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Abstract. To understand the properties of a complex system it is often illuminating to perform a compar-
ison with a simpler, even idealised one. A prototypical application of this approach is the calculation of
free energies and chemical potentials in liquids, which can be decomposed in the sum of ideal and excess
contributions. In the same spirit, in computer simulations it is possible to extract useful information on
a given system making use of setups where two models, an accurate one and a simpler one, are concur-
rently employed and directly coupled. Here, we tackle the issue of coupling atomistic or, more in general,
interacting models of a system with the corresponding idealised representations: for a liquid, this is the
ideal gas, i.e. a collection of non-interacting particles; for a solid, we employ the ideal Einstein crystal, a
construct in which particles are decoupled from one another and restrained by a harmonic, exactly inte-
grable potential. We describe in detail the practical and technical aspects of these simulations, and suggest
that the concurrent usage and coupling of realistic and ideal models represents a promising strategy to

investigate liquids and solids in silico.

1 Introduction

Since the dawn of computer-aided research, when elec-
tronic calculators were employed to numerically solve ana-
lytical expressions, a steadily growing fraction of scientific
investigation relies on the help of machines [1-4]. This is
particularly true for the field of soft matter [5-8], where
computer simulations have enabled researchers to “infuse
life” in models of increasing complexity and investigate
the behaviour of systems ranging from hard spheres lig-
uids [9] to melts of polymers [10], novel materials [11],
or biomolecules such as proteins [12-16] and DNA [17].
The power of the computational approach lies especially
in the flexibility and arbitrariness of the model design,
where level of resolution, interaction potentials, particle-
based or continuum description, thermodynamical condi-
tions and many other features are left to the modeller,
who has free hand in creating a world where her /his rules
apply.

Computer simulations have thus broken the chains
that kept us bound to exact results and simple approx-
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imations of even simpler models, allowing us to study
strongly interacting systems with several different types
of potentials and large sizes [18]. The determination of
free energy differences between states of a given system,
for example, does not require the exact calculation of its
partition function or some multi-body expansion of the
latter; rather it can be (often) performed by means of stan-
dard techniques such as thermodynamic integration [19],
umbrella sampling [5,6], or any other enhanced sampling
algorithm [20].

And yet, the simplicity, exact solvability, or physical
intuitiveness of the simplest models exert not only an in-
tellectual attraction on the scientist fascinated by the uni-
versality of the concepts and properties that these mod-
els entail; on the contrary, they continue to represent a
pivotal element in the construction of our picture of re-
ality, in that they serve as bedrock, reference, and gauge
for many other, more complex systems. One example for
all: the absolute values of fundamental thermodynamical
properties, such as free energies and chemical potentials,
can almost always be separated in two terms: an ideal
part, originating from the exactly solvable ideal contri-
bution, and an excess part, which contains the effect of
the interactions present in the “real” system. Remarkable
is that these two terms are exactly additive (again, with
exceptions) in a non-perturbative fashion [21,6]. In gen-
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eral, then, the calculation of important system properties
goes through the comparison between the most accurate
model one can simulate on a computer and a simpler, more
tractable representation much of which is already known.
The additivity of the property under investigation does
the rest.

In recent years, a peculiar class of computer simula-
tions has emerged as a rich and versatile tool to perform
model comparison, that is, adaptive resolution simula-
tions [22-25]. These are setups in which the same sys-
tems, typically a fluid, is represented within the same
simulation by means of two different models at different
resolution. The simulation domain is subdivided in two
parts: a high-resolution region, where the more accurate
and computationally expensive model is employed, and a
low-resolution region, where the simpler description fea-
turing a lower computational cost is used. Depending on
its position in space, a molecule is described by one model
or the other; however, an open boundary, geometrically
separating these two domains, allows the molecules to dif-
fuse freely and change model, i.e. resolution, on the fly.
Within a finite-sized layer located at the interface between
the two main subregions, dubbed hybrid or transition re-
gion, the molecule smoothly varies its resolution, adapting
its representation to one model or the other in a continu-
ous manner.

The motivations behind this setup, in which the po-
sition in space dictates a molecule’s model, are several.
The simplest and most obvious is the computational gain:
in the largest fraction of the simulation volume the com-
putationally “cheaper” model is employed, thus reducing
the amount of resources necessary to calculate forces and
potentials; on the contrary, in a small volume —where
the interesting things happen— the system is described
with high accuracy, and the smooth coupling with the
lower-resolution environment preserves its thermodynam-
ical properties (e.g., density, temperature, particle number
fluctuations . ..).

There is a second strength of adaptive resolution sim-
ulations with many farther-reaching consequences and ap-
plications: such setups, in fact, enable one to provide, by
means of the low-resolution model, a sufficiently accu-
rate description of the long-wavelength properties of the
system at the length scale of the whole simulation box,
while the short-wavelength features are only locally mod-
elled. Besides the computational gain this approach en-
tails, one gains the opportunity of modulating the global
and the local independently and, through this, to inves-
tigate their interplay [26-29]. This strategy offers clear
advantages with respect to a simulation limited to the
sole high-resolution region, as it also includes the effect
of the environment at a reduced computational cost and
suppresses finite-size effects.

Another important raison d’étre of these methods is
the fact that the space-dependent coupling of two differ-
ent models establishes a thermodynamical relationship be-
tween them from which nontrivial information can be ob-
tained. In fact, in adaptive resolution simulations forces
emerge, whose origin depends on the specific technique
employed, that steer the system towards an equilibrium
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state where, e.g., the local densities in the two subdo-
mains differ. To attain the same density in all parts of the
simulation one has to impose a single-molecule potential
that can be traced back to the difference in Gibbs free
energy between the two models concurrently employed to
represent the same system [30,31]. Hence, in the process
of parametrising the setup so as to have a uniform den-
sity profile, one quantifies the liquid’s chemical potential
difference between the simple and the accurate represen-
tation [32]. This procedure is similar in spirit to a ther-
modynamic integration [19], however it does not require
the time-dependent switch of the Hamiltonian between
two models, rather a single run concurrently contains the
information about the two end states and all those in be-
tween.

It is at this point that the simplest, most fundamental
models enter the scene. With a tool at hand that “com-
pares” the chemical potentials of two systems (more pre-
cisely: two different representations of the same system) it
is natural to think of employing, as a low-resolution model,
one that is as inexpensive, simple, understood, and exactly
solvable as possible. In the realm of fluids, such a model
is the ideal gas, that is, a collection of non-interacting
particles (representing atoms as well as molecules) fully
described by temperature and density. All relevant ther-
modynamical properties of the ideal gas are known and
can be calculated exactly, and represent the main con-
tribution to those observables, such as free energies, that
can be decomposed into the sum of the ideal part, deter-
mined indeed by the ideal gas, and the excess part due to
the configurational partition function and the interaction
potentials within it.

As adaptive resolution simulation methods enable the
direct, smooth coupling of a given model to its correspond-
ing ideal representation, the possibility opens to a new
class of approaches to extract excess quantities. However,
while for dense liquids such as water the coupling with
an ideal gas has already been performed [33], a compa-
rable matching has not been demonstrated in the case of
a solid. In this case, the ideal reference model is given
by the Einstein crystal, that is, a collection of point-
like, non-interacting particles restrained in specified po-
sitions in space by means of harmonic potentials. As the
ideal gas, also for this model the partition function (hence
the full thermodynamics) can be computed analytically:
it thus represents the reference starting point of a non-
perturbative computation of free energies and other quan-
tities of interest.

The goal of this paper is to provide a detailed and
comprehensive overview of the Hamiltonian adaptive res-
olution method H-AdResS [30,31,25] in the perspective of
the coupling between a reference, high-resolution system
and its ideal counterpart. Particular attention is given to
the technical aspects of these simulations, with thorough
descriptions of the computational and algorithmic charac-
teristics. We will review the basics of the method and the
satellite algorithms developed to improve its effectiveness,
and discuss their application to two significant case stud-
ies: one is liquid water, described at the all-atom level,
coupled to an ideal gas; the other one is a Lennard-Jones
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solid coupled to an Einstein crystal. This second applica-
tion is presented here for the first time, and constitutes
the main original contribution of this work.

The manuscript is organised as follows: in sect. 2 we
review the specific approach employed here, that is, the
Hamiltonian Adaptive Resolution Simulation scheme, or
H-AdResS; in sect. 3 we illustrate the significance of the
external field required to obtain a uniform density pro-
file, and describe in detail the algorithms developed to
efficiently parametrise it; in sect. 4 we present the cou-
pling between an atomistic model of water and an ideal
gas, and describe the treatment of the electrostatic in-
teraction within the H-AdResS framework; in sect. 5 we
concentrate on the Lennard-Jones crystal and its coupling
with the ideal Einstein crystal model; finally, in sect. 6 we
summarise our results and provide a brief account of the
possible applications of the presented methods.

2 Theoretical background

The H-AdResS scheme [30,31] belongs to a family of adap-
tive resolution simulation methods [34,22,23] in which a
small portion of the system, usually a fluid described with
atomistic resolution (AT), is embedded in a reservoir of
particles of the same system, modelled using a coarse-
grained (CG) representation; the coupling between the
two resolutions takes place in an open boundary region,
the so-called hybrid (HY) region. A snapshot of the simu-
lation setup is presented in fig. 1. The main feature of the
H-AdResS method is that the whole system is described in
terms of a global Hamiltonian function H of the form

H=K+V™+> DV + 1 -2V (1)

The term K is the atomistic kinetic energy, and V" in-
cludes all the intramolecular bonded interactions. The res-
olution of a particle « is specified by the transition func-
tion A, = A(R,,), which is computed on the centre-of-mass
coordinate R, of the molecule.

Several options are available to define the geometry
of the all-atom region, e.g. spherical [26], cylindrical [35],
or even with a time-dependent shape [36]. Here, without
loss of generality, we employ one of the most common
choices, namely a rectangular simulation box where the
AT is represented by a slab. The resolution of a given
molecule is thus determined by the following piecewise
function:

| 2] < dap/2
—dar/2 d d
A(z) = { cos? (W) §<|Z’|§#+dHY
0 |$| >dAT/2+dHy,

(2)
with dar and dgy the sizes of the AT and HY region,
respectively. The mid-point of the simulation box is set
in the origin of the coordinate system. Concerning non-
bonded interactions, a molecule « interacts with its neigh-
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Fig. 1. Setup of a Hamiltonian adaptive resolution simulation.
The periodic box is partitioned into three different regions,
namely: ideal gas (IG), hybrid (HY), and atomistic (AT). Up-
per panel: the switching function F(\) = A takes values be-
tween 0 (IG) and 1 (AT), thus defining the resolution of a
molecule (here water). Lower panel: simulation snapshot ex-
plicitly showing the various subdomains. The oxygen and hy-
drogen atoms of the water molecules are represented by red and
blue dots, respectively. Note the different structure attained by
the molecules in the different subdomains: a more uniform one
in the AT region, and a more irregular one in the IG region.
This difference is due to the ordering effect of the interactions
among atomistic water molecules, imposing in particular the
characteristic tetrahedral arrangement due to hydrogen bonds:
this effect is naturally absent in the IG region, where molecules
are randomly distributed.

VC’G

bouring particles through coarse-grained and atom-

istic VAT potentials, defined as

N
1
VAT =5 3 STV (ras — vg)

B,BF#a ij

N
1
Va9 =5 D0 VR~ Ry)),
B,B#a

where the coordinates of an atom —labeled by i, j
indices— or a molecule —labeled by «, 0 indices— are
represented by vectors r and R, respectively. The factor
1/2 accounts for the double counting of particles in the
sum since the total non-bonded potential of a molecule «
is given by a sum of AT and CG contributions weighted
by A, or (1 — ),), respectively. Albeit two-body interac-
tions have been employed here, the extension to multi-
body, short-ranged potentials is straightforward. It is also
worth pointing out that in this context the usage of the
term coarse grained is referred to the particular type of
interaction employed in the low-resolution region, i.e. an
effective, simplified one with respect to the atomistic reso-
lution model; the structure of the simulated molecules, on
the other hand, is not affected by the change in resolution,
i.e. they retain their fully atomistic structure throughout
the simulation box. This is not a prerequisite to perform
this kind of simulations, however it is a simple and effective
manner to deal with the resolution change at the algorith-
mic and computational level in general, and is instrumen-
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tal in the construction of a Hamiltonian-based approach
in particular [30].

The total force acting on atom ¢ of molecule « is given
by

Fai = FZZt
Aa F A3 ar Aa + A3 ca
+ﬂ% {2 Fofs+ (1= 757 ) FO)

— VAT = VEY] Vaida, (4)

Res

where Fm.‘ﬁ7 Res = AT, CG is the force acting on atom

i of molecule @ due to its (atomistic or coarse-grained)
interaction with the whole molecule 8. The forces due
to intramolecular interactions, F*! are not resolution
dependent. The second term on the right-hand side is
the sum, over all other molecules 8 in the interaction
range, of the pairwise atomistic and coarse-grained forces,
weighted by the average resolutions of the two molecules.
Each of the terms in the sum is antisymmetric under
molecule exchange, and satisfies Newton’s Third Law by
construction. The last term emerges as a consequence of
the non-uniformity of space in the dual-resolution simula-
tion setup, that is, the fact that different interactions are
present in different parts of the system. Because of this,
translational invariance is broken, and a force emerges
in the hybrid region (where VA # 0) and acts on the
molecules pushing them in one of the two subdomains, de-
pending on the sign of the prefactor (VAT — V.¢¢). This
drift force term FI" = —[VAT VGV ;)\, violates New-
ton’s Third Law and induces a pressure imbalance across
the HY region, as it pushes molecules in the subdomain
where the Helmholtz free energy is locally lower [30,31].

In general, the AT and CG representations of the same
physical system follow different equations of state. Once
coupled together via an open boundary, the AT and CG
regions exchange particles to balance the differences in
equilibrium pressure and chemical potential. This results,
as it has already been thoroughly investigated [30,31,25],
in a non-homogeneous density profile. To overcome these
effects and enforce a uniform density profile, it is possible
to introduce a new term in the Hamiltonian:

N
H—Hpy=H-Y AHA(Ra)).

a=1

(5)

This term acts separately on each molecule in the sys-
tem and plays two roles: it removes, on average, the drift
force, and enforces a uniform density profile by imposing,
in each subdomain, the pressure at which each model has,
separately, the correct density. In the following we discuss
the computational techniques employed to parametrise
the term AH(\).
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3 Calculation of the free energy
compensations

3.1 Compensation of the drift force

The free energy compensation term AH()) that neu-
tralises, on average, the effect of the drift force, has to
satisfy the relation:

dAH(N)

d\ :<[V0144T_VaCG}>

A=Aq

(6)

R.’

in such a way that the total drift force resulting from the
modified Hamiltonian reads

) dAH(N)
Fd’r _ AT v/ CG _ e
@ (Va Va B

) VARa), (7)

A=Ay

and, by construction, (Fé) = 0.

Thermodynamic integration [19] has been originally
proposed to compute the compensation term (6) This
procedure can be justified on the basis that the poten-
tial AH(X) bears a strict relationship with the Helmholtz
free energy difference between a system with a Hamil-
tonian H(A) and a reference system defined by the CG
representation at A = 0 [30,25]. This procedure, appar-
ently the most straightforward route to compute AH(N),
presents two main drawbacks: i) it requires an additional
free energy calculation, and ii) the accuracy of the ob-
tained AH(A) can be limited when the system displays
strong correlations within the hybrid region.

In a previous paper [37], some of us have shown that a
more effective strategy is to compute and locally balance
the drift force and parametrise the compensation on the
fly by using an iterative scheme [25]. A given number N, of
bins is used to discretise the hybrid region in terms of A in
such a way that the width of the bins is A = 1/N;. The
index of the bins is given by i = floor[A(R,)/d)]. For
a molecule o in a bin i, the contributions V.¢¢ and VAT
are computed and accumulated in the local variables V,©¢
and ViAT, respectively. Moreover, the variables NE¢ and
NAT are defined to monitor throughout the simulation
the number of molecules in the bin. These quantities are
computed in the same routine and simultaneously with
the AT and CG forces.

For all molecules in the hybrid region, this procedure is
carried out for a time interval of duration At and succes-
sive n iterations are performed. At the end of the n-th in-
terval, average AT and CG potentials, VZ[i,n] = V;F/NE
with R = AT, CG, are computed. Subsequently, the vari-
ables ViR7 NiP” are emptied and the average procedure con-
tinues. These average values calculated at the end of the
n-th cycle are used to compute the running average Vﬁm
defined by
nVE + VE[i n]

n+1

where initially n = 0 and Vﬁo =0.

This running average, for n > 0, is used to compute the
different components of the compensation force. Specifi-
cally, for ¢ such that tg + nAt < t < to+ (n+ 1)At, a

R —
Vi,n-l—l -

; (8)
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molecule « in the bin ¢ of the HY region will feel compen-
sation forces of the form

Fo;=sVinVA(Ra), (9)

with s = +1 for R = AT and s = —1 for R =
CG. At each time step, this force is distributed to the
atoms in the molecule o with weights proportional to the
atom/molecule mass ratio.

The update of the running average continues until the
compensation forces converge to a steady value for every
bin ¢. Finally, the update is interrupted and the resulting
force compensation is integrated as a time-independent
resolution-based force field, and the corresponding energy
compensation AH () can be easily computed.

The compensation of the drift force ensures that the
hydrostatic pressure becomes uniform across the simula-
tion domain [30,25]. The AT and CG representations equi-
librate at this reference pressure according to the equation
of state of the model. This equilibration implies that the
densities in the two regions might differ, and an additional
compensation must be applied to the system to ensure a
flat density profile.

3.2 Compensation of the density imbalance

The uniform pressure enforced by the application of the
compensation of the drift force does not necessarily guar-
antee a uniform density for the whole system. A density
gradient might appear in the HY region as a result of the
two models, AT and CG, following different equations of
state. There is no general reason to require that the sys-
tems features a uniform density profile. Indeed, the only
crucial aspect is that the thermodynamical state of the
high-resolution region is under control and, specifically,
consistent with the desiderata set by the user. Different
systems and investigations require different conditions and
properties, and a uniform density could be not among
them.

In the particular case under examination, however, it
is our aim to perform a smooth coupling between systems
in the same thermodynamical state point as defined in
the NVT (canonical) ensemble. Since not all thermody-
namical properties and parameters can be simultaneously
equated between the two subregions, the pressure acting
on molecules in the AT domain will differ from that in
the IG domain. The density, on the other hand, can be
set to attain the same value if the compensation AH is
modified in such a way that in each subregion the cor-
responding model attains a pressure that gives the same
reference density.

This correction can be obtained via an iterative scheme
dubbed thermodynamic force calculation [24], which con-
sist in successively applying to the molecules in the HY
region a force proportional to the density gradient:

cVpp(z
Fil ) =Fi + Venlz) )

*

(10)

where the prefactor ¢ has the units of energy and scales
the magnitude of the force, p* is the reference density,
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and p, is the density profile computed at step n of the
iterative procedure. The convergence to a uniform density
is guaranteed by the fact that the scheme has a fixed point
when Vp = 0. In addition to ensuring the same density
in the two subdomains, this method also leads to a flat
density profile in the HY region [24,30,25].

Usually, the procedure to compute the thermodynamic
force consists in an equilibration phase of the simulation
setup where no compensation is applied (with the possible
exception of the drift force compensation), followed by a
production run during which an accurate density profile is
computed. The latter has to be sufficiently smooth so to
employ its numerical gradient as a force in the following
simulation. A new density profile is thus obtained and a
new force is calculated. When the density is deemed to be
uniform within a pre-established tolerance, the iterations
are interrupted, and the compensation force is given by
the sum of the terms computed up to that point.

The iterative calculation of the thermodynamic force
relies on an accurate estimation of the density profile,
which is performed on a very short time interval AT =
vdt, where 6t is the integration time step and v is an inte-
ger number of the order of ~ 102-10%. The advantage of
this procedure is that small deviations of the density from
the reference value are immediately suppressed. However,
it is evident that the density profile obtained from a small
time interval AT is too noisy to reliably compute its nu-
merical gradient.

To overcome this difficulty, the position of the centre of
mass of the molecules is convoluted with a Gaussian func-
tion with a half-width ¢/2, comparable with the typical
excluded volume radius of the molecules. Thus, the den-
sity in the bin i, covering the coordinate range [2;, z;41]
in a specific simulation frame, is computed as

R 1 Tit1 Y — Ta 2
p=Y g avew [‘(za)} ’

1 2
A:/ dye 202.
-1

The parameter [, whose appropriate value is system de-
pendent, controls the range of the Gaussian function. A
sensible choice is to set [ = 2.50.

(11)

4 Water—ideal gas coupling

The reference, analytically solvable model of a liquid is the
ideal gas (IG): in a computer simulation, this can be im-
plemented as a collection of particles (with or without in-
ternal degrees of freedom) which do not interact. If subject
only to the classical equations of motion and in absence of
intermolecular potential, these particles would move along
rectilinear trajectories with constant orientation and ve-
locity (this is, assuming that the simulation box features
periodic boundary conditions and not hard walls). To pre-
vent this, and to be consistent with our goal of simulating
a system in the canonical ensemble, a Langevin thermo-
stat acts on the molecules in the ideal gas region, thereby
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imposing on them a stochastic, diffusive dynamics. On the
other hand, the conservative part of the Hamiltonian be-
comes

H=K+Vm 4> Fa)Vi, (12)

where only the AT part of the interaction is present. I is
the kinetic energy term and V" is the potential result-
ing from intramolecular interactions. Note that the res-
olution function A\ has been replaced by a more general
function of it, F(A). In fact, since particles can get ex-
tremely close to each other in proximity of the HY/IG
interface, a systematic sampling of huge potential ener-
gies might result in unphysical ensemble averages (VAT)
needed for the calculation of the compensations. To ensure
a satisfactory statistical sampling, we modulate the reso-
lution via F(A) = A¥ with v > 1, which also takes values
between 0 and 1 (see fig. 1). The value v = 7 is sufficient to
smoothen out divergent interactions. Another advantage
of using an exponent v > 1 is that the effective HY/IG
interface moves closer to the AT domain. This results in
a more stable and controlled thermodynamic force con-
vergence. Furthermore, the AT potential is capped at a
distance 7 to suppress large forces that might result from
overlapping molecules. That is

<7t

VAT(f) B avAT
VAT(T) = or r=f

VAT(T‘),

(Tﬁf’)v

(13)

r>7

In the case of liquid water at room temperature, the over-
lapping events are rare (one in 0.5ns, approximately).
Moreover, they do not affect thermodynamic or structural
properties of the system, as we have verified in the case of
SPC/E water model. Furthermore, they do not contribute
significantly to the calculation of the compensations since
high-energy contributions, related to substantial overlaps
of the molecules, are suppressed by the excluded volume
and restricted to the tail of the configurational probability
distribution.

The total force acting on the atom 7 of the molecule
« (without the free energy compensation term) can be
obtained from the Hamiltonian (12) as

Fai = ngt
F(Aa) + F(Ag) par
+ Z { 9 Failﬂ
B.8#a
—V;‘Ta—j: Vaita- (14)
OA |2,

Finally, concerning electrostatic interactions, we have used
an alternative to the Ewald summation method, i.e. the
damped shifted potential (DSF) [38,39]. In this approach,
previously discussed in the context of H-AdResS simula-
tions in [37], two charges ¢; and g; separated by a distance
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r;; follow the electrostatic potential given by

) = it
471'60 Tij Te
2.2

erfc(ar.) 2o exp(—a®r?)
* ( 72 +7r1/2 e (rig=re)]

erfe(ar;; erfc(ar,
Vo) 4 [t _ vy

(15)

where r;; < 7. and € is the vacuum permittivity. Only two
parameters, the cut-off radius r. and the damping param-
eter «, need to be specified. erfc(r) is the complementary
error function that takes into account the damping pro-
posed in [38]. The gradient of the potential (15) gives the
force acting on atom i

F (I" ) = qij erfc(arij) 2 exp(ia2r’i2j)
DSF(Tij 4meg 7‘% 7172 T
erfc(ar.)  2a exp(—a?r?) | ry;

(16)

——
T2 wl/2 Te Tij

This framework is employed to perform MD simulations
in the canonical ensemble for 15615 SPC/E [40-42] water
molecules in a simulation box of size 188 x 50 x 50 A.
The initial fully atomistic equilibrated configuration has
been obtained from a simulation of 100ps in the NPT
ensemble followed by a 0.1 ns equilibration run performed
with a time step of 4t = 0.001 ps. The temperature and
pressure are enforced at T' = 298 K and P = 1 bar using
the Nosé-Hoover thermostat and barostat with damping
coefficient of 0.1 ps and 1 ps, respectively. The parameters
for the DSF electrostatic potential, damping coefficient

a = 0.2A7! and cut-off radius r. = 12 A, were chosen
to reproduce the RDFs of reference simulations using the
Ewald summation method. The Lennard-Jones and DSF
potentials are capped at a radius # = 0.5 A.

Once the initial configuration has been obtained, the
system density is set to the final value attained after the
NPT equilibration run, and a H-AdResS simulation is per-
formed using the Hamiltonian of eq. (12) without any com-
pensation terms. After 100 ps, the on the fly calculation of
the drift force compensation is applied, with updates every
5 ps, during 3000 ps. The resolution interval is divided into
1000 bins of size AX = 0.001. The on the fly density bal-
ancing method is applied simultaneously to the drift force
correction. In this case, the length of the simulation box is
uniformly discretised into slabs of size Az = 1.0 A and the
thermodynamic force is updated every 50 ps. We employed
values of ¢ = lkcalmol ™' A~1 = 4.184kJmol 1 A~1,
o =3A and | = 6 A, empirically optimised to maximise
the stability of the algorithm, for smoothing and scaling
the thermodynamic force. All simulations are performed
with the LAMMPS simulation package [43,37], where the
method is implemented, freely available and ready to use;
the same algorithm is currently being implemented in the
ESPResS0++ [44] software platform. The results presented
in fig. 2 for the compensation terms obtained with this
method show a rather smooth behaviour that validates
the present approach.
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Fig. 2. Force compensations obtained from the procedure de-
scribed in the text. Upper panel: compensation to the drift
force as a function of X\. The use of the v = 7 coefficient guaran-
tees that the contributions close to the IG/HY interface (A ~ 0)
are negligible compared to the contributions close to the AT
region. Lower panel: thermodynamic force as a function of the
position within the simulation box.

The successful coupling between a dense and strongly
interacting fluid, such as water modelled at the atomistic
level, and the ideal gas reference model has been previ-
ously demonstrated [45]: it is our scope, however, to in-
clude this verification in order to make the case for a sound
and effective concurrent usage of atomistic and ideal mod-
els of different systems. The analysis of radial distribution
functions (RDFs) and velocity autocorrelation functions
(VACF) has been performed to check that the ideal gas
reservoir bears no effect on structural, thermodynamical,
and dynamical properties of the liquid in the all-atom
subdomain. The results obtained in the dual-resolution
setup are compared with the same quantities computed in
fully atomistic benchmark simulation. In the case of the
RDFs, fig. 3 shows a remarkable agreement between the
two cases.

The velocity autocorrelation function (VACF) is de-
fined as [5]:

Cou(t) = (vi(t) - vi(0)), (17)
where v;(t) is the velocity of molecule i at time ¢. To

compute the VACF for the t,,-th time step the discrete
estimator described in ref. [46] was used:

Naa M—m—1
1 1
Coo(tm) = Nox 1221 M—m ngo Vi(tntm) - Vi(tn),

(18)
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Fig. 3. RDFs of water molecules at pressure Py = 1bar and
temperature Tp = 298K in two different simulation setups:
fully atomistic simulation (blue line with dots) and H-AdResS
(red line with open circles). From top to bottom, the plots
show oxygen-oxygen, oxygen-hydrogen and hydrogen-hydrogen
RDFs. The DSF damping parameter is set to a = 0.2 A7, and
the cut-off radius is R. = 12 A.

—Fully Atomistic Simulation| 7
---H-AdResS

VACF
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t[ps]

Fig. 4. Normalized velocity autocorrelation function
(Cuu(t)/Cuvu(0)) calculated for a reference fully atomistic
(blue curve) and for the H-AdResS (red curve) simulations. In
both cases only the atoms with coordinates in the interval
—20A < x < 20 A have been taken into account.

with M the total number of time steps and t,, = mdt,
where 0t is the integration time step. Ny4 is the number
of molecules that always remain within a predefined re-
gion of the simulation box. In the case of fully atomistic
simulations, Ng4 = N, the total number of molecules.
The error in the calculation of the VACF is given by
2tcorr /Naatior [5], with teorr the correlation time and tyo¢
the total time of the simulation.

The results are reported in fig. 4. These show that a
perfect consistency exists between the observables com-
puted in the all-atom reference simulations and those ob-
tained from the H-AdResS runs.

5 Solid—Einstein crystal coupling

The possibility of modulating the resolution of a system
as a function of the position in space of its parts can be
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easily extended from fluids to solids. Indeed, the field of
material science has been the cradle of adaptive resolution
simulation methods, since these were initially developed to
perform in silico studies of e.g. crack propagation [47-52].

Here we describe the coupling of two different models
of crystal within the framework of the H-AdResS method.
Our objective, however, is not (only) to reduce the com-
putational resources necessary to simulate large chunks of
a solid of which only a tiny part, such as the expanding
crack, is of interest; rather, we aim at two other goals: on
the one hand, we want to describe how to practically per-
form an adaptive resolution simulation of a solid using, as
a coarse-grained model, an extremely simple and exactly
solvable representation, expanding the atomitstic-to-ideal
gas coupling outside of the realm of liquids. On the other
hand, we want to demonstrate that a substantial advan-
tage can come from this coupling, namely the possibility
to extract important thermodynamical information on the
system’s free energy.

Arguably, the most idealised particle-based representa-
tion of a solid is the ideal Einstein crystal (IEC) where N
non-interacting particles are coupled to their lattice sites
using harmonic potentials. The system’s potential energy
has the form

N

N
VE=SVE =Y e
i=1

i=1

(19)

where each particle ¢ fluctuates around its equilibrium po-
sition r? with spring constant ;. To illustrate the method,
as high-resolution model we employ a Lennard-Jones (LJ)
potential VE/, whose well depth ¢ and excluded volume
size o set the energy and length scale, respectively. The
corresponding H-ADResS Hamiltonian has the form

N
H=K+Y {NV +01-0)VFY, (20)

i=1

with /C being the kinetic energy term and N the total num-
ber of particles in the system. This Hamiltonian generates
the following total force acting on the atom i:

N
Ait+ AL E
F;, = Z (2Fij + (1= \)F;

JFi

— Vi = VF] v (21)
Since, by construction, the density is uniform throughout
the simulation box, the only energy compensation needed
is the one required to counteract the drift force, i.e., the
Helmholtz free energy difference between the LJ and the
IEC models. Therefore, the Hamiltonian in eq. (20) be-
comes

N
Ha=H=3) AH(A(x:)), (22)
with GAHOG)
71'1‘ — 'LJ o 4E
D) s, (VE -VED, . (23)
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Fig. 5. Setup of a Hamiltonian adaptive resolution simulation
for solids. The periodic box is divided into three different re-
gions, namely: ideal Einstein crystal (IEC), hybrid (HY), and
real crystal (RC). Upper panel: the switching function F(\)
takes values between 0 (IG) and 1 (AT), thus defining the res-
olution of a molecule. Lower panel: simulation snapshot explic-
itly showing the various subdomains. The system is composed
of Lennard Jones particles at number density p = 1.280 2 and
the thermal energy kT = 2.0ec.

Analogously to the case of fluids, we can integrate the
previous expression and obtain the Helmholtz free energy
compensation:

A
AH(M(r;)) = / ax' [V = ViF]), - (24)

0

In the upper panel of fig. 5 we provide a schematic rep-
resentation of the simulation box and the different subre-
gions: real crystal (RC), hybrid (HY), and Einstein crystal
(IEC), together with A(x). The lower panel of the same
figure shows a snapshot of the simulation setup.

Equation (24) is analogous to the difference in
Helmholtz free energy as obtained from the thermody-
namic integration (TI) method proposed by Frenkel and
Ladd [53-56]. The free energy of an IEC can be computed
analytically, hence it can be used as the reference to calcu-
late the Helmholtz free energy of a target crystal through
a regular TI. To perform the latter, in our notation we
write a Hamiltonian of the form

HA) =K+ AVH + (1 - VE, (25)

where in this case A is a global coupling constant. The
derivative of the free energy F with respect to A\ gives
(with 371 = kgT):

oF

0
5 = _5—15 [ln/drN exp(—BH(N))

= (VI —VE) | (26)

and the free energy of a real crystal F¢ is related to the
free energy of the Einstein crystal F/EC by

FA=1)=F\=0)+ /1 dx (VE —VvE) o (27)
0

with F(A = 1) = FEC and F(A = 0) = FIFC,
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Fig. 6. Mean squared displacement (MSD) of particles ob-
tained from a reference LJ simulation. The curve reaches a
plateau after 1 7, and the asymptote is 0.024 o2.

To compare the results obtained employing the two
methods, it is necessary to set the value of the spring
constant  in eq. (19). A criterion to fix this parameter is
to ensure that the mean squared displacement (MSD) of
the particles in the fully atomistic simulation equals that
of the ideal Einstein crystal, i.e. [53,54]:

3

5= (i =)),

For all cases, a simulation box of size 188.80 x 49.960 x
49.960 is used. Initially, the LJ particles are placed on the
fce lattice structure with number density p = 1.280 =2 and
their initial positions are set as the equilibrium positions
(see eq. (19)). In H-AdResS, the sizes of the LJ crystal and
hybrid regions are set to be 600 and 500 respectively (see
fig. 5). The temperature kT = 2¢ is fixed by a Langevin
thermostat with damping coefficient of 107 and the total
net force acting on the particles is periodically removed.
The particles are thermalised in the hybrid and IEC re-
gions only, yet the temperature is uniform throughout the
system (data not shown). In all simulations, the LJ po-
tential is truncated at a cut-off radius R. = 2.70 and
not shifted [56]. The LJ potential is capped at a radius
7 = 0.1o. The time step is 6t = 0.0017. To obtain the
drift force, the resolution interval is divided into 20 bins
of size A\ = 0.05, and every 50000 time steps the on the
fly calculation of the drift force compensation is performed
and then updated. The duration of each simulation run is
at least 2 x 10° steps.

The time evolution of the MSD of the Lennard-Jones
crystal is presented in fig. 6. The curve shows the char-
acteristic behaviour for a solid, where an initial superdif-
fusive regime is followed by a plateau, which in our case
appears after 1 7. From the asymptote at 0.024 o2 we
obtain the spring stiffness k = 125kpT. However in
both the H-AdResS and the TI simulations we employed
k = 250kpT, as this value guarantees the potential to be
stiff enough to avoid neighbouring particles to collapse,
and flexible enough to properly sample the interaction.

To validate the consistency of the method, we com-
puted the two components of the derivative of the per
particle Helmholtz free energy, namely (V27 and (VIEC),

(28)
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Fig. 7. Atomistic per particle potential VA7 (upper panel)
and coarse-grained per particle potential V¢ (lower panel) as
a function of A. In both panels, diamond, circle, and square
data points are obtained from H-AdResS, thermodynamic inte-
gration, and fixed centre-of-mass (CoM) thermodynamic inte-
gration, respectively.

making use of the H-AdResS method and the TI, with and
without the fixed centre of mass (CoM) constraint. These
data are reported and compared in fig. 7: the three data
sets agree remarkably well, with the only exception of the
point A = 1 for the regular TI. This is expected, because
in the TI without restraints the LJ crystal is kept at a
fixed position in space only through the coupling with the
IEC. When A — 1 this constraint relaxes, and the LJ
crystal gets asymptotically free to diffuse away from the
IEC. For this reason, it is customary to include in the TI
simulation a constraint to the LJ crystal centre of mass
position. Conversely, in the H-AdResS simulation the LJ
crystal cannot drift because of the explicit and permanent
spatial coupling to the IEC. This is made evident by the
excellent agreement for the full range of A\ between the
H-AdResS and the data obtained from a TIT integration
with fixed CoM. More generally, we expect the averages
obtained in the adaptive resolution simulation to corre-
spond point by point to the ones from TI. This expec-
tation stems from the fact that, for sufficiently large hy-
brid regions, the system is locally —i.e. for a given value
of A— in a state comparable to that of a TI setup with
the same value of the Hamiltonian interpolation param-
eter [25]. Furthermore, we know from previous work [30,
31,25] that the free energy compensation corresponds to
the Helmholtz free energy difference between the all-atom
and the coarse-grained representation; since the difference
between the integral of these quantities has to sum up
to the same value for both TI-based and H-AdResS-based
calculations, and excluding the possibility of exact can-
cellations between deviations present in different parts of
the curves, we conclude that the integrands have to be
point-wise identical. Indeed, the LJ crystal excess free en-
ergies (F(A = 1) — F(A = 0)) computed with respect to
the IEC with the two approaches discussed here are in ex-
cellent agreement: the reference calculation by means of
standard TI with constraints gives —2.63kpT while the
H-AdResS-based approach provides a value of —2.64kpT.
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Fig. 8. Normalized velocity auto-correlation function

(Cuo(t)/Cuu(0)) of LJ solid. The result of the fully atomistic,
reference simulation is shown with the solid blue curve. The re-
sult of the H-AdResS simulation is shown in red dashed curve.
The simulation box has dimensions of 188.80 x 49.960 x 49.960.
In both cases, only those atoms with coordinates such that
—200 < X < 200 are considered for the calculation of the
VACF.

As for the case of liquid—ideal gas coupling, also here
we can monitor the consistency of the equilibrium dy-
namical properties of the crystal in the high-resolution
region of the H-AdResS setup. This is done by calculating
the VACF for the fully atomistic and the dual-resolution
setup, whose results are presented in fig. 8. In both cases
the VACF shows the same behaviour within error bars,
the latter being indicated by the shaded regions around
the solid lines. As expected for a solid, the curves fluctuate
around zero with amplitudes decreasing with time. These
fluctuations result from the incoherent vibrations of the
particles at their equilibrium positions. This is a remark-
able result, since for an ideal Einstein crystal the VACF
exhibits a sinusoidal behaviour: in the dual-resolution sim-
ulation, however, the dynamics of the LJ subdomain are
not affected by the harmonic character of the IEC.

6 Conclusions and outlook

Ideal models, in the context of soft matter, are charac-
terised by two elements: absence of interactions (or at
least coupling) and exact integrability. This makes them
historically pivotal in the comprehension of many physical
systems, as they entail a great fraction of the complexity
of the latter in spite of a bare-to-the-bones nature. Semi-
perturbative corrections can take quite far from the initial
simplicity and a lot closer to physical reality, as it is the
case of van der Waals’ equation of state for real liquids.
When such a simple modification, which still leaves the
integrability of the model substantially intact, is not pos-
sible, other routes can open up, such as the decomposition
of physical quantities in ideal and excess terms: the prob-
lem is now flipped from a perturbative modification of the
ideal case to a finite, often substantial yet additive contri-
bution, whose calculation is made possible by analytical
or computational tools.

Eur. Phys. J. E (2018) 41: 64

Adaptive resolution simulations methods are the most
suitable instruments to take advantage of the comparison
between a realistic description of a system and the corre-
sponding ideal models: this is because such comparison is
as direct as possible, with the two models coexisting in the
same simulation and in direct contact, exchanging parti-
cles and energy. To enforce the equality of a given prop-
erty in both subdomains at different resolution implies to
compute the differences that exist between them, often in
a simpler and more effective way than by means of well
established techniques. In this work we have revised the
application of the Hamiltonian adaptive resolution simula-
tion scheme H-AdResS to the coupling of all-atom models
of a liquid to an ideal gas, and have demonstrated how
an analogous setup can be constructed for a solid. The
subdomain where the system is described with an inter-
acting, accurate model does not suffer from the coupling,
as it is shown by all structural and dynamical quantities
measured there, whose values are in excellent agreement
with the fully high-resolution reference. For the solid this
is particularly relevant and remarkable, because the par-
ticle arrangement is not, as in a liquid, transitional and
short-lived, rather remains fixed. Hence, any difference in
thermodynamical and equilibrium dynamical properties
with respect to the LJ solid could penetrate more strongly
into the high-resolution domain, without being averaged
out by fluctuations. Nonetheless, the switch from the in-
teracting system to the ideal one, that takes place in the
hybrid region, is smooth enough as to decouple the fine de-
tails of each model’s properties, yet preserving the same
thermodynamics throughout the simulation box.

These results provide the conceptual and technical
bedrock for applications with important consequences.
The computational cost of these simulations, in fact, is re-
duced to that of the high-resolution domain, as the ideal
gas/solid parts require a negligible amount of force cal-
culations. The size of systems that can be treated with
these technique can thus be substantially large, so as to
minimise finite-size effects and enable the simulation of
complex molecules. As a particularly useful perspective
application we envisage the calculation of chemical poten-
tials of complex molecular crystals, a topic of increasing
relevance for its industrial and pharmaceutical implica-
tion, which is the object of ongoing work.
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