple 1D model, captures the trends found in the DNS
surprisingly well.

4 Conclusions

We have studied the dynamics of thermally responsive
particles in Rayleigh-Bénard convection. Particles are ex-
periencing both mechanical and thermal inertia, and both
fluid and particles exhibit thermal expansion where the
thermal expansion coefficient of particles is larger than
that of the fluid. Now, particles near the hot bottom plate
become lighter than the fluid and particles at the top plate
become heavier than the fluid. It is verified that this in-
duces a motion away from the plates, resulting in particles
re-suspending from the BLs into the bulk.

This dynamics results in a non-homogeneous distribu-
tion of particles throughout the RBC cell. In particular,
a regime of thermal response times and thermal expan-
sion coefficients is found where the number of particles at
the plate is enhanced compared to a uniform distribution.
We have shown that this enhancement is already reached
for an increase in the thermal expansion coefficients of
particles compared to that of the fluid of ten per cent;
K = αp/αf = 1.1. This ratio of thermal expansion coef-
ficients can be achieved in realistic systems, for example
gel-like particles in water or oil-water systems.

Upon increasing K, the number of particles at the
plates is decreasing, since the particle density responds
much stronger to the temperature fluctuations. A regime
of large K and small τT is found where particles escape
the BLs almost immediately and where the number of
particles inside the thermal BLs is even lower than the
uniform distribution. This depletion in the BLs leads to
an enhanced number of particles inside the bulk. Increas-
ing τT has an opposite effect; particles need more time to
warm up (cool down) at the bottom (top) plate, increas-
ing the number of particles at the plates and decreasing
the number of particles in the bulk.

The number of particles at the plates is expected to de-
pend on the time particles spend inside the thermal BLs at

the plates. By quantifying this residence time, tδT
, it has

been shown that particles do spend a characteristic time
inside these BLs, that is moreover depending on τT and
K. In particular, the ensemble average 〈tδT

〉 is increasing
with decreasing K. For all values of K, 〈tδT

〉 is constant
for τT � 1 and is increasing with increasing τT for τT � 1
in the DNS. This trend is confirmed when performing a
fit of the function y = a(K) + b(K)x on the DNS data for
each value of K. A simple 1D model is developed, where
the motion of thermally inertial particles depends exclu-
sively on the buoyancy force, and again both particles and
fluid exhibit thermal expansion with αp > αf . This model
is shown to capture the trends very well; again the thermal
BL residence time is constant for smaller τT and increasing
with increasing τT for larger τT , only now the transition
occurs at a smaller τT ≈ 0.1. Also the shift of the curves
to lower values of tδT

for larger values of K is captured
well by the model. When re-scaling the data of the model
the DNS and model results match within the error bars,
confirming that the model captures the observed trends
well. The simple 1D model can thus be used to better
understand the interplay between thermal inertia and the
buoyancy-driven vertical motion of particles.

We have studied how thermal inertia influences the
dynamics of thermally responsive particles, using a point-
particle approach. The dynamics in this point-particle
model is already rich and there are many parameters in-
volved. In nature, however, multi-phase fluid systems with
different thermal properties for the different phases can
become even more complex; e.g. phase transitions in con-
vection in the core of the earth or the presence of de-
formable vapor bubbles in boiling convection. To study
these highly complex systems more advanced numerical
techniques, with much higher numerical costs, are neces-
sary. Here we have however shown that DNS with a point-
particle approach is able to give insight into the influence
of thermal inertia on the distribution and the temperature
statistics of inertial particles in a thermally driven flow
where the dispersed phase has different thermal proper-
ties than the carrier fluid.
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