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Abstract. We present an experimentally viable approach to demonstrate quantum non-locality in a matter-
wave system via a Rarity–Tapster interferometer using two s-wave scattering halos generated by colliding
helium Bose–Einstein condensates. The theoretical basis for this method is discussed, and its suitability
is experimentally quantified. As a proof of concept, we demonstrate an interferometric visibility of V =
0.42(9), corresponding to a maximum CSHS-Bell parameter of S = 1.1(1), for the Clauser–Horne–Shimony–
Holt (CHSH) version of the Bell inequality, between atoms separated by ∼ 4 correlation lengths. This
constitutes a significant step toward a demonstration of a Bell inequality violation for motional degrees of
freedom of massive particles and possible measurements of quantum effects in a gravitationally sensitive
system.

1 Introduction

Quantum mechanics consistently defies our intuitive
understanding of reality. It has introduced concepts
such as wave-particle duality, where quantum objects
cannot be fully described using only a particle or wave
representation, and entanglement. Together, these con-
cepts have the remarkable implication that if quantum
mechanics is complete, then nature itself appears to
be inconsistent with descriptions based on the tenet
of local realism [1]. The term local realism refers col-
lectively to the principles of “locality,” which is that
objects can only be influenced by their immediate sur-
roundings, and “realism,” which asserts that an object’s
physical properties exist independently of a measure-
ment by an observer. If one wishes to restore a notion
of local realism one must assume quantum mechanics is
incomplete and supplement it with a more fundamental
theory. To this end, a number of local hidden variable
interpretations of quantum mechanics have been pro-
posed [2–4]. In these interpretations, it was postulated
that there was a more fundamental theory underpin-
ning quantum mechanics, in which physical quantities
were governed by well-defined (i.e., not probabilistic)
yet inaccessible variables. In 1964, Bell proposed his
famous Bell inequality, which is a set of conditions that
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all possible local hidden variable theories with freedom
of choice must obey [5], hence making the tenet of local
realism experimentally testable.

Over the subsequent decades, numerous experimental
investigations have been conducted, all of which have
refuted local hidden variable theories and are consis-
tent with the predictions of quantum mechanics [6–
12]. So far, experimental violations of Bell inequali-
ties have been largely confined to the domain of quan-
tum optics [13]. This is unsurprising, as photons can
be manipulated and prepared in useful quantum states
with relative ease. The comparative difficulty of prepar-
ing massive systems in a specific quantum state has
led to a dearth of equivalent experimental investiga-
tions, particularly of Bell’s inequality, in these systems
[13]. While there have been demonstrations of violations
of Bell’s inequality using the internal states of atoms
[14–18], there has so far been no violation with mas-
sive particles using external degrees of freedom of those
particles, such as momentum, i.e., degrees of freedom
directly coupled to gravity. This is especially relevant
as the incompatibility of quantum mechanics and gen-
eral relativity is one of the deepest and most difficult
problems of modern physics [19–22].

Our goal for the work presented here is to develop,
demonstrate and characterize a reliable platform for
generating entanglement between external degrees of
freedom of massive particles, specifically momentum
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states, and measuring phase-sensitive correlations
between these entangled states. Such a platform would
allow us to investigate a number of important research
areas in the intersection of quantum mechanics and
gravity. For instance, why are non-local correlations
between massive objects in general uncommon and dif-
ficult to observe [1,13]; how do we properly quantify
entanglement in massive systems [23–25]; and how does
the size of a Bell violation scale with the size of the sys-
tem [26,27]. Furthermore, pushing our understanding
of quantum theory into realms which are increasingly
more strongly coupled to gravity may enable the formu-
lation and verification of a complete theory of quantum
gravity [23,24,27–30].

To develop this platform we take the path of extend-
ing the field of quantum optics to matter waves.
De Broglie postulated that all matter had an associ-
ated wavelength [31], and thus could exhibit wave-like
behavior. With the advent of laser cooling techniques,
the experimental generation of ultracold bosons and
fermions became possible [32,33]. At these tempera-
tures, the de Broglie wavelengths of the atoms are on
the scale of tens or hundreds of micrometers, greatly
increasing the scope of possible experimental investiga-
tions using matter waves. Creating atomic analogues
of quantum optical systems have proved a valuable
tool in pushing foundational tests of quantum mechan-
ics into the realm of massive systems [34], and has
helped create the field of quantum atom optics [18,35–
41]. These results point to cold atom optics as being
a prime candidate system for an experimental viola-
tion of Bell’s inequality with massive external degrees
of freedom [5,42,43].

In this paper, we present and quantify a method
for conducting a Bell’s inequality violation using pair-
correlated scattered atoms from three colliding meta-
stable helium (He∗) Bose–Einstein condensates (BECs).
Our methodology is explained in Sect. 2, and builds on
the ideas proposed in Refs. [26,44]. This represents an
atomic realization of a Rarity–Tapster type interferom-
eter [10] (see Fig. 1) and a continuation of our previous
experiments using such pair-correlated atoms [45–49].
We present our experimental evidence of spatial sep-
arated interference in Sect. 3 and summarize the pos-
sibility of using this system to demonstrate a massive
particle Bell violation and other further experiments in
Sect. 4.

2 Background

2.1 Experimental implementation of a double-halo
Rarity–Tapster interferometer

The system we use in our experiment is an atomic BEC
of helium atoms in the long-lived 23S1 metastable state.
We initially form our BEC in a biplanar quadrupole
Ioffe magnetic trap [50], which is well approximated as

(a)

(c)

(b)

Fig. 1 a Schematic of a modified optical Rarity–Tapster
interferometer. Two pairs of momentum-entangled photons,
labeled by (p,p′) (red) and (q,q′) (blue), are produced from
a central source. The pairs are reflected onto one another
such that they spatially overlap at a later beamsplitter.
The indistinguishability of the pairs after the beamsplit-
ter generates interference that depends on phase shifts φL

and φR introduced in the upper arms of the interferometer.
b Schematic of a matter-wave Rarity–Tapster interferome-
ter indicates atom position space trajectories for a specific
pair of modes which satisfy our interference conditions (the
same modes highlighted in Fig. 2 and Roman numeral labels
correspond to the same experimental stage). Trajectories
are to scale for our parameters (with 5 μm scale indicated
on the y-axis). The correlated pairs are produced by BEC
collisions initiated at step (ii). The source BEC is trans-
ferred to the mJ = 0 state at step (i), which is not shown
for clarity. At t2, we apply a π (mirror) Bragg pulse, step
(iii), which reverses the atom’s motion along ẑ. A phase
difference (φL = φR = Φ/2) between the input modes is
imprinted via a π

2
(beamsplitter) Bragg pulse at t3, step

(iv). As the same set of lasers form the beamsplitter pulse
for both arms, an equal phase is applied to both sides, and
hence, the net global phase shift is φL + φR = Φ. (c) Time-
line of the experiment, vertical axis indicating intensity of
Bragg light. Timings of steps (ii)–(v) are indicated, with
step (i) not shown for clarity
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Fig. 2 Schematic of the experimental procedure in momentum space. Gravity is aligned antiparallel to the z-axis. Green
arrows indicate laser beams used for the Bragg and Raman transitions, with ku and kl the wave vector of the upper and
lower beams. (i) The initial He∗ BEC is in the magnetically sensitive mJ = +1 sublevel. A stimulated Raman transition, via
a single beam with two frequency components, equivalent to two collinear lasers of differing frequency, is used to spin flip the
atoms to the mJ = 0 state. (ii) Using two lasers intersecting at 90◦ (green arrows), we form a Bragg lattice (with Bragg vector
k0 aligned parallel to the z-axis), which we use to split the BEC equally into momentum modes +2k0, 0, −2k0. (iii) As the
BEC components separate spatially, s-wave collisions between individual pairs of atoms from different BECs populate their
corresponding scattering halos, highlighted in red for the scattering halo initially between +2k0 and 0 and blue for the halo
between −2k0 and 0. Diametrically opposed atoms within each halo form a scattering pair due to momentum conservation,
and hence are entangled. We mark an example set of 4 modes which satisfy our interference conditions (Eqs. (4) and (5))
with a dot and color them to their respective initial halos to allow us to follow their path through momentum space more
clearly. We also connect these points to the origin with colored lines to highlight their connection to the position space
version of the interferometer presented in Fig. 1, and highlight back-to-back pairs with gray dashed lines. Right of part (iii)
we indicated how the pairs conserve the momentum of the collision. We apply a second Bragg pulse, which imparts an equal
and opposite linear shift to the halos, hence acting as a mirror. This is necessary in order to overlap the atoms in position
space at the mixing (beamsplitter) stage. (iv) We apply a beamsplitter Bragg pulse by imparting an equal and opposite
shift to 50% of the population, mixing the modes and making the interferometer outputs indistinguishable. (v) We label
the respective detector outputs Dk (k ∈ {p,p′,q,q′}) for the highlighted modes, in addition to showing a timing diagram
of the voltage (V ) sent to the acousto-optic modulators controlling our Bragg beams, with labels for the corresponding step
of the experiment

harmonic near its minimum. For our experiment, we
relax our trap such that it has trapping frequencies
{ωx, ωy, ωz}/2π ∼ {50, 200, 200} Hz. Approximately
850 mm below the trap, we employ a micro-channel
plate (MCP) and delay line detector (DLD) system
which allows us to detect the positions of single atom
impacts after the atoms are released from the trap and
allowed to fall in free space under gravity [38]. Due to
the distance the atoms travel, we can approximate these
detection events as being in the far-field, enabling us to
map the detected position of the atoms back to their
initial velocity before expansion, with full 3D resolu-
tion. Thus, our system acts as a quantum many-body
momentum microscope [48], allowing us to sample the
momentum distribution of the in-trap state and mak-
ing this an ideal system to measure momentum corre-
lations.

A schematic of our experimental procedure to imple-
ment a matter wave Rarity–Tapster interferometer
[10] is shown in Figs. 1 and 2. Our proposed setup
is based on the original optical analog of the inter-
ferometer (Fig. 1a), which enables the measurement
of phase-sensitive correlations between momentum-
entangled twin-photons generated by a common source.
This is achieved by mixing photons (or atoms) from
independent pairs, labeled (p,p′) and (q,q′) in Fig. 1a
(where we have used bold font to indicate vector quan-
tities), at a pair of spatially separated beamsplitters
after application of a pair of tunable phase shifts in
the upper arms of the interferometer. The trajectories
through the interferometer to the detection ports Dk

(k ∈ {p,p′,q,q′}) are such that it is not possible to
distinguish the original pairs, which enables detection
of interference between the possible paths that is sensi-

123



244 Page 4 of 18 Eur. Phys. J. D (2022) 76 :244

tive to the applied phase shifts. In the optical version,
the applied phases (φL and φR) is varied via optical ele-
ments inserted into the upper arms of the interferome-
ter, in our case the phases will be operationally applied
via the beamsplitter equivalent.

Our atomic analogue of this scheme is realized by
applying a series of Raman and Bragg transitions,
which utilize the 23P0 state, after switching off the con-
fining trap. We first use a stimulated Raman transition,
consisting of two collinear lasers of differing frequency,
to transfer the BEC from the magnetically sensitive
23S1 mJ = +1 state to the insensitive 23S1 mJ = 0
state (Fig. 2i inset) [18]. As the transition uses collinear
lasers no momentum is imparted [18]. While the two
transitions being stimulated are optimal for different
polarizations, we choose a single orientation that drives
both transitions, i.e., is an equal combination of π and
σ− light; however, there is hence some power in the
beam which is not used. To form our Bragg lattice,
which allows us to control the momentum state of the
atoms (see “Appendix D”), we use two 276767 GHz
approximately collimated Gaussian laser beams (whose
wave vectors we label ku and kl) with 1/e2 radius of
0.7 mm intersecting at an angle of 90◦, with the result-
ing Bragg vector aligned along the z-axis (i.e., antipar-
allel to gravity). The spatial cross section of the Bragg
lasers is much larger than the atom paths (0.7 mm com-
pared to a maximum atomic separation of ∼ 60μm)
hence providing a uniform illumination across the entire
halos and atom path. As these beams intersect at right
angles, they generate a two-photon momentum recoil of
2�k0 = �(kl − ku) =

√
2�kẑ, where k is the wavenum-

ber of the incoming beams (|ku| = |kl| = k), and ẑ
is a unit vector along the z-axis. For our chosen fre-
quency of Bragg lasers, we thus have a Bragg vector of
2k0 = 8.204 ẑ μm−1. We then apply, at t0, a Bragg pulse
that coherently splits the BEC into three momentum
components, whose momenta have been, respectively
displaced by +2k0, 0, −2k0 (see Fig. 2ii). We tune the
pulse such that the populations of the three momentum
modes are approximately equal.

As the moving condensates spatially separate, colli-
sions between constituent atoms will occur. Provided
that the BECs are in the slow moving regime these
will be limited to s-wave, spherically symmetric elas-
tic scattering events. From these, a pair of so-called s-
wave collision halos form in momentum space that, as
a result of conservation of momentum and energy, are
nearly spherical shells centered on the center-of-mass
(COM) of each of the adjacent BEC pairs (Figs. 2iii
and 1b) [48,51]. More precisely, the collision halos are
composed of an ensemble of independent two-mode-
squeezed states, with each pair of squeezed modes occu-
pying diametrically opposed momenta due to conser-
vation of momentum and energy, which can be used
as the input state for our matter-wave Rarity–Tapster
interferometer. Collisions between the +2k0 and −2k0

condensates also generate a larger halo, but this does
not participate in the remainder of the dynamics and
for clarity we omit it from Fig. 2. We point out that
our proposal to leverage twin-atoms generated in two

collisional halos is an important distinction from the
previous theoretical proposal (based on a single halo)
by two of the authors, Ref. [44], and we elaborate on
the consequences in Sect. 2.3.

After the halos are populated (we assume they are
populated up to time t1), we apply a series of Bragg
pulses to couple a select set of momentum modes such
that their paths through the interferometer are indis-
tinguishable, and hence interfere. We refer to this setup
as a Rarity–Tapster type matter-wave interferometer
[10] as it operates on the same principle as the opti-
cal version. Figure 2iii–v shows the momentum space
picture and Fig. 1 shows the trajectories through posi-
tion space for this interferometer, with comparison to
the optical counterpart. The timings of the pulses (mir-
ror pulse at t2 and beamsplitter pulse at t3), equivalent
to the spatial positioning of the mirrors in the optical
interferometer, must be optimized so that they provide
maximum overlap between the scattering pairs, both in
momentum and position space [44].

2.2 State of the scattering halos

As previously mentioned, the collision halos are ide-
ally composed of an ensemble of entangled twin-atoms
with opposing momenta. Here, we elaborate on this
statement by first considering the upper collision halo
(formed by atoms scattering from the BECs with
momenta 0 and +2k0), before discussing how twin-
atoms, scattered into the distinct upper and lower col-
lision halos, approximately realize a prototypical Bell
state that can be used to demonstrate violations of
a Bell inequality. Specifically, the mode-entanglement
between squeezed modes will be turned into particle-
like entanglement between a quartet (two pairs) of
modes via post-selection, which is practically approx-
imated using the low-gain regime.

The collision of a pair of condensates realizes a
matter-wave analog of four-wave mixing from quantum
optics [52,53]. Moreover, if the finite momentum width
of the prepared condensates and depletion of its occupa-
tion due to the scattering of atoms into new momentum
states is ignored, then we can approximately describe
the resonant scattering of atoms from a pair of col-
liding condensates using a sum of two-mode squeez-
ing Hamiltonians, Ĥ =

∑
p �ζ

(
â†
pâ†

p′ + âp′ âp

)
with

p′ = −p + 2k0. Here, â†
p(p′) creates a boson with

momentum p (p′) and ζ is an effective nonlinearity that
is dependent on the s-wave scattering strength and the
colliding BECs’ densities [44], assumed to be uniform
for simplicity. Note that the momenta of the scattering
pair must satisfy the condition p + p′ = 2k0, where
2k0 is the sum of the colliding BECs’ momenta, as we
have assumed resonant scattering (e.g., energy is pre-
cisely conserved) and ignored the momentum width of
the source BECs. Note, further that if we consider the
system with respect to the COM frame of the halo, then
our description of the scattered pairs reduces to that of
previous works [26,44].
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Considering now the collision of 0 and +2k0 BECs
and assuming an initial vacuum state for all momenta
(p,p′) �= 0 or 2k0, the two-mode squeezing Hamilto-
nian generates a product of two-mode squeezed vacuum
states for the upper halo, which can be expressed in the
Fock basis as1 [54],

|ψ〉halo,upper =
∏

p

⊗
(

√
1 − μ2

∞∑

n=0

μn|n〉p|n〉p′

)

,

(1)

where p′ = −p + 2k0, μ = tanh(ζt1) for a collision
duration t1, and ζt1 is the effective squeezing parame-
ter. Thus, Eq. (1) represents a product state composed
of superpositions of number-correlated states |n〉p|n〉p′

(in any pair of modes with momenta p and p′ satisfying
p + p′ = 2k0) with an increasing n and a decreasing
probability amplitude ∝ μn, where μ < 1. Further, if
we consider a single mode, its occupation is described
by thermal counting statistics [55]. The mean number
of atoms in a particular scattering mode is given by
N̄ = μ2

1−μ2 = sinh2(ζt1). Therefore, N̄ ≈ μ2 
 1 for
μ 
 1, i.e., in the low-gain or perturbative regime that
we are going to consider below.

Under the same assumption as before—that the
depletion of colliding condensates is negligible and the
initial state of the halo is a vacuum state—the state of
the second (lower) halo, which is formed by the colli-
sion between the −2k0 and 0 BECs, is independent of
the upper halo. Therefore, the lower halo can be iden-
tically described by Eq. (1), albeit with corresponding
μ′ = tanh(ζ ′t1),

|ψ〉halo,lower =
∏

q

⊗
(

√
1 − μ′2

∞∑

n=0

μ′n|n〉q|n〉q′

)

,

(2)

where q′ = −q − 2k0. We introduce the distinct μ′
to incorporate the possibility that, e.g., the density of
the split BECs is not identical (leading to a different
nonlinearity ζ ′) but assume the collision duration t1
is unchanged. If all three colliding BECs are identical
then μ = μ′, which we will assume herein. The inde-
pendence of the formed collision halos implies that the
complete state describing all the (resonantly) scattered
atom pairs in both halos is

|Ψ〉double-halo = |ψ〉halo,upper|ψ〉halo,lower. (3)

1 Precisely, we have |ψ〉halo,upper = exp
(

1
i�

∫ t1
0

dtĤ
)

|vac〉,
with Ĥ =

∑
p �ζ

(
â†
pâ†

p′ + âp′ âp

)
the squeezing Hamilto-

nian as described in the main text and |vac〉 being the input
vacuum state (for all momentum modes).

2.3 Mapping of scattering state to a Bell state

Now we will show how the input state of our interfer-
ometer, a reduced form of |Ψ〉double-halo, can be approx-
imated to one of the prototypical Bell states. To do
so, we focus on just two correlated pairs of momentum
modes (p,p′) and (q,q′) selected from the upper and
lower halos, respectively, such that they satisfy,

p + p′ = 2k0, q′ + q = −2k0, (4)

and simultaneously are related by,

p = q + 2k0, p′ = q′ + 2k0. (5)

We illustrate an example of the selected modes in
Figs. 1 and 2. Physically, the modes correspond to two
scattering pairs (p,p′) and (q,q′), which are exactly
separated by the two-photon momentum recoil 2k0 used
in the initial momentum slitting of the source BEC (see
Fig. 2ii). They were chosen as they are the only modes,
within the halos, which exactly match the Bragg con-
dition, i.e., are separated by an integer number of lat-
tice wave vectors, for the geometry used to generate
the original BEC momentum splitting. This allows for
a more stable and simple implementation, as discussed
in further detail below.

Ignoring or tracing away all other momentum mode
pairs from |Ψ〉double−halo beyond the two pairs consid-
ered, the factorized state of the four modes of interest
can be written as

|Ψ〉 ≡ |Ψ〉p,p′,q,q′

= (1 − μ2)
∞∑

n,m=0

μ(n+m)|n〉p|n〉p′ |m〉q|m〉q′ .

(6)

Assuming now that the scattering from the condensates
is in the low-gain, perturbative regime, μ 
 1, we can
truncate the sum over Fock states to lowest order in μ,
equivalent to ignoring the contribution of Fock states
with the total occupancy among the four modes larger
than 2 (i.e., restricting ourselves, via post-selection, to
no more than a total of 2 particles across the two halos)
The removal of higher occupancy terms has the effect of
entangling the pair of selected squeezed modes (p,p′)
with the other selected pair (q,q′) , which previously
had been independent of each other (non-entangled).
It will be seen that this is why in the low-gain limit
(μ → 0) the full state, despite being factorisable, is
able to approximate a maximally particle entangled
Bell state. We enforce the low-gain, perturbative regime
used in this analysis, and the experiment, by ensuring
that ζt1 
 1, which typically corresponds to either a
short effective collision duration (due to, e.g., rapid spa-
tial separation of the BECs) or low initial density of the
source condensate. The resulting truncated state for the
two pairs of correlated modes can therefore be written
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as

|Ψ〉 ≈ (1 − μ2)
(
|0〉p|0〉p′ |0〉q|0〉q′

+μ|0〉p|0〉p′ |1〉q|1〉q′ + μ|1〉p|1〉p′ |0〉q|0〉q′

)
,

(7)

As the vacuum state |0〉p|0〉p′ |0〉q|0〉q′ , the first term
in Eq. (7), does not contribute to any measurement of
population correlations that we will consider below, we
can further truncate the above expression to

|Ψ〉 ≈ 1√
2

(
|0〉p|0〉p′ |1〉q|1〉q′ + |1〉p|1〉p′ |0〉q|0〉q′

)
,

(8)

where we have enforced normalization.
This reduced and truncated state, describing the

atom pairs in modes (p,p′) and (q,q′) in the low-
gain regime, is formally equivalent to a paradigmatic
polarization-entangled Bell state of two photons expl-
oited in optical tests of quantum non-locality. To make
this clear we consider a mapping of atomic mode occu-
pations in the left (L) and right (R) arms of the Rarity–
Tapster interferometer (see Figs. 1a, b and 2iii) onto
two, horizontal (H) and vertical (V), polarization states
of photons,

|0〉p|1〉q → |0〉(L)
V |1〉(L)

H ≡ |H〉(L), (9)

|1〉p|0〉q → |1〉(L)
V |0〉(L)

H ≡ |V〉(L), (10)

corresponding to an atom in the left arm populating
either the q or p momentum mode. Similarly, for the
right arm,

|0〉p′ |1〉q′ → |0〉(R)
V |1〉(R)

H ≡ |H〉(R), (11)

|1〉p′ |0〉q′ → |1〉(R)
V |0〉(R)

H ≡ |V〉(R), (12)

corresponding to an atom in the right arm populating
either the q′ or p′ momentum mode. Then, Eq. (8)
can be mapped to |Ψ〉 → |Ψ〉Bell = 1√

2
(|H〉(L)|H〉(R) +

|V 〉(L)|V 〉(R)), or

|Ψ〉Bell =
1√
2
(|H,H〉 + |V, V 〉). (13)

This can now be readily identified as the prototypi-
cal Bell state, which is known to maximally violate a
Bell inequality [9,56,57]. While for our purposes we
will only consider pairs selected from different halos,
any two independent pairs of correlated modes, across
either halo, can be mapped to one of the Bell states
after post-selection. Which Bell state exactly depends
on the interferometric geometry used; for example, the
state under the previously proposed scheme of Ref. [44]
will map to 1√

2
(|H,V 〉 + |V,H〉).

We again wish to highlight that the entanglement in
our reduced state |Ψ〉, Eq. (6), is identifiable as mode-
entanglement, which is between back-to-back (diametri-
cally opposed) momentum modes in a single halo. Only
after we remove the contribution of states with sin-
gle mode occupation higher than or equal to 2, which
is equivalent in a physical sense to post-selecting for
states that only contain a single pair of atoms among
all four considered modes, can the state be reinterpreted
as featuring particle Bell-state entanglement. In prac-
tice, robust post-selection is not possible due to the
low detection efficiency that can be achieved in our
experimental setup. Thus, our atomic four-wave mix-
ing source acts as a probabilistic generator of particle
entangled Bell states, rather than a deterministic one as
is usually considered. Hence, the need for many exper-
imental runs in the low mode occupation regime; we
require that in the relevant momentum modes the prob-
ability of mode occupancies of 2 or higher is negligible,
while retaining a small probability of desired occupan-
cies of 1 in a fraction of experimental runs.

2.4 Theoretical basis of the matter-wave
Rarity–Tapster interferometer

The working principle of the matter-wave Rarity–
Tapster interferometer in our realization is as fol-
lows. The pairs of entangled atoms with momenta
(p,p′) and (q,q′) are reflected onto spatially sepa-
rated atomic beamsplitters with phases φL and φR.
The atomic beamsplitters cause the initially distinct
entangled pairs to become indistinguishable and leads
to multi-particle interference effects that are sensitive to
the applied phases (see Fig. 1). We note that to exploit
this multi-particle interference for a proper demonstra-
tion of quantum non-locality we in principle require
independent tunability of the phases φL and φR (see
Sect. 2.5). However, in our current realization we real-
ize the atomic beamsplitters with a single Bragg laser,
such that φL = φR, which is sufficient for us to bench-
mark the interferometer. Our matter-wave interferom-
eter is equivalent in spirit to that employed by Rarity
and Tapster in their experimental violation of the Bell
inequality using the phase and momentum of photons
[10,58], but with a swapping of particle labels in one
arm of the interferometer.

At the output of the interferometer (i.e., at some
time t4 after the final beamsplitter), we measure pop-
ulation correlations between the two pairs of momenta
(p,p′) and (q,q′). To be concrete, we introduce the
pair-correlation function Ck,k′ = 〈â†

kâ†
k′ âk′ âk〉 (where

k ∈ {p,q} and k′ ∈ {p′,q′}), which corresponds to
a correlation between joint-detection events at the out-
puts of the left and right arms of the matter-wave inter-
ferometer (see Figs. 1 and 2). In simple terms, the two-
point correlation function gives us a measure of the
probability of finding a similar number of particles at
momenta k and k′. It hence contains information about
the spatially separate interference and will serve as the
basis of our test of Bell’s inequality.
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Treating the atomic mirror and beamsplitter ele-
ments of the interferometer as instantaneous linear
transformations (see “Appendix A” for details of the
calculation), and using the reduced state, Eq. (6), as
input, we obtain the normalized pair correlations

Cp,p′

N̄2
=

Cq,q′

N̄2
= 1 + μ−2 sin2

(
φL + φR

2

)

, (14)

Cp,q′

N̄2
=

Cp′,q

N̄2
= 1 + μ−2 cos2

(
φL + φR

2

)

, (15)

where N̄ = μ2

1−μ2 is the average occupancy of any of the
four modes, p, p′, q, and q′. Here, we emphasize that
interference between the scattered pairs, as captured by
the sine and cosine terms in the above pair-correlation
functions, is tuned via the global phase Φ = φL + φR,
rather than the relative value of φL − φR.

In the regime μ 
 1 (i.e., vanishing probability of
multiply occupied modes, N̄ 
 1), the phase-sensitive
terms ∝ μ−2 dominate the correlation functions. How-
ever, when the mode occupancies with 2 or more atoms
become appreciable, corresponding to N̄ > 1 (μ �
1), we find that the oscillatory terms depending on
the global phase φL + φR diminishes relative to the
background and thus interference is suppressed. Never-
theless, the undepleted pump approximation, used to
derive Eq. (6) and which ensures a highly non-classical
state of the scattered pairs, will eventually fail in the
high-gain, non-perturbative limit.

We will find that this demonstrates that the matter-
wave Rarity–Tapster interferometer optimally probes
quantum non-locality when the initial state of the scat-
tering halo can be closely approximated to a prototyp-
ical Bell state, i.e., when μ 
 1.

It is interesting to note that, as we do not experimen-
tally post-select on our final state, the modes (p,p′) by
definition remain unentangled with (q,q′) as the state
is factorisable. Specifically, there is no entanglement
between states in different halos. Nonetheless, it can be
seen from Eqs. 14 and 15 that the mode-entanglement
between p and p′, as well as between q and q′, in the
initial state (i.e., between the left and right arms of the
interferometer) is sufficient to violate Bell’s inequality
for sufficiently small μ.

2.5 Continuous model for correlation functions

Experimentally, the finite momentum and spatial width
of the initial BECs contributes to a finite correlation
width of the scattered atoms, which may no longer
be scattered with precisely correlated momenta as in
Eq. (4). To account for this, we first introduce the
integrated pair-correlation function between detection

regions centered around L ∈ {p,q} and R ∈ {p′,q′}
(see Figs. 1 and 2 for definition of port labeling), which
is defined as,

CL,R =
∫

V (L)

dk
∫

V (R)

dk′ G(2)(k,k′, t4), (16)

where G(2)(k,k′, t4) =
〈
â†(k, t4)â†(k′, t4)â(k′, t4)

〉

〈â(k, t4)〉 is the two-point momentum correlation func-
tion evaluated at time t4 after the interferometric
sequence, V (L) and V (R) are the volumes of the respec-
tive detection regions in momentum space, whereas
â†(k, t4) and â(k, t4) are the Fourier components of the
field creation and annihilation operators describing the
scattered atoms, evaluated at time t4 in the Heisenberg
picture [44]. Note that CL,R can be considered a gener-
alization of Ck,k′ where momenta are no longer treated
as discrete.

The evaluation of CL,R requires us to obtain a spe-
cific form for G(2)(k,k′, t4) for cases where k ≈ k′ ±
2k0, and the sign depends on the relevant pair of
detection regions under consideration. To do so, we
again treat the Bragg pulses as instantaneous (and
perfect) linear transformations. Moreover, we adopt
a Gaussian approximation for the two-point correla-
tion G(2)(k,k′, t1) of the input state [44,59,60] between
pairs of momenta (k,k′) within the same scattering
halo,

G(2)(k,k′, t1)
n2

0

= 1 + h
∏

d

exp
[−(kd + k′

d ± 2k0δdz)2

2σ2
d

]

.

(17)

Here, h is the height of the correlation amplitude above
the background level (generally assumed to be 1), σd

is the momentum correlation width in dimension d
(d = x, y, z) of the original state, δij is the Kronecker
delta function, and n0 is the peak momentum space
density of scattered atoms. Note, if we take the two-
mode squeezed state to characterize the halo, the cor-
relation height h is related to the mode occupancy
as h = 1/μ2 ≈ 1/N̄ , and n0

∏
d σd = N̄ . The plus

and minus signs in Eq. (17) correspond to correlations
between modes in the upper and lower halos, respec-
tively. For pairs of momenta (k,k′) selected from dis-
tinct halos we have that G(2)(k,k′, t1)/n2

0 = 1, as the
scattered halos are assumed to be independent and
uncorrelated.

Putting these pieces together, we obtain the relevant
two-point correlation functions at the conclusion of the
matter-wave interferometer,
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G(2)(k,k′, t4)
n2

0

=

⎧
⎪⎨

⎪⎩

1 + h
2

[
1 − cos

(
Φ + ϕ(k,k′)

)] ∏
d exp

[−(kd+k′
d±2k0δdz)2

2σ2
d

]
, for (k,k′) ≈ (p,p′) or (q,q′),

1 + h
2

[
1 + cos

(
Φ + ϕ(k,k′)

)] ∏
d exp

[−(kd+k′
d)2

2σ2
d

]
, for (k,k′) ≈ (q,p′) or (p,q′),

(18)

where the sign of the cosine function depends on the
particular detection port combination. Again, the sign
of the term in the Gaussian depends on whether the rel-
evant momenta are in the upper (−) or lower (+) halos.
In addition to the Gaussian dependence on the corre-
lation lengths that is inherited from G(2)(k,k′, t1), a
momentum-dependent phase offset ϕ(k,k′) (see “App-
endix B”) between off-resonant scattered pairs is included.
We postpone a discussion of the physical meaning of
this term to below.

The relevant integrated pair-correlation function,
Eq. (16), is evaluated by substituting Eq. (18) and inte-
grating over a detection bin with dimensions Δkd for
d = x, y, z, leading to the result

CL,R

N̄2
V

= 1 +
h

16
[1 ± cos (Φ)] αxαyβz

∏

d

λ−2
d . (19)

We have introduced the average number of particles
in the integration volume, N̄V = n0

∏
d Δkd, and λd ≡

Δkd/(2σd) as the normalized resolution of the detection
bin (see Table 1 for experimental values). Compared
to the simpler form of Eq. (14), the function αd for
d = x, y takes into account the contribution of the finite
correlation widths in Eq. (18), while the function βd for
d = z also includes an additional contribution from the
phase factor ϕ(k,k′) (which is in fact only a function of
kz and k′

z for our interferometer configuration). These
functions are defined as follows,

αd ≡ (e−2λ2
d − 1) +

√
2πλderf

(√
2λd

)
, (20)

and,

βd ≡ e−2λ2
d cos (4Adλd) − 1 + 2

√
2AdDF

(√
2Ad

)
(21)

+
√

π

2
e−2A2

d

[
(λd − iAd)erf

(√
2λd −

√
2iAd

)
+

(λd + iAd)erf
(√

2λd +
√

2iAd

) ]
,

where Ad = k0σd�

m ( t3
2 − t1) and DF (x) = e−x2 ∫ x

0
ey2

dy
is the Dawson F function.

The dependence of CL,R on the size of the chosen
detection bins captures the fact that for λd � 1, there
are many uncorrelated atoms within each integration
volume, and so we expect CL,R/N̄2

V → 1. However, the

integrated pair correlation also encodes a subtle depen-
dence on the relative timing of the mirror and beam-
splitter Bragg pulses via the βz factor, and in turn the
momentum dependent phase offset ϕ(k,k′) in Eq. (18),
from which it arises. This phase offset captures the
importance of indistinguishability in the atomic real-
ization of the Rarity–Tapster interferometer, in close
analogy to work studying Hong–Ou–Mandel interfer-
ence with atom pairs [37]. In particular, we see that
Az → 0, and consequently βz → αz, by choosing
t3 = 2t2, i.e., by setting the free propagation period
t3 − t2 between the mirror pulse (t2) and final beam-
splitter pulse (t3) to be identical to the prior time period
between the commencement of the BEC collision and
the application of the mirror pulse. This result is dis-
tinct to, and in fact much simpler than, that found in
the prior study of Ref. [44], which considered correlated
pairs of momentum modes drawn from a single scat-
tering halo. In that case, the optimal free propagation
period t3 − t2 = t2 − mσg,z/k0

√
π was offset by a fac-

tor equivalent to the effective collision duration set by
the time taken for the colliding BECs to spatially sepa-
rate, tsep = σg,zm/�k0 where σg,z is the estimated rms
spatial width of the initial unsplit condensate. This dis-
tinction between our scheme exploiting two scattering
halos and that of Ref. [44] arises due to a subtle differ-
ence in the relative position along the splitting direction
(z-axis) at which the scattered pairs are considered to
be created as a function of collision duration.

In our scheme, pairs located on, e.g., the equatorial
kx − ky plane of the scattering halo are always created
at the COM of the colliding BEC pair, with each scat-
tered pair also having COM momenta ±k0ẑ. Thus, if
we consider the creation of scattered pairs as a classi-
cal stochastic process over time, all the created pairs
have an identical COM position along the z-axis and
travel with the same velocity along the direction of the
applied Bragg pulses. This means that for t3 = 2t2 all
scattered pairs share approximately the same z posi-
tion (up to, e.g., corrections due to the initial spa-
tial width of the source condensates) when they are
subject to the final beamsplitter Bragg pulse. Impor-
tantly, this implies that it is not possible to distinguish
which pair of the originally coupled momentum modes,
(p,p′) and (q,q′), an atom belongs to when it is finally
detected and the integrated pair correlations CL,R are
constructed. This indistinguishability between the pos-
sible paths in the interferometer is pivotal to obtain
phase-sensitive correlations, which is immediately seen
by noting that CL,R/N̄2

V → 1 for Ad � 1 (correspond-
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ing to a large mismatch between the free propagation
periods before and after the mirror Bragg pulse).

In contrast, in Ref. [44] scattered pairs are always cre-
ated approximately at the origin but at random times
0 ≤ t � tsep, leading to an intrinsic spatial distribution
of pairs along the direction of the applied Bragg pulses.
Averaging over the time of creation of the pairs results
in the optimal offset between free propagation times
before and after the applied mirror Bragg pulse. While
this distinction may appear to only be a minor detail, it
is important to emphasize that by using a pair of scat-
tering halos in this manner our scheme does not require
exhaustive calibration of the free propagation time. In
contrast, the offset tsep in Ref. [44] is derived under an
assumption of a Gaussian density profile for the collid-
ing BECs and would require experimental optimization.

Ultimately, the phase-sensitive correlations encoded
by CL,R can be used as part of a Bell inequality to
demonstrate the inconsistency of some predictions of
quantum mechanics with local hidden variable theories.
First, we construct the quantum correlator,

E(φL, φR) =
Cp,q′ + Cp′,q − Cp,p′ − Cq,q′

Cp,q′ + Cp′,q + Cp,p′ + Cq,q′
(22)

=
hαxαyβz

16
∏

d λ2
d + hαxαyβz

cos (φL + φR) ,

(23)

which depends only on the global phase Φ = φL + φR

imprinted during the interferometer. From this, one
obtains the CHSH-Bell parameter S for the Clauser–
Horne–Shimony–Holt (CHSH) version of the Bell ineq-
uality [10,61], where

S = |E(φL, φR) − E(φL, φ′
R) + E(φ′

L, φR) + E(φ′
L, φ′

R)|,
(24)

which is bounded by S ≤ 2 for any local hidden vari-
able theory. For E(φL, φR), as given by Eq. (23), we find
that it is possible to violate this inequality for specific
choices of phase settings [10,44] and instead we are lim-
ited by S ≤ 2

√
2. As our interferometer depends on the

global phase φL + φR, as opposed to the phase differ-
ence as in Refs. [10,44], we note that the optimal phase
settings are different to the typical choice by a sign,
(φL, φ′

L, φR, φ′
R) = (0, π/2,−π/4,−3π/4) 2. The satu-

ration of the quantum bound, S = 2
√

2, occurs when we
take λx,y,z → 0 and h → ∞, which corresponds to the
limit where the twin-atoms of the scattering halo can
be approximately mapped to the prototypical Bell state
[Eq. (13)]. The conditions for this to occur typically cor-
respond to a very low population of the scattering halo
and large correlation length. Equation (23) is the main
result of our analytic model, and the dependence on

2 For complete clarity, we note that the difference in phase
sensitivity in our scheme to, e.g., Refs. [10,44], is due to an
effective switching of which arm of the interferometer one
of the phase shifts is imprinted.

(a)

(b)

Fig. 3 Spatially separated momentum interference. a
Phase dependence of average integrated pair-correlation
function for relevant port combinations (Csame and
Cbetween). Error bars are generated from bootstrapping with
replacement [63]. A sinusoidal model of the form of Eq. (19)
is fit to the entire data set with parameters λ = 0.6, h = 1.48
and N̄ = 0.15, with shaded regions indicating fit uncer-
tainty. The back-to-back correlation within the same halo
Csame being π out of phase relative to the correlations
between halos Cbetween is strong evidence of spatially sep-
arated interference, and hence entanglement. b Quantum
correlator E(Φ) versus global phase with sinusoidal fit with
amplitude 0.36(4) and phase offset −0.9(1). Again, error
bars are produced using bootstrapping with replacement.
This curve would produce a maximal possible Bell parame-
ter of S = 1.1(1), if we assume the independent phases follow
the global phase. Measuring the full CHSH-Bell parameter,
as defined in Eq. 24, would require independent control of
the phases imprinted on the two arms of the interferom-
eter, which we have not currently implemented. The cor-
relation amplitude required to demonstrate Bell inequality
violation is indicated by the gray shade region. The cor-
relation amplitude required to demonstrate Bell inequality
violation is indicated by the gray shade region

Φ and λx,y,z is compared to experimental data in the
following section (see Figs. 3 and 4, respectively).

3 Results

In order to demonstrate our protocol’s capabilities for
spatially separated two particle interference between
momentum states, we employ the Rarity–Tapster sch-
eme as shown in Figs. 1 and 2, with experimental
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Fig. 4 The quantum correlator E, for global phases Φ =
1.052 and Φ = 4.194, versus normalized integration bin size,
where for all dimensions d = x, y, z we have set λd = λ.
Note that λ is equivalent to expressing the integration bin
size in terms of number of correlation lengths. Error bars
on the experimental data points are produced by boot-
strapping with replacement [63]. Solid lines represent fits
of the form of Eq. (23) with parameters h = 1.5(1) and
h = 1.4(1) for Φ = 1.052 and Φ = 4.194, respectively, with
t3/2 = t2 and {σx, σy, σz} ={3(1), 15(4), 8(3)} mm/s for
both data sets. The h parameters correspond to optimal val-
ues of E(1.052)|λx,y,z→0 = 0.42(5) and E(4.194)|λx,y,z→0 =
−0.40(5), respectively

Table 1 Experimental parameters used in our interfero-
metric protocol

(ωx, ωy, ωz) /2π (49.607(3), 195.414(7), 201.21(7)) Hz [62]
(σg,x, σg,y, σg,z) (26(3), 4.2(3), 4.1(3)) µm
(σx, σy, σz) (3(1), 15(4), 8(3)) mm/s
BEC Number 14(4) × 104

N̄ 0.15
|k0| 4.102 µm−1

t2 240 µs
t3 480 µs
tsep 63(2) µs

The BEC number refers to the average number of atoms
in the initial source BEC, before momentum splitting. The
times t2 and t3 are quoted with t0 = 0

parameters as listed in Table 1. We emphasize that at
the time of the beamsplitter [t3 = 480µs, step (iv)] the
atoms are separated by 62.4 µm, which corresponds to
a separation of ∼ 4 spatial correlation lengths (along
the axis of separation).

We first investigate the integrated pair-correlation
function CL,R, as defined in Eq. (16). The requirement of
maintaining a low average mode occupancy to achieve
large correlation amplitudes, in combination with the
overall low detection efficiency available, makes max-
imizing the rate of data acquisition extremely impor-
tant. To this end, we improve our data rate by aver-
aging over an ensemble of momentum modes that are
sufficiently close to the equatorial planes of the upper

and lower scattering halos, that simultaneously real-
ize a set of independent Rarity–Tapster interferometers
within each experimental trial. This is motivated by
the fact that there are multiple sets of four momen-
tum modes within the two halos which satisfy the res-
onance conditions of Eq. (4). Upon doing such averag-
ing, we account for the fact that our Bragg pulses are
imperfect—i.e., they have a finite width in momentum
space over which they realize precise mirror and beam-
splitter operations. To satisfy this constraint we select
pairs within an azimuthal angle of 20◦ from the equator
of either halo, which in turn corresponds to a velocity
spread of ∼ 23 mm/s along the z-axis relative to each
equatorial plane. Mathematically such averaging can be
expressed as,

Csame =
1

2Vup
eq

∫

p∈Vup
eq

dp Cp,−p+2k0

+
1

2V low
eq

∫

q∈Vlow
eq

dq Cq,−q−2k0 , (25)

and

Cbetween =
1

2Vup
eq

∫

p∈Vup
eq

dp Cp,−p

+
1

2V low
eq

∫

q∈Vlow
eq

dq Cq,−q, (26)

where Vup
eq and V low

eq are the relevant averaging vol-
umes of the equatorial planes of the upper and lower
halos, respectively. The two definitions correspond to
the correlations of approximately diametrically oppos-
ing modes within a single halo (Csame) and between the
two halos (Cbetween).

We present the average integrated pair-correlation
function for both port combinations as a function of
global phase in Fig. 3a. We find strong sinusoidal depen-
dences, reflected by a good fit to Eq. (19) for both Csame

and Cbetween with the amplitude of the oscillatory corre-
lation taken to be a free parameter, with an coefficient
of determination (R2) of 0.88. Moreover, we clearly
observe the expected π phase offset between the two
data sets. The amplitude of the theory fit is 0.0066(6),
while the interferometric visibility of the Cbetween data
is 0.40(15) and the Csame data is 0.44(12), giving an
average interferometric visibility of V = 0.42(9).

We now turn to extracting the magnitude of the
quantum correlator E, Eq. (22), from the experimen-
tal data, which is the key quantity for evaluating the
value of the CHSH-Bell parameter S. The quantum
correlator E, plotted in Fig. 3b as a function of the
global phase, has an amplitude of 0.36(4), correspond-
ing to a confidence level of 9σ above zero. However, this
does not surpass the value |E| = 1/

√
2, which would

be required for a violation of the CHSH-Bell inequal-
ity [61]. Instead our result is indistinguishable from the
predictions of a local hidden variable theory, satisfying
|E| < 1/

√
2 and thus S ≤ 2. We note that our extracted

E features a phase offset (similarly observable in Csame
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and Cbetween). This is expected due to a gravitational
phase shift (See “Appendix C”, particularly Eq. (C4)),
although the experimental value of −0.9(1) is two stan-
dard deviations larger in magnitude than the theoreti-
cal prediction −0.5(2).

Beyond demonstrating the expected sensitivity of the
experimentally obtained correlations to the imprinted
global phase, we can also compare to the predicted
dependence on, e.g., the correlation width and integra-
tion volume, from the analytic model. In Fig. 4, we
compare the experimental dependence of the quantum
correlator E on integration bin size λ to the functional
form predicted by Eq. (23). For the theoretical pre-
diction, we use the known values of helium mass, Φ,
k0, t2 and t3 of the applied Bragg pulses, and also
the correlation widths σx,y,z that are obtained from
the initial scattering halos [48]. This leaves the cor-
relation height h as a free parameter. We find good
agreement between the analytical model and empirical
data (R2 = 0.972). This gives strong evidence that our
model and the underlying assumption that the initial
pair correlations, G(2)(k,k′, t1), are well described by
the Gaussian approximation, Eq. (17). However, the
fit implies we have a small correlation height above
the background, about h = 1.4(1). This is despite our
mode occupancy indicating a much stronger correlation
height: For the mode occupancy N̄ ∼ 0.15 used in this
work we expect h ∼ 7.6, and we have previously con-
firmed that this relationship holds in scattering halos
with no applied Bragg Pulses [18,48]. The mode occu-
pancy N̄ is measured experimentally by dividing the
average number of particles in each scattering halo by
the number of modes in the experimental volume (set
by the measured momentum correlation widths, given
in Table 1 for values used in this work), see supplemen-
tary material of Refs. [48] and [53] for further detail.

This implies that there are factors degrading our
interfometetric signal. There are a number of known
issues beyond finite correlation width, detection resolu-
tion, and free propagation time that are not included in
our model, such as Bragg pulse efficiency and unequal
mode occupancy between the halos. We quantify the
Bragg pulse peak efficiency (which we find to be 0.984)
and momentum distribution (see “Appendix Fig. 6”) in
order to measure the possible effects of imperfect Bragg
pulses on the correlation height h. Initial estimates indi-
cate that the magnitude of these effects are small, and
hence they alone are not enough to explain the decrease
in signal. As explained in Sect. 2.3, our system is a
probabilistic generator of particle entangled Bell states.
This primarily has the effect of worsening our statistics
and a reduction in signal height due to the inclusion
of states with higher occupation, which is encapsulated
by the relation h ≈ 1/N̄ and is independent of detector
efficiency (approximately 8%, which we estimate using
relative number squeezing [45]). However, it is also
possible to include false positives due to dark counts,
which will further degrade our interfometetric signal.
Our measured estimates of the dark count rates are very
small (less than 0.01 counts per millimeter squared per
second corresponding to an average of less than 6×10−5

dark counts per integration volume for λ = 0.5, i.e., a
single mode volume) and a false positive would require a
simultaneous dark count to appear in at least two of the
relevant momentum modes. Hence this also should not
be a significant effect compared to our mode occupancy
of ∼ 0.15. However, it cannot be conclusively ruled out.
Note that the effect of dark counts is also independent
of detector efficiency. Some further possible sources
are gravitational effects over the finite wavepacket size
of the scattered pairs, and mean-field effects due to the
source condensates [51,64,65], both of which we have
yet to properly quantify. Incorporating these effects into
the model and overcoming them experimentally will be
the focus of our future work on this system.

4 Conclusion

We have demonstrated a matter-wave Rarity–Tapster
interferometer and thus an experimentally viable met-
hod for generating interference between the momentum
states of spatially separated helium atoms. The method
is underpinned by entanglement between twin-atoms
generated by atomic four-wave mixing and exploits the
geometry of scattering halos formed from multiple col-
liding BECs.

The primary advantage of the method we present is
that it allows for efficient optimization and alignment
of the interferometer due to the ability to selectively
generate only a single halo (equivalently a single set of
modes (p,p′) or (q,q′) as described above) for calibra-
tion purposes, and requires only a single set of Bragg
beams, making it simple to implement experimentally
and more stable and robust against alignment drifts.
Due to the specific geometry, our interferometer is sen-
sitive to global phase, i.e., the sum of phases φL and
φR in the two arms of the interferometer, in contrast
to a traditional Rarity–Tapster interferometer which is
sensitive to the respective relative phase. This enables
us to readily test its interference capabilities without
the technically demanding implementation of a spa-
tially dependent phase, although independent control of
the applied phases φL and φR, as in Eq. (24), is needed
to demonstrate a formal violation of the CHSH-Bell
inequality.

As a proof of concept we demonstrate phase-sensitive
integrated pair correlation functions with an average
visibility of V = 0.42(9) and quantum correlator ampli-
tude of E0 = 0.36(4), underpinned by efficient Bragg
pulses (with peak transmission efficiency of 0.984) and
characterization of the momentum distribution of the
scattering halos (see “Appendix Fig. 6”).

This method could also be extended to higher order
interference schemes, for either more atoms or more
modes, as well as to prototype more complex Bragg
pulses. We hope that in future this work will lead to
the demonstration of a full violation of a Bell inequal-
ity, and more generally be leveraged as the basis for
momentum space interferometry experiments with mas-
sive particles.
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ons.org/licenses/by/4.0/.

Appendix A: Derivation of the mapping
between input and output states of our
interferometer

In this section, we will follow the same procedure as
Appendix Bragg diffraction model of Ref. [39]. The cou-
pling Hamiltonian of our Bragg pulse can be written as
[39,66],

Ĥ =
�Ω
2

(
0 eiφ

e−iφ 0

)

, (A1)

where we have used the basis {âk, âk+2k0}, Ω/2π is the
two-photon Rabi frequency, and φ is the phase of the
Bragg lattice, which is operationally set by the phase
difference of the lasers that form the lattice. The evo-
lution operator is defined as,

Û(t, φ)=e−iĤt/� =

(
cos Ωt

2 −ie−iφ sin Ωt
2

−ieiφ sin Ωt
2 cos Ωt

2

)

.

(A2)

The dynamics of our the Rarity–Tapster setup can then
be modeled as the application of a π-pulse and π/2-
pulse, i.e., Û(π/2Ω, φπ/2)Û(π/Ω, φπ) = Â, which can
be written as

Â =
(

e−i(φπ/2−φπ) ie−iφπ

ieiφπ ei(φπ/2−φπ)

)

, (A3)

where φπ/2 is the phase of the π/2 (beamsplitter) Bragg
pulse and φπ is the phase of the π (mirror) pulse. Note,
this model does not currently contain the effect of real-
istic Bragg pulses, instead assuming they are instan-
taneous perfect linear transformations and contains no
information on the timings of pulses, as at this point we
are assuming the modes have an infinite spatial extent.
In order to obtain the input modes as functions of the
output modes, we invert the operator Â matrix,

Â−1 =
1
2

(
ei(φπ/2−φπ) −ie−iφπ

−ieiφπ e−i(φπ/2−φπ)

)

. (A4)

As the phase of the mirror does not affect the dynamics,
we can choose it for convenience to be φπ = π/2. Using
A−1, we can write our input modes â in terms of our
output modes b̂ as follows,

(
b̂p
b̂q

)

=
1
2

(−ieiφR −1
1 ie−iφR

)(
âp

âq

)

, (A5)

(
b̂p′

b̂q′

)

=
1
2

(−ieiφL −1
1 ie−iφL

) (
âp′

âq′

)

. (A6)

As an exemplar, we let the initial state |Ψ〉 be the
prototypical Bell state (see Eq. (8)). Using Eqs. (A5)
and (A6), the output state after propagation through
the interferometer can be written as

|Ψ〉out =
1

2
√

2

[
(1 − ei(φL+φR))|1〉p|1〉p′ |0〉q|0〉q′

+ i(eiφL + e−iφR)|0〉p|1〉p′ |1〉q|0〉q′

+ i(eiφR + e−iφL)|1〉p|0〉p′ |0〉q|1〉q′

+ (1 − e−i(φL+φR))|0〉p|0〉p′ |1〉q|1〉q′

]
.

(A7)

The form of Eq. (A7) can be readily compared to that of
Eq. (6) of Ref. [39], which shows the effect of an unmodi-
fied Rarity–Tapster scheme on a prototypical Bell state.
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We observe that measurement of correlations between
multiple modes reveals a dependence on the applied
phase shift. This can be illustrated in the simplest way
by the pair-correlation function Ck,k′ = 〈â†

kâ†
k′ âk′ âk〉,

which corresponds to a correlation between joint-
detection events at the outputs of the left and right
arms of the interferometer (see Figs. 1 and 2). For the
prototypical Bell state, Eq. (A7), we obtain,

Cp,p′ = Cq,q′ =
1
2

sin2

(
φL + φR

2

)

,

Cp,q′ = Cp′,q =
1
2

cos2
(

φL + φR

2

)

.

(A8)

This result crucially indicates that interference between
the scattered pairs can be tuned via the global phase
Φ = φL + φR and accessed via pair-correlation func-
tions. This is in contrast to the previous implementa-
tions of the Rarity–Tapster scheme which are depen-
dent on the relative phase φL − φR, see for instance
Eqs. (7) and (8) of Ref. [39].

Appendix B: Spatial overlap and phase dif-
fusion in the integrated correlation function

The result for the two-point correlation function G(2)(k,
k′, t4), given by Eq. (18) of the main text, can
be derived by following the calculation reported in
Appendix B of Ref. [44]. The computation assumes
that: (i) the applied Bragg pulses can be treated as
simple linear transformations of the coupled momen-
tum modes, and (ii) the two-point momentum corre-
lation functions after the initial BEC collisions can be
captured by a simple Gaussian ansatz (see Eq. (17) of
the main text). In addition, the calculation of Ref. [44]
identifies that an effective dephasing arises, captured by
ϕ(k,k′), which, as discussed in the main text, can be
identified as encoding the distinguishability of atoms
with different momenta as they traverse the matter-
wave interferometer. An approximate form for ϕ(k,k′)
can be obtained via a perturbative treatment of the
BEC collision [67]. By adapting this perturbative treat-
ment to the collision geometry of our experiment, we
obtain (following analogous steps to Ref. [44]),

ϕ(k,k′) =

{− 2�k0
m (kz + k′

z ± 2k0)
(

t3
2 − t2

)
, for (k,k′) ≈ (p,p′) or (q,q′),

− 2�k0
m (kz + k′

z)
(

t3
2 − t2

)
, for (k,k′) ≈ (q,p′) or (p,q′),

(B1)

where the plus and minus sign of the first line is asso-
ciated with the upper (−) and lower (+) halos, identi-
cally to G(2)(k,k′, t4). This form of ϕ(k,k′) is used in
the main text for the evaluation of CL,R (Eq. (19)).

Appendix C: Phase drift due to gravity

In Fig. 3, we observe a phase offset in the experimen-
tally obtained phase-sensitive correlations E and CL,R.
The theoretical treatment of Sect. 2.3 assumes an ideal
system with no relative phase drifts due to external fac-
tors beyond the intended phase settings of the Bragg
pulses. There will, however, be a drift in phase accrued
due to the gravitational force exerted on the particles
over their free-fall trajectories. To account for this phase
drift, we develop a semi-classical model, where the tra-
jectories are treated classically.

Within our model, the total phase φA accrued over a
trajectory A is [68],

φA = SA/�, (C1)

where

SA =
∫

A

L(t) dt (C2)

is the classical action for path A and we require SA � �.
For our free-fall problem, assuming a uniform gravi-
tational field, the Lagrangian L is given by L(t) =
m|vA(t)|2/2 − mgzA(t), where vA(t) and zA(t) are
the velocity vector and z-axis coordinate of the par-
ticle on path A and g is the gravitational acceleration.
Therefore, the phase accrued during the interferometric
sequence will be

φA =
SA

�
=

m

�

∫ t3

t0

[
1
2
|vA(t)|2 − gzA(t)

]

dt,

(C3)

where t0 and t3 are the times of our initial and final
pulses, as discussed in the main text. The velocity and
position can be parameterized using the classical bal-
listic equations, and we can hence evaluate Eq. (C3)
analytically to give the phase difference between the
upper (U) and lower paths (L) (for both arms of the
interferometer),

Δφ = φU (vz(t0), z(t0)) − φL(vz(t0) + Δvz, z(t0))

=
2gmt21Δvz

�
= k0gt23, (C4)

where Δvz is the momentum imparted by the mir-
ror pulse, k0 = mΔvz/2� is the wave vector of the

123



244 Page 14 of 18 Eur. Phys. J. D (2022) 76 :244

Bragg lattice, and vz(t0) and z(t0) are the initial z-
components of the velocity and position of the parti-
cles, which both cancel out from the final expression.
Note that we have assumed that the pairs are all gen-
erated at the same time and position, that the modes
exactly match the Bragg condition, and we have set
t3 = 2t2 as the total interferometer sequence takes twice
the separation time. It can be seen that this is the stan-
dard expression for gravitational phase difference used
in atom interferometry accelerometers [68]. However, a
key difference to the Mach-Zehnder scheme discussed
in Ref. [68] is that the phase drift is applied to both
arms of the interferometer (i.e., it is a drift in both φL

and φR) and thus the change in the global phase will
be ΔΦ = 2Δφ. As we take gravity to be a uniform
field this phase drift will be the same for all atom pairs
across the two scattering halos.

Appendix D: Theoretical basis of Bragg
pulses

We control the momentum states of our atoms via the
use of Bragg pulses. These pulses are formed by counter-
propagating laser beams, which interfere to form a peri-
odic potential, and have a detuning such that they do
not change the internal states of the atoms [66].

Let our counter-propagating lasers have wave vec-
tors ku and kl, and frequencies ωu and ωl, respec-
tively. To understand the effect of the Bragg pulses, we
model the interfering lasers as a standing wave poten-
tial Ω(t) cos(2k0 · z + δt + θ), where 2k0 = ku − kl is
the lattice vector, δ = ωu − ωl is the frequency dif-
ference between the counter-propagating beams, Ω(t)
is the amplitude modulation of the wave packet of
the Bragg pulse, and θ is the phase difference of the
beams. The wave vector k0 is aligned along the z
axis, with |k0| ≡ k0. To proceed, we expand the
wavefunction of the atoms in the empty lattice Bloch
basis, ψ(r, t) =

∫
dkΣnCn(k, t)ei(2nk0+k)·r. If we ignore

mean-field effects and approximate the lattice potential
as infinite then the Schrödinger equation simplifies to
the Raman–Nath equations [69] for the expansion coef-
ficients,

i
d

dt
Cn(k, t) =

�

2m
(2nk0 + k)2Cn(k, t)+

Ω(t)

2

[
e−i(θ+δt)Cn−1(k, t) + ei(θ+δt)Cn+1(k, t)

]
.

(D1)

From this we see that modes are only coupled to one
another if they are separated by an integer number
of lattice vectors (2k0). In practice this is not strictly
true due to various factors, such as mean-field interac-
tion and the lattice having a finite spatial extent; how-
ever, Eq. (D1) is still a good approximation for realistic
regimes and our experiment.

For our analysis, we will ignore the effect of the
detuning δ as it is equivalent to a reference frame shift

Fig. 5 Numerical Simulation of Bragg pulse. We numer-
ically evaluate Eq. (D1), with initial condition Cn(k, t =
0) = δn,0, δ = 0, �k2

0/2m = 133.4 kHz and N = 9. a
Transfer percentage at the halo equators k = ±k0 against
pulse parameters width σ and amplitude α, noting that the
transfer is in the opposite direction for each equator, with
parameters used for part (b) marked with an x and o. b
Transfer versus momentum space for pulse (α, σ)=(0.405�

J, 3.162 µs) (solid line) and (α, σ)=(2.424� J, 3.664 µs)
(dashed line) showing how equal but opposite momenta are
imparted to the halo equators at ±k0

and hence does not change any of the relevant dynam-
ics. Thus, we can set δ = 0 without loss of generality,
while experimentally we would tune δ to couple the
desired modes of the interferometer.

Let the initial mode population be Cn(k, t = 0) =
δn,0, with |k| < k0, then we can consider |Cn(k, tf )|2
as the proportion of the initial mode population that
is transferred by n lattice vectors after the Bragg pulse
is applied, where tf is some final time well after the
Bragg pulse’s time extent. While Eq. (D1) is an infinite
set of coupled equations we can make numerical solu-
tions tractable by truncating it to the M lowest order
equations, i.e., set Cn(k, t) = 0 for |n| > M and all t.
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Fig. 6 The effect of applying a single mirror pulse to the upper halo. a Velocity profile of the top halo; b velocity profile of
same halo after a mirror pulse has been applied, allowing us to clearly see the effect of the pulse. The profiles are obtained
by averaging over ∼ 30 experimental realizations. The radial velocity vr is an average of the values

√
v2

x + v2
y. While strictly

vr cannot take negative values we mirror the profile about vr = 0 to more clearly indicate the 3D cross section of the halo.
The black bar at vr = 0 represents a breakdown of the histogram, as the detection bin volume approaches zero at this
point. Note that extra horizontal “spikes” emanating from the BECs are artifacts of the detection process, which occurs
at high fluxes. c The two profiles allow us to calculate the percentage of atoms transferred to each diffraction order for a
particular momentum. Alternatively this can be thought of as the probability for a particle to be shifted a given number of
Bragg vectors at that momentum. For simplicity, we only show the momentum transfers |C−1|2, as this is the distribution
that can be most readily calculated from the presented data. The vertical axes for (a–c) are all on the same scale

This approximation is valid for Ω/2 
 (2M)2 �k2
0

2m [69].
Importantly, only the n = ±1 modes are coupled for
Ω/2 
 4�k2

0
2m , which is what we desire for our mirror

and beamsplitter Bragg pulses.
We consider a Gaussian enveloped pulse Ω(t) =

α
�

exp
[−(t − t0)2/(2σ2)

]
and solve Eq. (D1) numeri-

cally with M = 9 over the parameter space (σ, α) to
give an insight into the dynamics of the Bragg pulse, see
Fig. 5a. There are a number of possible parameter com-
binations which produce a peak diffraction efficiency
of 1 or 0.5 (corresponding to a mirror or beamsplit-
ter); however, these pulses’ distributions in momentum
space can vary dramatically; see Fig. 5b for compar-
ison of two possible mirror pulse configurations. It is
also determined that the optimal detuning (or center-
ing in momentum space) of the pulses is about the halo
equators (i.e., peak diffraction efficiencies at ±k0), as
this represents the highest average transfer efficiency
across the entirety of the halo. Alternatively, we can
think of this as capturing the largest portion of atoms
in our Bragg pulses.

While this model gives us a prediction of the opti-
mal parameter regime for our Bragg pulses, practi-
cal implementation can cause a number of divergences
from the idealized model. We hence empirically opti-
mized our Bragg pulses parameters, such as intensity
and width, for the desired pulse characteristics, guided
by the results from Eq. (D1) and Fig. 5.

In Fig. 6, we demonstrate how the single halo gener-
ation can be used to determine the momentum transfer
distribution of the Bragg pulse, allowing us to opti-
mize our pulses for various purposes. It can be read-
ily seen that the mirror pulse affects a finite width in
momentum space as discussed above, indicating how it
is impossible to obtain perfect mirror and beamsplitter
pulses. Due to this, we only use a section of the halo
about the equator, which we tune the Bragg pulses to
be centered on, to calculate our correlation functions.
This masking is defined by θtol, which is the maximum
angular deviation a particle can have from the equator.

The Bragg pulses can add a phase difference between
momentum states, which depends on the phase differ-
ence of the lasers θ. This allows us to easily add a global
phase to the interferometer, as the phase difference in
the beamsplitter pulse will map, using the same nota-
tion as above, to φL = θ and φR = θ, and hence Φ = 2θ.
Furthermore, as our experiment is sensitive to global
phase our Bragg lasers are sufficient to achieve a spa-
tially separated interference pattern.

Finally, we wish to highlight that only a single set
of Bragg lasers is required for this entire protocol. This
is of interest as the possible geometries of an interfer-
ometer which only uses a single set of Bragg lasers is
severely constrained.
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Appendix E: Analysis details

The phase Φ directly corresponds to twice the phase
difference between the two channels of the Keysight
33600A Series waveform generator that controls the
respective AOMs for the upper and lower beams,
which in turn controls their intensities. In Fig. 3 of
the main text, we present data for nine phase values
Φ ∈ {1.053, 1.838, 2.624, 3.409, 4.194, 4.980, 5.765, 6.551,
7.336}; the data were generated using ∼ 2900 experi-
mental runs for each phase.

To estimate the uncertainty in the experimentally
obtained data, we use a bootstrapping technique.
This consists of repeating the analysis procedure, for
instance calculating the correlation functions, on sub-
sets of the total data set, where the subsets can be
drawn with replacement, i.e., a particular data point
can appear more than once in a given subsample. The
estimated uncertainty is then the variance between the
full set of estimated values, weighted for sample size.
This technique is based upon using the empirical dis-
tribution function as an approximation for the true dis-
tribution function.
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M. Toroš, M. Paternostro, A.A. Geraci, P.F. Barker,
M.S. Kim, G. Milburn, Spin entanglement witness for
quantum gravity. Phys. Rev. Lett. 119, 240401 (2017).
https://doi.org/10.1103/PhysRevLett.119.240401

31. L. De Broglie, Waves and quanta. Nature 112, 540
(1923). https://doi.org/10.1038/112540a0

32. W.D. Phillips, J.V. Prodan, H.J. Metcalf, Laser cool-
ing and electromagnetic trapping of neutral atoms. J.
Opt. Soc. Am. B 2, 1751 (1985). https://doi.org/10.
1364/JOSAB.2.001751

33. H.J. Metcalf, P. van der Straten, Laser cooling and trap-
ping of atoms. J. Opt. Soc. Am. B 20, 887 (2003).
https://doi.org/10.1364/JOSAB.20.000887

34. S.L. Rolston, W.D. Phillips, Nonlinear and quantum
atom optics. Nature 416, 219 (2002). https://doi.org/
10.1038/416219a

35. T. Jeltes, J.M. McNamara, W. Hogervorst, W. Vassen,
V. Krachmalnicoff, M. Schellekens, A. Perrin, H. Chang,
D. Boiron, A. Aspect, C.I. Westbrook, Comparison
of the Hanbury Brown-Twiss effect for bosons and
fermions. Nature 445, 402 (2007). https://doi.org/10.
1038/nature05513

36. A.G. Manning, R.I. Khakimov, R.G. Dall, A.G.
Truscott, Wheeler’s delayed-choice gedanken experi-
ment with a single atom. Nature Physics 11, 539 (2015).
https://doi.org/10.1038/nphys3343

37. R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau,
D. Boiron, C.I. Westbrook, Atomic Hong-Ou-Mandel
experiment. Nature 520, 66 (2015). https://doi.org/10.
1038/nature14331

38. A.G. Manning, S.S. Hodgman, R.G. Dall, M.T. Johns-
son, A.G. Truscott, The Hanbury Brown-Twiss effect
in a pulsed atom laser. Opt. Express 18, 18712 (2010).
https://doi.org/10.1364/OE.18.018712

39. P. Dussarrat, M. Perrier, A. Imanaliev, R. Lopes, A.
Aspect, M. Cheneau, D. Boiron, C.I. Westbrook, Two-
Particle Four-Mode Interferometer for Atoms. Phys.
Rev. Lett. 119, 173202 (2017). https://doi.org/10.1103/
PhysRevLett.119.173202

40. M. Bonneau, W.J. Munro, K. Nemoto, J. Schmied-
mayer, Characterizing twin-particle entanglement in
double-well potentials. Phys. Rev. A 98, 033608 (2018).
https://doi.org/10.1103/PhysRevA.98.033608
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