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Abstract.
We have shown that solutions to the radiative transfer equation for a homogeneous slab yield a zenith
radiance reflectance that for collimated beam incidence in the nadir direction can be expressed in terms
of the lidar ratio, defined as the extinction coefficient divided by the 180◦ backscattering coefficient. The
recently developed QlblC method, which allows one to quantify layer-by-layer contributions to radiances
emerging from a slab illuminated with a collimated beam of radiation, was used to show explicitly that
in the single-scattering approximation the attenuated backscatter coefficient estimated by the new QlblC
method gives the same result as the lidar equation. Originally developed for the continuous wave (CW) lidar
problem, we have extended the new QlblC method to apply to the pulsed lidar problem. A specific example
is provided to illustrate the challenge encountered for ocean property retrievals from space observations
due to the fact that a very significant fraction of the signal is due to aerosol scattering/absorption; typically
only about 10% (or less) comes from the ocean.

1 Introduction

The United States National Academy of Sciences, Engi-
neering, and Medicine 2017 Decadal Survey, ‘Thriving
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on Our Changing Planet: A Decadal Strategy for Earth
Observations from Space’ calls for a lidar and polarime-
ter to accurately characterize vertically resolved absorb-
ing and scattering properties of aerosols. The lidar is
expected to be at least as capable as the Cloud Aerosol
Lidar with Orthogonal Polarization (CALIOP) instru-
ment, which has been shown to enable retrievals of
aerosol, cloud, and ocean products from space. In addi-
tion, the next generation of airborne lidars includes
high spectral resolution lidars (HSRL) with the capa-
bility for aerosol measurements at 1064, 532, and 355
nm [1] and ocean measurements at 532 and 355 nm
[2]. These advanced, powerful lidar systems require new
algorithms in order to accurately and efficiently account
for multiple scattering in cirrus and water clouds as well
as in open ocean waters and coastal waters with high
levels of particulate scattering. For spaceborne lidar
systems, multiple scattering leads to a significant con-
tribution to lidar returns [3].

Although Monte Carlo (MC) algorithms exist for
elastic backscatter lidar like CALIOP, it is highly desir-
able to have access to an efficient yet accurate forward
radiative transfer model that will be significantly faster
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than existing MC algorithms in simulating lidar signals
due to multiple scattering in cirrus and water clouds as
well as coastal water.

Reliable interpretation of lidar/radar returns from
the atmosphere (or lidar returns from the ocean) relies
on accurate solutions of a forward/inverse problem. To
solve the inverse problem, it is very useful to have access
to a fast yet accurate forward model. For continuous-
wave lidar/radar beam illumination, one needs to solve
the steady-state (time-independent) radiative transfer
equation (RTE) for beam propagation including mul-
tiple scattering throughout the medium (atmosphere
or ocean). However, most active remote sensing tech-
niques rely on illumination using lidar/radar pulses,
implying that one must solve the time-dependent RTE.
For a space-based lidar, such as the CALIOP instru-
ment, which has operated in space since 2006 on the
Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observation (CALIPSO) platform, one needs to solve
the time-dependent RTE for the coupled atmosphere-
ocean system in order to infer water parameters from
space [4–6].

Many retrieval algorithms ignore or treat multiple
scattering in an approximate manner, which may yield
unreliable results. For example, it has been shown that
if lidar multiple-scattering effects were omitted in com-
bined radar-lidar retrievals of ice clouds from space,
the retrieved optical depth might be underestimated
by as much as 40% [7]. Therefore, to fully under-
stand and exploit the information contained in received
lidar/radar returns, one should have access to accu-
rate methods to assess the error incurred by ignoring or
not including multiple scattering effects in an accurate
manner. Exploring to what extent multiple scattering
can be used as an additional source of retrievable infor-
mation about medium properties is also an important
issue that deserves serious attention [8].

Radiative transfer involving lidar/radar (finite) beam
illumination is a three-dimensional (3-D) problem. The
solution of the 3-D RTE for a narrow finite laser
beam (i.e., the so-called searchlight problem) is quite
challenging and computationally demanding. There-
fore, it has become customary to use a one-dimensional
(1-D) approach instead, and most treatments of the
lidar/radar problem rely on solving a 1-D RTE for both
atmospheric [9,10] and oceanic [11] applications.

2 Summary of single-scattering results

Solving the radiative transfer equation (RTE) perti-
nent for a collimated beam of light that is incident
upon a slab of optical thickness τb, we find the radi-
ance reflectance in the single-scattering approximation
(SSA) to be given by [see Eqs. (A21) and (A18) in
Appendix A]:

RI,SSA =
1

2S (1 − e−2τb) (1)

where the lidar ratio S (i.e., the extinction coeffi-
cient divided by the 180◦ backscattering coefficient)
depends on the scattering phase function, p(cos Θ): S =
Siso = 4π for isotropic scattering, piso(cos Θ) = 1.0;S =
SRay = 8π

3 for Rayleigh scattering, pRay(cos Θ) =
3
4 (1 + cos2 Θ); S = SHG = 4π(1+g)2

(1−g) for Henyey–
Greenstein (HG) scattering, pHG(cos Θ) = (1−g2)/(1+
g2 − 2 g cos Θ)3/2, where Θ is the scattering angle
(Eq. (A13)) and g is the asymmetry factor of the scat-
tering phase function.

The advantage of solving the RTE in a slab geome-
try, which leads to the SSA result in Eq. (1), is that it
yields valid results also when multiple-scattering effects
prevail. However, a slab geometry, on which Eq. (1) is
based, does not apply to a laser beam of finite lateral
extent. Nevertheless, Eq. (1) is expected to be a rea-
sonable approximation when the scattering mean free
path is less than the lateral extent of the laser beam.

The Quantification of layer-by-layer Contribution
(QlblC) method [12] can be used to estimate the
backscatter attenuation coefficient for the lidar problem
as outlined in Sect. 3.1. In Sect. 3.3, we show explicitly
that a single-scattering estimate based on the QlblC
method [see Eq. (10)] gives the same result as the lidar
equation [see Eq. (11)] for the attenuated backscatter
coefficient [see Eq. (12)].

3 Results

3.1 The QlblC method

Let’s consider a medium consisting of two adjacent, hor-
izontal, multilayered coupled slabs illuminated from the
top of the upper slab by a collimated beam of irradiance
F0 in direction θ0 with respect to the normal to the two
adjacent slabs. As discussed elsewhere [12], the radia-
tive transfer equation (RTE) for such a problem can
be solved by integrating the source function S±

i (t, μ, φ)
(i = n, or p (layer indices) in Eqs. (2) and (3)) layer by
layer to yield the following expressions for the Stokes
vector I±(τ, μ, φ) of the diffuse total and polarized radi-
ance (the + sign denotes the upward hemisphere while
the − sign denotes the downward hemisphere):

I+(τ, μ, φ) =
∫ τp

τ

dt

μ
S+

p (t, μ, φ)e−(t−τ)/μ

+
L∑

n=p+1

∫ τn

τn−1

dt

μ
S+

n (t, μ, φ)e−(t−τ)/μ

(2)

I−(τ, μ, φ) =
p−1∑
n=1

∫ τn

τn−1

dt

μ
S−

n (t, μ, φ)e−(τ−t)/μ

+
∫ τ

τp−1

dt

μ
S−

p (t, μ, φ)e−(τ−t)/μ. (3)
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Here τ is the optical depth, μ = ‖(cos θ)‖ (θ is the polar
angle), and φ is the azimuthal angle. Since the source
function S±

i (t, μ, φ) in layer denoted by subscript i (=
n, or p) can be evaluated analytically by the discrete
ordinate method, the integrals in Eqs. (2) and (3) have
analytic solutions.

Note that Eqs. (2) and (3) allow us to quantify the
contributions from any specific layer in a single slab or
any layer in either of two adjacent slabs with different
refractive indices. For example, if we are interested in
the contribution from layer M in either of the two adja-
cent slabs to the zenith radiance emerging from the top
of the upper slab, we may proceed as follows:

• Compute I+(τ = 0, μ = 1) by integrating all layers
from the top of the upper slab including layer M ;

• Repeat the computation by integrating all layers
from the top of the upper slab including layer M−1;

• Subtract the latter result from the former to obtain
the contribution from layer M .

Alternatively, we may obtain the same result by simply
setting the source function to zero in all layers except
in layer M , which is the layer of interest.

3.1.1 Emergent radiances

Evaluating Eq. (2) at τ = 0 and μ = 1 (φ irrelevant),
we obtain the upward total and polarized radiance in
the zenith direction I+(0, 1) (relevant for spaceborne
lidar deployments), while evaluating Eq. (3) at τ = τL

and μ = 1 (φ irrelevant), we obtain the downward total
and polarized radiance in the nadir direction I−(τL, 1)
(relevant for ground-based lidar deployments):

I+(0, 1) = I+(τ = τ0 = 0, μ = 1)

=
L∑

n=1

∫ τn

τn−1

dtS+
n (t, μ = 1) e−t (4)

I−(τL, 1) = I−(τ = τL, μ = 1)

=
L∑

n=1

∫ τn

τn−1

dtS−
n (t, μ = 1) e−(τL−t). (5)

3.2 A simple two-layer model

As a simple example, consider a single slab (as
opposed to two adjacent, coupled slabs) consisting of
two layers (L = 2): a “target” (layer 2) overlain by
layer 1. The slab is assumed to be illuminated by a col-
limated beam at an angle θ0. For this two-layer system,
the reflected signal would be given by:

I+(0, 1) =
∫ τ1

τ0

dtS+
1 (t, 1) e−t +

∫ τ2

τ1

dtS+
2 (t, 1) e−t.

(6)

3.2.1 Single-scattering approximation (SSA)

Assuming that the single-scattering approximation is
applicable for each of layers 1 and 2, we have (see
Eq. (A3))

S+
i (t, μ) ≡ S+

i (t,−μ0, μ) ≈ X+
i (−μ0, μ)e−t/μ0i = 1, 2

(7)
where we have ignored polarization (S+

i → S+
i ) and

μ0 = cos θ0. If we consider both layers to be homoge-
neous and to scatter in accordance with the Henyey–
Greenstein scattering phase function, pHG(−μ0, μ, gi)
with asymmetry factor gi, then

X+
i (−μ0, μ) =

�iF0

4π
pHG(−μ0, μ, gi)

→ �iF0

4π
pHG(−1, 1, gi) i = 1, 2

for μ = μ0 = 1. Hence, for incident beam irradiance
F0 = 1.0 (normal to the beam direction), the radiance
reflectance becomes (S+

i (t, 1) = X+
i (−1, 1)e−t)

RI,SSA = I+(0, 1) = X+
1 (−1, 1)

∫ τ1

τ0

dt e−2t

+X+
2 (−1, 1)

∫ τ2

τ1

dt e−2t

or (setting τ0 = 0 at the top of the upper slab)

RI,SSA = I+(0, 1) =
�1

8π

(1 − g1)
(1 + g1)2

[
1 − e−2τ1

]

+
�2

8π

(1 − g2)
(1 + g2)2

[
e−2τ1 − e−2τ2

]

or

RI,SSA = I+(0, 1) =
�1

2S1

[
1 − e−2τ1

]

+
�2

2S2

[
e−2τ1 − e−2τ2

]
(8)

where Si = Si,HG = 4π(1+gi)
2

(1−gi)
(i = 1, 2) is the lidar

ratio, defined as the extinction coefficient divided by
the 180◦ backscattering coefficient, and gi is the asym-
metry factor of the scattering phase function, the only
input parameter required for the HG phase function.
Clearly, if the two layers have identical optical prop-
erties, i.e., if �2

2S2
= �1

2S1
= �

2S = �
8π

(1−g)
(1+g)2 , then

RI,SSA = �
8π

(1−g)
(1+g)2

[
1 − e−2τb

]
= �

2SHG

[
1 − e−2τb

]
as

expected for a homogeneous slab of optical thickness
τ2 = τb (see Eq. (A21)).
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3.3 Estimation of the lidar attenuated backscatter

3.3.1 QlblC estimate

To mimic the lidar problem, let’s assume that both lay-
ers consist of non-absorbing particles (�1 = �2 = 1.0)
and that layer 1 scatters isotropically (with asymme-
try factor g1 = 0) and has a small optical thickness
(say τ1 = 0.05), while layer 2 (the target layer) scat-
ters according to a Henyey–Greenstein scattering phase
function with asymmetry factor g2 and optical thick-
ness τ2. According to the QlblC method, the contribu-
tion to the radiance reflectance from layer 2, the target
layer, i.e., the single-scattering estimation of the radi-
ance reflectance RI,QlblC is given by the second term in
Eq. (8):

RI,QlblC =
�2

2S2

[
e−2τ1 − e−2τ2

]

=
�2

2S2
e−2τ1

[
1 − e−2(τ2−τ1)

]
[sr−1]. (9)

The attenuated backscatter from the target layer (layer
2) is obtained by dividing by its vertical thickness Δz:

βQlblC =
1

Δz
RI,QlblC

=
e−2τ1

Δz

�2

2S2

[
1 − e−2(τ2−τ1)

]
[m−1sr−1].

(10)

3.3.2 Lidar equation estimate

The attenuated backscatter coefficient (assuming a
range bin of vertical extent Δz) from lidar measure-
ments is given by the lidar equation:

βlidar =
T 2

Δz

∫ Δz

0

β(z)e−2α(z)zdz

=
T 2

Δz

∫ Δz

0

α(z)
S(z)

e−2α(z)zdz [m−1sr−1] (11)

where T 2 is the two-way transmittance, β(z) [m−1sr−1]
is the backscattering coefficient, α(z) [m−1] is the
extinction coefficient, S(z) [sr] is the lidar ratio at alti-
tude z, and Δz [m] is the bin size. If we assume that
α(z) and S(z) do not vary within the Δz vertical bin,
then Eq. (11) yields

βlidar = T 2 1
Δz

1
2S [1 − e−2αΔz] [m−1sr−1]. (12)

Setting T 2 = e−2τ1 and αΔz ≈ τ2 −τ1, we find that the
attenuated backscatter results predicted by Eqs. (10)
and (12) are the same, i.e., βQlblC = βlidar if �2 = 1.0
and S = S2.

3.4 Generalization to an N -layer model

Assuming that all N −1 layers above the target layer N
have the same optical properties, then Eq. (10) should
be replaced by

βQlblC =
e−2τN−1

Δz

�N

2SN

[
1 − e−2(τN−τN−1)

]
[m−1sr−1]

(13)
and Eq. (12) by

βlidar =
T 2

N−1

Δz

1
2SN

[1 − e−2αN (Δz)N ] [m−1sr−1]

(14)
where T 2

N−1 = e−2τN−1 and αN (Δz)N = τN − τN−1.

3.5 Numerical examples

The QlblC method [12] allows one to quantify specific
layer contributions of signals emerging from stratified,
multilayered media based on solutions to the radiative
transfer equation (RTE). As shown in the previous sec-
tion, in the single-scattering approximation, the QlblC
solutions agree with those obtained using the stan-
dard lidar approach, but the QlblC method also yields
reliable results for optically thick, multiple-scattering
aerosol and cloud layers. In the following, we use radi-
ation reflected from (i) a multilayered atmosphere and
(ii) a coupled atmosphere-ocean system to address the
problem relevant for EM probing by a space-based lidar
system. Hence, we will assume that the medium consists
of either (i) one single, multilayered slab with a constant
refractive index or (ii) two adjacent multilayered slabs
separated by a smooth interface across which the real
part of the refractive index mr changes from one con-
stant value mr,1 in slab1 to a different constant value
mr,2 in slab2, such as for an atmosphere-water system.

To deal with the vertical variation of the scatter-
ing and absorption properties of the atmospheric con-
stituents, it is necessary to treat it as a multilayered
medium. Therefore, based on previous experience, we
divided the atmosphere into 15 layers from top to bot-
tom as illustrated in Fig. 1. This vertical stratifica-
tion of the atmosphere in horizontal layers is sufficient
to produce accurate radiances for a clear (cloud- and
aerosol-free) atmosphere.

The key to accomplishing this quantification of the
emerging radiance originating from any specific layer
(or location) in the medium lies in our ability to com-
pute and integrate the source function.1 Thus, we are
able to quantify the contribution to the emerging radi-
ance from any particular layer of a stratified medium.
Below we consider three different cases:

1. A clear atmosphere with embedded aerosol layers.
2. Same as item 1 above but contrasting continuous

wave (CW) and pulsed lidar results.

1 Knowing the source function is equivalent to knowing the
complete solution of the radiative transfer problem.
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Fig. 1 Layering of the atmosphere

Fig. 2 Layer-by-layer (lbl) contributions (per km) to the reflected radiance for a clear (US 76 Standard) atmosphere.
Left panel: Percentage lbl contributions. Right panel: lbl contributions to the scattering coefficient. The total Rayleigh
scattering optical depth at 532 nm was 0.134

3. An atmosphere overlying a body of water.

3.5.1 A clear atmosphere with embedded aerosol layers:
CW lidar

First, we consider the CW lidar problem in which the
steady-state RTE is solved, implying that the source
function for any particular layer includes multiply-

scattered radiation from all layers below the layer of
interest. Figure 2 shows the layer-by-layer (lbl) contri-
butions to the reflected radiance at the top of the atmo-
sphere (TOA) for wavelength λ = 532 nm for this CW
lidar configuration. As expected for an atmosphere that
obeys the barometric law of near-exponential decrease
with altitude in the bulk molecular number concentra-
tion, the major contributions to the reflected radiance
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Fig. 3 Same as left part of Fig. 2 except that aerosol particles were mixed with the molecules in layers 14 and 15.
The aerosol optical depth (AOD) was assumed to be 0.1 in layer 14 and 0.2 in layer 15, yielding a total AOD of 0.3

Fig. 4 Left panel: CW lidar (same as Fig. 3). Right panel: Same as left panel but for pulsed lidar. The aerosol optical
depth (AOD) was assumed to be 0.1 in layer 14 and 0.2 in layer 15, yielding a total AOD of 0.3
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Fig. 5 Results pertaining to an atmosphere-ocean system assumed to consist of 15 atmospheric layers and three oceanic
layers. Oceanic layers 16 and 17 each have a thickness of 5 m and contain pure water mixed with algae (pigmented particles),
non-algal particulate matter, and Colored Dissolved Organic Matter (CDOM) impurities typical for coastal water. Layer
18 (10-100 m depth) is assumed to contain pure water. Left panel: Percentage lbl contributions (per layer). Right panel:
Same as left panel but presented as reflectance profiles

at the TOA come from the layers close to the surface. To
mimic the lidar problem, we assumed nadir incidence,
i.e., a beam zenith angle of 0◦, and a polar observation
angle of 0◦.

To demonstrate how aerosols impact the lbl contribu-
tions to the TOA radiance, we included an aerosol com-
ponent in each of layers 14 and 15 (closest to the sur-
face). This aerosol component was assumed to consist of
weakly absorbing particles, homogeneously mixed with
the molecules in layers 14 and 15. The lbl contributions
to the TOA radiance for this case are shown in Fig. 3.
Note that the largest lbl contribution to the TOA radi-
ance comes from layer 15, and the next largest from
layer 14 as expected since the aerosol optical thickness
in layer 15 is twice that of layer 14.

3.5.2 Continuous wave (CW) versus Pulsed lidar

The results shown in Figs. 2 and 3 pertain to a CW lidar
configuration. To address the pulsed lidar problem, we
adopt the following approach:

• In the CW lidar problem: the source function for
each layer contains contributions also from all lay-
ers, including those below a given layer of interest.

• To simulate the pulsed lidar problem, we must
omit contributions from layers below the layer of
interest. Hence, we may proceed as follows:

1. Starting at the top of the slab (atmosphere), we
first solve a two-layer problem to get the lbl con-
tribution from the second layer (counting from
the top). The uppermost layer is optically very
thin. Hence, we can ignore its possible contri-
bution, and contributions from all layers below
layer 2 are ignored.

2. Next, we solve the 3-layer problem to get the lbl
contribution from layer 3, again ignoring contri-
butions from all layers below layer 3.

3. Then, we continue in this manner until we have
determined the lbl contributions from layer 4,
layer 5, . . ., layer N for a N -layer slab.

Results for the CW and pulsed lidar configurations
are shown in Fig. 4. Note that the pulsed lidar con-
figuration (right panel) yields smaller lbl contribu-
tions than the CW lidar configuration (left panel) as
expected.

3.5.3 An atmosphere overlying a body of water

Our final example pertains to a clear atmosphere over-
lying a body of oceanic water. The atmosphere is
assumed to consist of 15 layers, and the ocean is
assumed to consist of three layers with a total thick-
ness of 100 m. Each of the two uppermost ocean layers
has a thickness of 5 m and contain pure water mixed
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Fig. 6 Impact of adding aerosol particles in layers 14 and 15 at the bottom of the atmosphere. Percentage lbl contributions
(per layer) for an atmosphere having Upper left: AOD = 0; Upper right: AOD = 0.003; Lower left: AOD = 0.03; Lower
right: AOD = 0.3

with algae ( chlorophyll concentration of 0.5 mg·m−3),
a small amount of mineral particles (0.005 g·m−3), and
Colored Dissolved Organic Matter (CDOM) absorption
coefficient, 0.01 m−1 at 443 nm.

Below 10 m depth, the water is assumed to be pure.
The left panel of Fig. 5 shows lbl contributions. Note
that the largest contribution from the ocean comes for
the upper layer (layer 16). Layer 17 (below) is effectively
shielded by the overlying layer 16, and very little light
penetrates to layer 18. The right panel of Fig. 5 shows
the same results as in the left panel, but presented as
reflectance profiles as is common in the atmospheric
lidar community. Please note that in Figs. 5 and 6 the
percentage contributions are per layer (not per km as
in Figs. 2, 3, 4).

Figure 6 shows the impact of adding aerosol parti-
cles in layers 14 and 15 at the bottom of the atmo-
sphere. In the upper left panel of Fig. 6, no aerosol

particles were added, but in the upper right panel a
small amount (AOD = 0.003) was added. We note that
this small amount has almost negligible impact. The
contribution from the water to the TOA radiance is
about 10.3%, while that from the two aerosol layers is
about 17.6%. As the AOD is increased to 0.03 (lower
left panel), those contributions change to about 10.2%
(ocean) and 16.6% (aerosols). Finally, the lower right
panel shows that for a total AOD abundance of 0.3 in
layers 14 and 15, these contributions change to 4.6%
(ocean) and 52.1% (aerosols). These numbers are in
general agreement with observations, and they illus-
trate that in order to retrieve reliable results for ocean
properties from optical instruments deployed on space
platforms, the impact of aerosols must be dealt with
very carefully, since their abundance change in space
and time.
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4 Conclusion

We have shown that solutions to the RTE for a homo-
geneous slab of optical thickness τb yields a zenith radi-
ance reflectance that for collimated beam incidence in
the nadir direction can be expressed in terms of the
lidar ratio S simply as RI,SSA = 1

2S (1 − e−2τb) in
the single-scattering approximation. The lidar ratio,
defined as the extinction coefficient divided by the 180◦
backscattering coefficient, is given by S = Siso = 4π for
isotropic scattering, S = SRay = 8π

3 for Rayleigh scat-

tering, and S = SHG = 4π(1+g)2

(1−g) for Henyey–Greenstein
(HG)scattering, where g = 〈cos Θ〉 is the scattering
asymmetry factor and Θ is the scattering angle.

A simple two-layer model was used to show explic-
itly that in the single-scattering approximation an esti-
mate of the attenuated backscatter coefficient based
on the QlblC method gives the same result as the
lidar equation. As described in a recent paper [12], the
QlblC method applies to the continuous wave (CW)
lidar problem. In Sect. 3.5.2, we extended the QlblC
method to be applicable to the pulsed lidar problem
and showed that as expected the pulsed lidar config-
uration yields smaller lbl contributions than the CW
lidar configuration.

In Sect. 3.5.3, an example was provided (Figs. 5 and
6) to illustrate the challenge encountered for ocean
property retrievals from space observations due to the
fact that a very significant fraction of the signal is due
to aerosol scattering/absorption; typically only about
10% (or less) comes from the ocean. The contribution
from molecules is easier to deal with because it depends
largely on the total column amount of molecules which
depends on pressure through the ideal gas law. Pressure
measurements are commonly available.
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Appendix A single-scattering solutions

A.1 Radiative Transfer Simulations of the radiance
reflectance (RI value)

Let’s assume that the angular scattering can be
described by the synthetic Henyey–Greenstein scatter-
ing phase function expressed in terms of the asymmetry
factor g by

pHG(cos Θ) =
1 − g2

(1 + g2 − 2g cos Θ)3/2
. (A1)

To get the appropriate RI value, for any scatter-
ing phase function (isotropic scattering (g = 0) or
anisotropic scattering (g �= 0)), we need to solve
the pertinent radiative transfer equation (RTE), also
when the single-scattering approximation is applicable.
For simplicity, let’s consider a slab geometry. For the
lidar problem, the RI value is the upward radiance
reflectance in the zenith direction (perpendicular to the
slab). Since this RI value is azimuth independent, we
may use the azimuthally averaged RTE [13]

± μ
dI±(τ, μ)

dτ
= I±(τ, μ) − S±(τ, μ), (A2)

where μ ≡ ‖ cos θ‖ (0 ≤ μ ≤ 1). Letting u = cos θ,
and taking u′ as the dummy (integration) variable, the
source function can be written [13]

S±(τ, μ) =
�(τ)

2

∫ 1

−1

du′p(τ, u′,±μ)I(τ, u′)

+X±(τ,−μ0, μ)e−τ/μ0 (A3)
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X±(τ,−μ0, μ) = �(τ)F0
p(τ,−μ0,±μ)

4π

=
�(τ)F0

S (A4)

where S ≡ 4π/p(τ,−μ0,±μ), F0 in the incident beam
irradiance (normal to the direction of incidence) and
θ0 = cos−1 μ0 is the angle of incidence of the lidar
beam. In Eq. (A2), I+(τ, μ) is the diffuse radiance in
the upward direction with polar angles in the range
0 ≤ θ ≤ π/2, and I−(τ, μ) is the diffuse radiance
in the downward direction with polar angles in the
range π/2 ≤ θ ≤ π. In Eq. (A4) p(τ,−μ0,±μ) is the
azimuthally averaged scattering phase function

p(τ,−μ0,±μ) =
1
2π

∫ 2π

0

dφ p(−μ0, φ
′;±μ, φ). (A5)

For a homogeneous slab with �(τ) = � and
p(τ, u′,±μ) = p(u′,±μ), we assume (i) τ0 = 0 is the
optical depth at the upper boundary (top of the slab);
and (ii) τb is the optical depth at the lower bound-
ary (bottom of the slab). Note that Eqs. (A2)–(A5) are
valid for arbitrary values of τ in the range τ0 ≤ τ ≤ τb.

A.1.1 Single-scattering approximation (SSA)

In the single-scattering approximation, we ignore the
integral (multiple-scattering) term in Eq. (A3) to
obtain:

S±(τ, μ) ≈ X±(−μ0, μ)e−τ/μ0 (A6)

for a homogeneous slab. Integration of Eq. (A2) yields
the following single-scattering approximation (SSA) to
the upward radiance [13]:

I+
SSA(τ,−μ0, μ) =

μ0X
+(−μ0, μ)

(μ0 + μ)[
e−τ/μ0 − e−[(τb−τ)/μ+τb/μ0]

]
. (A7)

Case 1: Isotropic scattering
For a homogeneous slab with isotropic scattering, we

have piso(−μ0,±μ) = 1, and hence (Eq. (A4) yields
X+(−μ0, μ) = �F0/4π. Then Eq. (A7) simplifies to

I+
SSA(τ,−μ0, μ) =

μ0�F0

4π(μ0 + μ)[
e−τ/μ0 − e−[(τb−τ)/μ+τb/μ0]

]
.

(A8)

Hence, the upward radiance in the zenith direction (μ =
1) becomes

I+
SSA(τ,−μ0, 1) =

μ0�F0

4π(μ0 + 1)[
e−τ/μ0 − e−[(τb−τ)+τb/μ0]

]
(A9)

which for normal incidence (μ0 = 1) and F0 = 1.0
yields:

I+
SSA(τ,−1, 1) =

�

8π

[
e−τ − e−(2τb−τ)

]

=
�

2Siso

[
e−τ − e−(2τb−τ)

]
. (A10)

where the lidar ratio, defined as the extinction to
backscatter ratio

Siso = 4π [sr]

for isotropic scattering. Hence, for conservative scatter-
ing (� = 1.0) the radiance reflectance becomes

RI,iso = I+
SSA(0,−1, 1) =

1
2Siso

[
1 − e−2τb

]
[sr−1].

(A11)
Case 2: Rayleigh scattering For a homogeneous

slab with Rayleigh scattering, we have pRay(−μ0,±μ) =
3
4 (1 + cos2 Θ), and hence X+(−μ0, μ) = �F0

4π
3
4 (1 +

cos2 Θ) according to Eq. (A4), and Eq. (A7) becomes

I+
SSA(τ,−μ0, μ) =

μ0�F0

(μ0 + μ)
pRay(−μ0, μ, g)

4π[
e−τ/μ0 − e−[(τb−τ)/μ+τb/μ0]

]
. (A12)

Since the scattering angle Θ is related to the polar
angles (θ′ and θ) and azimuth angles (φ′ and φ) by

cos Θ = uu′ +
√

1 − u2
√

1 − u′2 cos(φ′ − φ) (A13)

we have (u′ = cos θ′ and u = cos θ)

pRay(u′, φ′;u, φ)

=
3
4

(
1 + [uu′ +

√
1 − u2

√
1 − u′2 cos(φ′ − φ)]2

)

=
3
4
(a1 + a2 cos (φ′ − φ) + a3 cos2(φ′ − φ)) (A14)

where

a1 = (1 + (uu′)2), a2

= 2uu′√1 − u2
√

1 − u′2,
and a3 = (1 − u2)(1 − u′2). (A15)

Hence, the azimuthally averaged phase function

pRay(u
′, u) =

1
2π

∫ 2π

0

dφ pRay(u′, φ′;u, φ)

=
1
2π

3
4

∫ 2π

0

dφ(a1 + a2 cos (φ′ − φ)

+a3 cos2(φ′ − φ)) (A16)
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becomes (setting u′ = −μ0 = −1 and u = 1, implying
a1 = 2, a2 = a3 = 0, see Eq. (A15)):

pRay(−1, 1) =
3
2

⇒ 1
S =

pRay(−1, 1)
4π

=
3
8π

. (A17)

Hence,

SRay =
8π

3
[sr] ⇒ 1

2SRay
=

3
16π

[sr−1]

and (see Eq. (A12))

RI,Ray = I+
SSA(0,−1, 1) =

1
2SRay

(1 − e−2τb) [sr−1].

(A18)

Case 3: Henyey–Greenstein (HG) scattering
HG scattering is defined by the one-parameter scat-
tering phase function (u = cos θ, u′ = cos θ′) given
by Eq. (A1), pHG(cos Θ) = pHG(u′, φ′;u, φ), where the
scattering angle Θ is related to the polar and azimuth
angles by Eq (A13). The azimuthally averaged scatter-
ing phase function is:

pHG(u′, u, g) =
1
2π

∫ 2π

0

dφ pHG(u′, φ′;u, φ). (A19)

Thus, according to Eq. (A4)

X+(−μ0, μ) = �F0
pHG(−μ0, μ, g)

4π

and Eq. (A7) becomes

I+
SSA(τ,−μ0, μ) =

μ0�F0

(μ0 + μ)
pHG(−μ0, μ, g)

4π[
e−τ/μ0 − e−[(τb−τ)/μ+τb/μ0]

]
. (A20)

Hence, for perpendicular incidence (μ0 = 1.0) with
F0 = 1.0, for conservative scattering (� = 1.0) the
radiance reflectance in the zenith direction (μ = 1.0)
becomes

RI,HG = I+
SSA(0,−1, 1) =

1
8π

pHG(−1, 1, g)
[
1 − e−2τb

]

=
1
8π

(1 − g)
(1 + g)2

[
1 − e−2τb

]
. (A21)

or

RI,HG =
1

2SHG

[
1 − e−2τb

]
[sr−1] SHG

=
4π(1 + g)2

(1 − g)
[sr]. (A22)

Equation (A21) follows because pHG(u′, φ′;u, φ) = (1−
g2)/[(1 + g2 − 2 g cos Θ)3/2]. Hence,

pHG(u′, φ′;u, φ)

=
1−g2

(1+g2−2g[uu′+
√

1−u2
√

1−u′2 cos(φ′−φ)])3/2

(A23)

and direct integration yields:

pHG(u′, u, g) =
1
2π

∫ 2π

0

dφ pHG(u′, φ′;u, φ)

=
1
2π

∫ 2π

0

a1dφ

(a2 − a3 cos (φ′ − φ))3/2

(A24)

where a1 = (1 − g2), a2 = 1 + g2 − 2 gu′u, and a3 =
2 g

√
1 − u2

√
1 − u′2. For the special case u′ = −1, u =

1, the cosine term in the denominator of Eq. (A24) van-
ishes (a3 = 0), and we get

pHG(−1, 1, g) = pHG(u′ = −1, u = 1, g)

=
(1 − g2)

(1 + g2 + 2g)3/2
=

(1 − g)
(1 + g)2

.

A.1.2 Summary

These examples demonstrate that in the single-
scattering approximation the radiance reflectance can
be expressed in terms of the lidar ratio as:

RI,SSA =
1

2S (1 − e−2τb) (A25)

where S = Siso = 4π for an isotropic scattering phase
function;
S = SRay = 8π

3 for a Rayleigh scattering phase func-
tion;
S = SHG = 4π(1+g)2

(1−g) for a HG scattering phase func-
tion.
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