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Abstract. We extensively discuss the Hong–Ou–Mandel experiment by taking an original phase-space-
based perspective. For this, we analyze time and frequency variables as quantum continuous variables
in perfect analogy with position and momentum of massive particles or with the electromagnetic field’s
quadratures. We discuss how this experiment can be used to directly measure the time-frequency Wigner
function and implement logical gates in these variables. We also briefly discuss the quantum/classical
aspects of this experiment providing a general expression for intensity correlations that make explicit the
differences between a classical Hong–Ou–Mandel-like dip and a quantum one. Throughout the manuscript,
we will often focus and refer to a particular system based on AlGaAs waveguides emitting photon pairs via
spontaneous parametric down conversion, but our results can be extended to other analogous experimental
systems and to various degrees of freedom.

1 Introduction

One of the greatest challenges when describing a scien-
tific revolution is to structure, from the future, a linear
and coherent narrative of how ideas emerged, and how
they were discussed, combined, proved and disproved
so as to finally converge into a theory. This difficulty
is particularly pronounced in what concerns quantum
physics. Not only there is no complete consensus about
its interpretation, but also it is not clear whether it is
indeed possible to have a single only interpretation of
it. In addition, and for some people, most importantly,
many of the existing interpretations require completely
abandoning some principles of physics which are known
as “classical”. In spite of all that, we keep on doing
research, predicting and confirming physical phenom-
ena that would not have been imaginable if we hadn’t
agreed at some point that controversial as it is, using
whatever interpretation we chose, quantum physics is
the most accurate theory to describe and predict phys-
ical phenomena at a given scale.

Nevertheless, and as a consequence of this debate,
a recurrent question arises when observing and study-
ing quantum phenomena: what is so quantum about
all that? Is this really quantum? Indeed, it is a hard
to answer question, which becomes even harder when
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followed by its twin sibling: “what’s the classical coun-
terpart of the situation I am studying? ”, “what should
I compare my results to?” “Is it possible to compare
quantum to classical?”.

It is clear that quantum computing and quantum
information science brought some light into these prob-
lems, by defining quantum advantage, or supremacy, as
the power of some quantum algorithms and protocols
to move problems from one complexity class to another.
This is an objective method to separate quantum from
non-quantum phenomena. Putting all this into work
and using quantum mechanics to solve practical prob-
lems by designing quantum machines is what A. Aspect
termed the second quantum revolution.

From the physics and quantum optics point of view,
the quantum/classical frontier and questions about how
to define it and place it seems less explicit, but we can-
not avoid plunging into them when we thumb through
Mr. A. Aspect’s lectures, in particular [1], seeking for
inspiration for writing the introduction of a paper in
his honor. What does he mean when he says something
is quantum or classical? Does it make sense?

Starting from these questions, we concentrate on
some interesting aspects of one of the experiments Mr.
A. Aspect uses to illustrate the differences between
quantum and classical physics in his lectures, the Hong–
Ou–Mandel (HOM) experiment [2]. We’ll see how this
experiment, which we briefly describe and discuss in
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Sect. 2, followed by its classical analog (Sect. 2.1),
can be associated with the time-frequency phase space
(Sect. 3), and finally we provide some applications of
our results (Sect. 4).

2 The Hong–Ou–Mandel experiment

Quantum phenomena are usually, if not always, asso-
ciated with interference effects. The Hong–Ou–Mandel
experiment is an example of a clever way to use an inter-
ferometer to probe photon indistinguishability using
a consequence of the bosonic commutation relations.
Indeed, the experiment shows that indistinguishable
photons (even when generated by independent sources
with no a priori phase relation) interfere in such a way
that they both exit the same output port of the inter-
ferometer. We call this behavior “bunching”, and its
experimental signature is the absence of coincidence
detections (the famous HOM dip). To understand this
behavior, we consider two photons in different spatial
modes, each one of them associated with one input arm
of the interferometer. We define the following notation:
â†

i (ωi)|0〉 = |1ωi
〉 = |ωi〉, so that the corresponding state

can be described in the general form

|ψ〉 =
∫ ∫

f(ω1, ω2)|ω1, ω2〉dω1dω2, (1)

where the indices i = 1, 2 denote different spatial modes
and ω is an arbitrary photonic degree of freedom, as the
transverse position and momentum or frequency. In the
present contribution, we consider pure states, while the
general expressions are given in Sect. 2.1. As a repre-
sentative case, we focus on the frequency degree of free-
dom. We will present our framework in the description
of an experimental system consisting of semiconductor
waveguides emitting frequency and/or polarization cor-
related photon pairs by spontaneous parametric down
conversion (SPDC) [3–5]. A more detailed description
of the experimental device can be found in Sect. 4.

In the particular case of indistinguishable photons
emitted from independent sources, we have that f(ω1, ω2)
= g(ω1)g(ω2)eiφ in Eq. (1), which means that the spec-
tral amplitude of each photon is the same up to an arbi-
trary and random phase factor (a consequence from the
fact that photons are independent).

In many experiments, the two photons come from
a common source, as is the case in SPDC. For clar-
ity, we’ll consider in the present contribution the situa-
tion where the two photons can be distinguished either
by polarization or by propagation direction, so as they
can be sent to different arms of an interferometer. This
is illustrated in Fig. 1 (which corresponds to a mod-
ified version of the original HOM experiment), where
two photons that have, say, orthogonal polarization, are
spatially split by a polarizing beam splitter and take dif-
ferent propagation directions associated with different
arms of an interferometer. Then, in the interferome-
ter, one of the two photons polarization is rotated so

as to become identical to the other’s. After a 50/50
beam-splitter, the input spatial modes are combined in
the following way: âA(ω) = (â1(ω) + â2(ω))/

√
2 and

âB(ω) = (â1(ω) − â2(ω))/
√

2, where A and B are the
output spatial modes where photons are detected in
coincidence after leaving the beam-splitter. Thus, the
state described by Eq. (1) is transformed into:

|ψ〉 = ×1
2

∫ ∫
g(ω1)g(ω2)eiφ(â†

A(ω1)â
†
B(ω2)

−â†
A(ω2)â

†
B(ω1)

+â†
A(ω1)â

†
A(ω2) − â†

B(ω1)â
†
B(ω2))|0〉dω1dω2.

(2)

Two single photon detectors are used to measure tem-
poral correlations between the photons exiting the two
output ports. We now focus on the coincidence detec-
tion probability. The terms in the third line of Eq.
(2) correspond to photon bunching and do not lead
to coincidence detections, since both photons leave the
interferometer in the same spatial mode. They are thus
ignored from now on, and we focus on the two first
terms in the r.h.s. of Eq. (2). The coincidence detection
probability C between photons in modes A and B is
given by the square of the absolute value of this term.
We have thus:

C =
1
2

− 1
2

∫ ∫
|g(ω1)|2|g(ω2)|2dω1dω2, (3)

and using the normalization condition
∫ ∫ |g(ω1)|2|

g(ω2)|2dω1dω2 = 1, we obtain that C = 0 irrespectively
of the phase φ. Consequently, we can conclude that
independent photons sent in different arms of a bal-
anced interferometer always bunch and exit the inter-
ferometer from the same port.

This important result can be made even more inter-
esting if we add some spice to it, in the form of a con-
trollable optical path difference between the input pho-
tons. In this case, the initial state right before imping-
ing the beam splitter in Fig. 1 is characterized by the
wave function f(ω1, ω2) = g(ω1)g(ω2)eiω1τ , where we
dropped the phase φ, since it does not play a role
in the coincidence detection, and added a time- and
frequency-dependent phase that comes from the path
difference between the two arms. It is easy to verify
that in this case

C(τ) =
1
2

− 1
2

∫ ∫
|g(ω1)|2|g(ω2)|2ei(ω1−ω2)τdω1dω2

=
1
2

(
1 − |

∫
g̃(t)g̃∗(t − τ)dt|2

)
(4)

where g̃(t) is the Fourier transform of g(ω) at point t.
Equation (4) is in general different from zero. If the
overlap between the Fourier transforms calculated at
the two points appearing in Eq. (4) is different from
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one, we say that the two incoming photons are not com-
pletely indistinguishable, and in the limit of complete
distinguishability, C(τ) = 1/2. This result is the same
one would expect to find if photons were billiard balls
arriving into a path bifurcation in pairs and were ran-
domly sent through one output path or the other, A or
B. This is why we refer to this situation as the classical
one.

In spite of having been initially difficult to probe
the indistinguishability of photons coming from inde-
pendent sources, the first experimental demonstrations
of the Hong–Ou–Mandel effect used photon pairs gen-
erated by spontaneous down conversion (SPDC) pro-
cesses [2]. The reason for that is the experimental dif-
ficulty at that time to build independent and yet suffi-
ciently similar single photon sources, a difficulty over-
came in [6]. Nevertheless, as we will see throughout the
present contribution, the HOM effect presents many
other facets than the one it was initially designed for.
Its applications are numerous, and for presenting some
of them it’s important to provide, for the general case of
(1), the expression of the coincidence probability. Using
the same manipulations to obtain (3), we have that

C(τ) =
1
2

− 1
2

∫ ∫
f(ω1, ω2)f∗(ω2, ω1)ei(ω1−ω2)τ

×dω1dω2, (5)

which is the central equation of the present manuscript.
Simple as it seems to be, Eq. (5) can provide infor-
mation about entanglement [7], time-frequency phase
space representation [8], and be used to characterize
resources for quantum simulation [9,10], metrology [11]
and quantum error correction [12].

2.1 On the “quantumness” of the HOM experiment

Before moving to the central point of the present con-
tribution, in this section we discuss in more detail the
interpretation of the HOM experiment as probing quan-
tum properties of light. In [13], an experiment involv-
ing intensity correlations between classical fields with
a fixed, but random phase reference showed that it is
indeed possible to reproduce the HOM dip with close to
100% visibility. While the theoretical model presented
in [13] uses a classical description of light, we provide
here a theoretical description using intensity correla-
tions between coherent states which are sent at the two
input ports of a HOM-like interferometer and where
intensity correlations are calculated between the signals
recorded at the two output ports, as in [13].

Using the same spatial modes labelling given in the
introduction, we have that, after the introduction of
a time delay τ in one arm (say, arm 2) of the HOM
interferometer and recombination in the beam splitter,
the normalized intensity correlation between modes A
and B can be written as:

C(τ) =
〈N̂AN̂B〉

〈N̂A〉〈N̂B〉 , (6)

where

N̂i =
∫

â†
i (ω)âi(ω)dω, (7)

with i = A,B, and where the average is taken both
over classical parameters (as the phase φ) and on the
quantum state. Equation (6) can be rewritten using:

N̂A(B) =
1
2

∫ (
â†
1(ω)e−iωτ ± â†

2(ω)
)

× (
â1(ω)eiωτ ± â2(ω)

)
dω

=
1
2

[
N̂1 + N̂2 ± (Î1,2(τ) + Î†

1,2(τ))
]
, (8)

with Î1,2(t) =
∫

â†
1(ω)â2(ω)eiωτdω and N̂1(2) =

∫
â†
1(2)

(ω)â1(2)(ω)dω. Finally, C(τ) can be written as:

C(τ) =
〈N̂2〉 − 〈(Î1,2(τ) + Î†

1,2(τ))2〉
(〈N̂〉2 − 〈Î1,2(τ) + Î†

1,2(τ)〉2) , (9)

where N̂ = N̂1 + N̂2 is related to the total field inten-
sity. Expression (8) is general and can be used also
for non-pure states [14], and a similar expression was
obtained in [15] in the form of temporal correlations
for microwave field temporal correlations for microwave
fields. As a matter of fact, it is easy to verify that this
expression reduces to the coincidence probability if we
consider as input state a biphoton by noticing that in
this case

Î1,2(t)Î†
1,2(τ) = N̂1 (10)

+

∫ ∫
â†
1(ωA)â†

2(ωB)â1(ωB)â2(ωA)ei(ωA−ωB)τdωAdωB ,

and

Î†
1,2(t)Î1,2(τ) = N̂2 (11)

+

∫ ∫
â†
1(ωB)â†

2(ωA)â1(ωA)â2(ωB)ei(ωB−ωA)τdωAdωB ,

and 〈Î†
1,2(τ)〉 = 〈Î1,2(t)〉 = 〈Î†

1,2(τ)2〉 = 〈Î1,2(τ)2〉 = 0.

2.1.1 Application to coherent states

We now compute (8) in the case where |ψ〉 = |α〉1|β〉2
are coherent states with respective amplitudes β =
|α|eiφ and α = |α|, in analogy to the calculations in
[13] done using classical fields. We have that
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C(t) =
1

〈N̂〉2γ − 4(Re
[∫ |α(ω)|2eiφeiωτdω

]
)2

×
(

〈N̂〉2γ − 2Re

[
(

∫
|α(ω)|2eiφeiωτdω)2

]
(12)

−2Re

[∫ ∫
|α(ωA)|2|α(ωB)|2ei(ωA−ωB)τdωAdωB

])
,

where 〈N̂〉γ = 2
∫ |α(ω)|2dω. Note that we haven’t

averaged over φ yet: in order to do so, let’s take a
look to (12) for τ = 0. In this case, we have that
C(0) = 〈sin2 φ〉φ

1−〈cos φ〉2φ
. From this expression, we see that if

the phase φ is uniformly distributed in the continuous
interval ranging from 0 to 2π, we have C(0) = 1/2 with
a visibility of 1/2. If the phase can take only two val-
ues with equal probability and φ ∈ {0, π}, we have that
C(0) = 0 with a theoretical visibility of 1, which repro-
duces the two-photon coincidence case in the classical
regime. Finally, if the two possible and equally prob-
able phases are such that φ ∈ {π/2, 3π/2}, C(0) = 1
and the visibility is zero. These results are in agree-
ment with the ones in [13], where the authors use them
to argue that observing a near 100% visibility dip in
intensity correlations is not necessarily a quantum sig-
nature. Accordingly, the authors suggest that by adding
a wave-particle duality-like experiment in the output of
the HOM interferometer one could then obtain observ-
able differences between quantum and classical proper-
ties, which is of course also true.

The conclusion that it is possible to mimic the HOM
dip with classical fields should be put into perspective
by inspecting Eqs. (9) and (12). We can see that the
average zero correlation effect is caused by the φ depen-
dent term, which is a first-order interference term. One
can thus easily identify and isolate it and argue that
quantum effects are associated with second-order cor-
relation terms only [16]. By keeping only these terms, it
is clear that the HOM dip cannot be reproduced with
classical fields. Another way to argue in this sense is
by noticing that the φ dependent term presents rapid
oscillations that are averaged to zero depending on the
detection sensibility to fluctuations in a given frequency
range. This is precisely the situation of the Hanbury
Brown and Twiss experiment, for instance, where only
purely second-order correlation terms remain and such
first-order phase-dependent effects do not play a role.

From our point of view, it is interesting to notice that
the spectral intensity overlap between classical fields in
Eq. (12) does not lead to 100% visibility of the inten-
sity correlations while being always ≤ 0, so that in
the absence of the first-order interference term inten-
sity correlations are always 1/2 ≤ C(τ) ≤ 1/4, with
visibility 1/2.

As a conclusion, even though [13] presents an inter-
esting classical situation analogous to the HOM dip, it
is not clear in our view how to compare both situations
and whether this classical result challenges the usual
interpretation of the HOM experiment.

3 The Wigner function

We now turn back to the biphoton situation. Those
working in optics, and used to interference effects, are
familiar with expressions as (5), where two amplitudes
overlap. This relation is such that it may ring a bell in
those who are also familiar with the phase space repre-
sentations of quantum mechanics. As a matter of fact,
Eq. (5) is pretty similar to the Wigner function of a
massive particle, or the Wigner function associated with
the quadrature state of a single mode electromagnetic
field, which is given by:

W (x, p) =
∫

〈x − q

2
|ρ̂|x +

q

2
〉eipsdq. (13)

For a pure state, Eq. (13) reduces to

W (x, p) =
∫

ψ∗
(
x − q

2

)
ψ

(
x +

q

2

)
eipqdq, (14)

where x and p are the position and momentum vari-
ables or, equivalently, two orthogonal quadratures of
the electromagnetic field, and ψ(x) is the wave func-
tion in, say, the position basis. We see that Eqs. (14)
and (5) are indeed very similar but still, not identical.

Indeed, when comparing (5)–(14) many differences
appear: in the first place, it seems that we have the
equivalent to a two-particle system in Eq. (5), since we
have a two-variable integral (in ω1 and ω2 variables).
Also, there is no displacement in the frequency vari-
ables, as there is in the position one in (14). Finally,
(14) describes the quantum state of a particle or of the
electromagnetic field, but what about (5)? We will han-
dle these issues one by one to conclude that, indeed, (5)
and (14) are pretty much the same, or at least provide
the same type of information about the quantum state
of a system if one limits the discussion to the case where
each mode is occupied by one photon only.

To start with, and for pedagogical reasons, we per-
form a change of variables in (5) such that: ω± =
(ω1 ± ω2)/2. In this case, f(ω1, ω2) = F (ω+, ω−) and
f(ω2, ω1) = F (ω+,−ω−). Then, following [8], we define
G(ω−)G∗(−ω−) =

∫
F (ω+, ω−)F ∗(ω+,−ω−)dω+. In

the case where F (ω+, ω−) is a separable function in
the ω± variables, G(ω−) is the wave function associ-
ated with the ω− variable and provides all the infor-
mation about this collective mode. In the general case,
we are considering a marginal of the wave function. In
any case, using the previously introduced definition, we
have that:

C(τ) =
1
2

− 1
2
Re[

∫
G(ω−)G∗(−ω−)eiω−τdω−],

(15)

where we have transformed the double integral of Eq.
(5) into a single one, in the form of (14).

Thanks to this transformations, the analogy between
Eqs. (14) and (15) can be more easily carried out. In
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Fig. 1 Modified HOM experiment including a time delay
τ in one input arm and frequency displacements of μ in
the other input arms. Photon pairs are generated by SPDC
in orthogonal polarizations. For each pair, the photons are
spatially separated with a polarizing beam splitter (PBS)
and sent to two arms of an interferometer. A half wave-
plate rotates the polarization on one of the two arms. A
time delay τ and a frequency displacement μ are inserted.
Photons are detected at the output of a 50/50 beam splitter,
and coincidences are measured. As described in Sects. 4 and
4.3, the experiment can also be seen as composed of a prepa-
ration step (for state engineering and for an alternative to
implement frequency displacements for quantum state mea-
surement, red box), a manipulation step (that can be used
to implement logical gates, as described in 4.3 or for quan-
tum state measurement as well, green box) and a detection
step based on coincidence measurements (blue box)

the first place, we can notice that the position displace-
ment of (14) corresponds to a displacement in the ω−
variable in (15). In the same way, the momentum dis-
placement of (14) is equivalent to the time displace-
ment appearing in (15). It is clear that transformations
of the type ±ω− → μ ± ω− would transform (15) into
the exact mathematical analog of (14) with the replace-
ments τ → p, ω− → 2q and x → μ. By analyzing
the interferometer in Fig. 1, we see that a frequency
displacement of μ in one of the interferometer’s arms
would modify the photonic state and its wave function
in such a way that the coincidence detection at the out-
puts of the interferometer would give:

C(μ, τ) =
1

2
− 1

2
Re

[∫
G(μ + ω−)G∗(μ − ω−)eiω−τdω−

]
.

(16)

We leave the discussion about possible ways to exper-
imentally implement such displacements to Sect. 4. The
integral in Eq. (16) has now the same form as the one in
(14). So, what’s the meaning of all that? Is this really a
Wigner function, as (14)? And if it’s the case, what type
of information can it provide about the state, or at least
about the part of the state associated with variable ω−?
These issues were addressed in [8,17,18], leading to the
conclusion that indeed, the coincidence detection of the
output of a HOM interferometer can be expressed as:

C(μ, τ) =
1
2

− 1
2
W−(μ, τ), (17)

where W−(μ, τ) =
∫

G(μ + ω−)G∗(μ − ω−)e2iω−τdω−
is the chronocyclic Wigner function associated with
the variable ω− of the photon pair. The chronocyclic
Wigner function is currently used in classical optics
to characterize the frequency state of classical fields.
In this context, but at the intersection with the quan-
tum optics community, interesting experiments reveal-
ing sub-Planck-like structures of the time-frequency
phase space were performed in [19,20]. For single pho-
tons, or pairs of single photons, and thanks to the statis-
tics and symmetries of this particular field states, the
chronocyclic Wigner function is directly connected to
the measurement outcome statistic of time and fre-
quency measurements taken on these states. It can thus
be used to completely characterize the time/frequency
state of individual photons and to display their statis-
tical and entanglement properties [21,22]

In the case of a biphoton wave function which is sepa-
rable in the variables ω− and ω+, this information com-
pletely characterizes the quantum state of the biphoton
associated with the variable ω−. In particular, we can
notice that the usual shape of the HOM dip is nothing
but a cut in the phase space of varying τ and at μ = 0
of a Gaussian spectral function.

An important point to address is the fact that we’re
dealing here with the quantum description of the pho-
ton pair detected in coincidence, so the Wigner func-
tion describes the photonic quantum state in frequency.
The quantum statistics of the field it refers to gives to
W−(μ, τ) specific properties having a quantum inter-
pretation. For instance, in [7], it was shown that if
C(0, τ) > 1/2, then the photon pair is frequency entan-
gled. We can show that having C(μ, τ) > 1/2 is also an
entanglement witness, and this corresponds precisely to
saying that the existence of negative points of W−(μ, τ)
is a proof that the photon pair is frequency entangled.

Interpreting the integral in (16) as a Wigner function
contributes to provide a physical picture of frequency
and time of single photons as quantum continuous vari-
ables. Even though it is known that such degrees of free-
dom are continuous, in most protocols and applications
they are either discretized [23–25] or distributed in the
basis of discrete modes [26,27] so that their genuine
continuous character is not fully exploited. As shown
in [12], the single photon time and frequency variables
can also be used for quantum information, computing
and communication protocols analogously to “usual”
quantum continuous variables in quantum optics—as
the vibrational state of trapped ions or the quadratures
of the electromagnetic field. This opens the perspective
to further expand the applications of single photon-
based quantum information protocols, since frequency
and time variables are shown to be the continuous ver-
sions of polarization degrees of freedom, for instance.

As a concluding remark for this part, we have seen
that the coincidence probability in a HOM experiment
is a direct measurement of the Wigner function asso-
ciated with the ω− variable of a photon pair. This
may seem restrictive, but it is only a consequence of
the choice of the experimental system and its relevant
degrees of freedom. We have shown in [8] that the HOM
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provides a way to characterize other photonic degrees
of freedom as well, as for instance the Wigner function
associated to the transverse position and momentum
coordinates. For these degrees of freedom, it is easier
to perform spatial rotations of the field’s profile so that
one can directly access different combinations of vari-
ables, as for instance the one associated not only to the
difference but also to the sum of the transverse coordi-
nates of the photons.

It is also possible to adapt the ideas proposed in [8] so
as to access the full Wigner function of a single photon.
In this case, instead of seeing the photon pair generated
by a SPDC process as produced by the physical device,
we can interpret it as the product of a series of logical
gates that are applied to a separable state. For this, it
was shown in [22,28] that the frequency beam-splitter
operation defined as

Û |ω1, ω2〉 = |ω+, ω−〉. (18)

plays the role of the entangling interaction that nat-
urally occurs in the SPDC process. These entangling
operations are physically associated with the phase
matching condition and energy conversation. Thus, the
produced entangled state emitted by the SPDC-based
device can formally be obtained by starting from two
initially separable single photons described by the wave
function |ψ〉 =

∫∫
dω1dω2f(ω1)g(ω2)|ω1, ω2〉, which are

then entangled by a frequency beam-splitter operation.
As a result of this interpretation, we can interpret

the function f (resp. g) of the separable initial photon
pair as being the same as the function modeling the
energy conservation (resp. the phase-matching conser-
vation) of a SPDC process. Thus, the coincidence mea-
surement corresponds to measuring the spectral func-
tion of an initial single photon that has been entan-
gled (changed variables) by the device. In Ref. [28],
we also proposed a direct way for implementing such
an operation with nonlinear crystals in cascade. More
efficient ways could also be investigated within light-
matter interaction using split-ring resonators or with a
quantum emitter embedded into a waveguide [29,30].

Finally, if a separable two-photon state enters into
the HOM interferometer, the coincidence probability
corresponds to the spectrogram:

S(μ, τ) =
1
2

(
1 −

∣∣∣∣
∫

f∗(ω1)g(ω1 − μ)eiω1τdω1

∣∣∣∣
2
)

.

(19)

The spectrogram is the absolute value of the windowed
Fourier transform. The amplitude and phase of the
spectral function f of one single photon could be recon-
structed using a phase-retrieval algorithm if the spectral
function g, used as a window, is known.

As a conclusion, the HOM interferometer provides
various ways for measuring the amplitude and phase of
the spectral function of single- and two-photon states.

4 Quantum state manipulation and
engineering

We have seen that interpreting the HOM experiment
as a direct measurement of the Wigner function of the
biphoton associated with the variable ω− requires being
capable of implementing displacements in the time–
frequency phase space. While time displacement is in
practice easy to implement in quantum optics by tem-
poral delay lines, frequency displacement requires more
involved experimental techniques at the single photon
level, some of them based on nonlinear optics. Never-
theless, frequency displacements are necessary not only
to have access to the whole chronocyclic phase space
and characterize the single photon state, but also for
quantum state engineering. A possibility to implement
frequency shifts is by using electro-optic modulators,
which are commercially available, with performances
compatible with single photon operation. Such devices
were used to perform the spectral tomography of single
photons [31] or measuring only their temporal envelope
[32]. The direct signature of such frequency shifts was
observed through the decrease of the visibility of the
dip in HOM interferometry in [33]. In [34], the spectral
tomography of an attenuated coherent optical field at
the single photon level has been performed by using an
electro-optics modulator as frequency shifter.

In this section, we take a different direction and
provide solutions to implement phase space displace-
ments using techniques as pump engineering and post-
selection.

In order to fix the ideas, we provide the details of a
specific experimental system to illustrate our method.

4.1 An experimental context

Counterpropagating phase-matching offers a high ver-
satility to engineer the spectral wave-function and the
exchange statistics of photon pairs, as probed in the
HOM experiment. This configuration can be found, for
instance, in semiconductor chip-integrated sources of
photons pairs, as the one shown in Fig. 2a. A SEM
image of it is shown in Fig. 2b. The source is a Bragg
ridge microcavity made of a stack of AlGaAs layers
with alternating aluminum concentrations [35,36]. It is
based on a transverse pump scheme, where a pulsed
laser beam, impinging on top of the waveguide with
an incidence angle θ, generates pairs of counterpropa-
gating and orthogonally polarized photons (signal and
idler) by SPDC. Along the epitaxial direction momen-
tum conservation is implemented through a quasiphase-
matching structure of AlGaAs layers (shown in orange
in Fig. 2a), with alternating high and low values of the
effective nonlinear coefficient. The Bragg mirrors pro-
vide both a vertical microcavity to enhance the pump
field and a cladding for the twin-photon modes.

Two nonlinear interactions can occur simultaneously
in the device [36]; we consider here the one that gener-
ates a TE-polarized signal photon (propagating along
z > 0, as sketched in Fig. 2a) and a TM-polarized
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Fig. 2 a Working principle and b SEM image of an
AlGaAs ridge microcavity generating frequency-entangled
photon pairs by SPDC in a transverse pump geometry

idler photon (propagating along z < 0). When the pho-
tons are generated close to degeneracy and for a narrow
pump spectrum, the biphoton state can be written in
the following form:

|ψ〉 =
∫∫

dωsdωif+(ωs + ωi)f−(ωs − ωi)|ωs, ωi〉(20)

The joint spectral amplitude (JSA) φ(ωs, ωi) = f+(ω+)
f−(ω−), where ω± = ωs ± ωi, gives the probability
amplitude to measure a signal photon at frequency
ωs and an idler photon at frequency ωi. The function
f+, reflecting the condition of energy conservation, is
given by the spectrum of the pump beam, while the
function f−, corresponding to the phase-matching con-
dition, is determined by the spatial properties of the
pump beam:

f−(ω−) =
∫ L/2

−L/2

dz Φ(z)e−i(kdeg+ω−/v̄g)z (21)

Here, Φ(z) is the pump amplitude profile along the
waveguide direction, L is length of the waveguide, v̄g is
the harmonic mean of the group velocities of the twin-
photon modes and kdeg = ωpsin(θdeg)/c, with ωp the
pump central frequency, c the velocity of light and θdeg

the pump incidence angle corresponding to the produc-
tion of frequency-degenerate photons.

4.2 Pump beam engineering

Measurements in quantum physics can be performed
in different ways. In textbooks, measurements can be
taken in any basis, and all the basis states can be
directly measured. In reality, experimental measure-
ment apparatus can often only measure quantum states
in a given specific basis, sometimes even only at some
part of this basis, or at specific points of phase space.
A solution to circumvent this and obtain full infor-
mation about the state is to manipulate it, so as the
basis transformation or the projector transformation is
implemented on the state instead of being implemented
on the measurement apparatus. Then, a measurement
in a given state (the only directly accessible one for the
measurement apparatus) means that, in fact, the sys-

tem was previously in another state which is considered
to be the measured one.

In the previous subsection, we have seen that the JSA
of the produced photon pair can be controlled by mod-
ifying the pump laser beam properties, as its angle and
position of incidence. In [37], we have exploited this fact
to propose methods not only to engineer exotic and use-
ful quantum states of the photon pair, but also to mea-
sure them by implementing displacements in different
directions of the phase space. This technique modifies
the state to be measured while keeping the measured
projectors the same.

Using the results of the previous section, if the dimen-
sions of the waveguide are large with respect to the
pump waist, i.e., in the limit where L → ∞, f− can be
approximated as the Fourier transform of the spatial
profile of the pump beam:

f−(ω−) ≈ ϕ̃

(
ω−
v̄g

)
(22)

We start by considering the situation depicted in
Fig. 3 where a Gaussian pump beam with waist wp

impinges onto the source at an angle θ and position
z0. The field distribution along the z axis is Φ(z) ∝
e−(z−z0)

2 cos2 θ/w2
pei(k sin θ)z, and therefore, f− reads:

f−(ω−) ∝ e−iω−τ0e−

(
ω−−ω

(0)
−

)2

Δω2 (23)

with τ0 = z0/v̄g, Δω = v̄g cos θ/πwp and
ω

(0)
− = (k sin θ − kdeg)v̄g.
From a general complex amplitude representation

describing a pure state f−(ω−), the Wigner function
W (τ, μ) at points τ, μ of the phase space is given by:

W (τ, μ) =

∫ ∞

−∞
dω−f−

(
μ − ω−

2

)
f∗

−
(
μ +

ω−
2

)
eiτω− .

(24)

Using, for instance, the expression obtained in (23), it is
easy to see that this corresponds to a Gaussian Wigner
function centered at point τ = τ0, μ = ω

(0)
− . In this

situation, shifting the pumping spot z0 is equivalent to
realizing displacements in the τ axis of the phase space
while changing the angle of incidence θ of the pump
beam corresponds to shifting the state along the μ axis.

More complex states can be obtained by engineering
the pump beam. Indeed, two identical beams imping-
ing at positions za and zb generate a superposition of
2 coherent states displaced along the τ axis, which is a
state analogous to a Schrödinger cat in position and
momentum phase space. The orthogonality between
the two Gaussian states is ensured if (za−zb)

v̄g
� 1

Δω .
A superposition of two Gaussian packets can also be
obtained along axis μ by using 2 different pump beam’s
incidence angles θa and θb impinging at the same point
z0 (see Fig. 3), and this type of state was shown to
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Fig. 3 Pump engineering for producing a Schrödinger cat-
like state in frequency. A divided pump that impinges on the
medium at different angles leads to different phase match-
ing conditions which are angle dependent and center the
state’s frequency distribution at different values. By chang-
ing both pump’s angles while keeping their angular distance
constant, one displaces the center of both frequency distri-
butions in the same direction and by the same amount. This
is equivalent to performing frequency displacements in phase
space, a strategy that can be used both for quantum state
engineering and for measuring the Wigner function using
the HOM interferometer at different points of the time fre-
quency phase space

be a resource for quantum metrology in [11,38]. We
can generalize even more these Schrödinger cat-like to
arbitrary configurations of pump beams, for instance a
compass state, which is a superposition of four coherent
states whose utility for metrology has been pointed out
in [39] and studied in the context of SPDC in [38]. To
obtain it, a set of 4 beams is required: 2 pairs of beams
impinging at 2 different points separated by a distance
Δz, each pair consisting of 2 beams symmetrically tilted
with respect to the degeneracy angle.

As a conclusion, we can see that pump engineer-
ing is a valuable tool not only to design interesting
frequency-time entangled states but also to implement
displacements in phase space, thus enabling quantum
state measurements.

4.3 Exploiting cavity effects

Quantum state engineering of the photon pair emit-
ted by SPDC can be implemented not only with pump
engineering but also by exploiting the properties of
the device itself. One example of this is by using the
temperature dependency of the phase-matching con-
dition, which can implement frequency displacements
enabling the direct measurement of the Wigner func-
tion W−(μ, τ) [40]. Other ways to engineer the nonlin-
ear susceptibility of a nonlinear crystal can be found in
[41] for the single photon and in [42] for the two-mode
squeezed regime.

In the following, we describe the possibilities of quan-
tum state manipulation and engineering enabled by
the interplay between cavity effects and temporal delay
between photons of a pair. The method can be adapted
and applied to a large variety of systems, either bulk
or integrated, thus increasing their flexibility and the

richness of the generated states. Here we illustrate
these concepts by taking the example of the biphoton
state generation in an AlGaAs waveguide based on a
modal phase matching scheme in a collinear geome-
try. In this case, the phase-velocity mismatch among
the three interacting fields is compensated by a mul-
timode waveguide dispersion engineering by confining
the modes using Bragg reflectors [23].

In this type of device, the facets of the nonlinear
waveguide are reflective, due to the refractive index con-
trast between semiconductor and air. For this reason, a
cavity effect occurs in the emitted photons propagation
direction, which produces a temporal grating that gen-
erates a frequency comb in their spectrum. The peaks of
the comb are spaced by τ̄ /2, where τ̄ is the time a pho-
ton takes to make a roundtrip in the cavity, and in [23]
we have shown that by changing the pump frequency
we can engineer different phase profiles for the comb,
with different symmetry properties. An example can be
seen in Fig. 4, that shows as well the dependency of the
peak visibility with the reflectivity of the cavity, and
the expected HOM profile for the considered device, for
which the reflectivity R ≈ 0.3. This cavity effect enables
the discretization of such frequency combs, which are
raising a considerable interest in the community, since
they can be used as qudits [23], that can have appli-
cations in quantum key distribution, for instance [43].
The full physical analysis of the HOM experiment when
photon pairs with a frequency comb are used has been
studied in [44].

From the continuous variables perspective, large
superpositions of numerous highly localized states can
be used to encode error-protected qubits. Such states
present redundancy and translational symmetry in the
ideal case of an infinite superposition of infinitely local-
ized states. These properties are interesting for quan-
tum error correction, as first proposed by Gottesman-
Kitaev and Preskill (GKP) [45]. The so-called GKP
states are robust against small displacements in phase
space (small with respect to the comb spacing in posi-
tion and momentum representation), and they can be
used not only to encode quantum information but also
as a resource to correct displacement errors that affect
different states defined in continuous variables [46]. In
addition, it has been shown that these states are suf-
ficient non-Gaussian elements to complete Gaussian-
based quantum computation and turn it universal [46].

In spite of its numerous applications and its funda-
mental interest for quantum computing with continuous
variables, the experimental production of GKP states is
extremely challenging in the quadrature representation,
since it involves creating highly non-Gaussian states.
Nevertheless, some experimental results exist using
superconducting circuits operating in the microwave
range [47] and using the motional state of trapped ions
[48]. In [49], it was shown that spatial gratings can
be used to engineer GKP states using the transverse
position and momentum degrees of freedom of single
photons. As for time and frequency variables, the cav-
ity structure of AlGaAs semiconducting device natu-
rally creates a comb structure, as mentioned. We have
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Fig. 4 Simulated results of HOM interferometry for a
biphoton frequency comb generated by an AlGaAs non-
linear cavity. Horizontal axis: time delay between peaks in
units of τ̄ . Top panel: simulation of the dependency of the
coincidence probability with the cavity reflectivity (verti-
cal axis) and time. The color code refers to the coincidence
probability that oscillates between 0 and 1 according to the
time delay, P = 1 for an anti-symmetric state and P = 0
for a symmetric one. The symmetry of the produced state
is related to the resonance or anti-resonance of the pump
beam with the cavity frequency. On the top left, the pump
beam frequency is resonant with the cavity frequency, and
on the top right, the pump beam is anti-resonant with the
cavity frequency. The corresponding produced states can be
associated with GKP-like states in different bases. Bottom
panel: Vertical axis: simulation of the coincidence probabil-
ity for the same states at the top for R = 0.3. This figure is
a reproduction from [23]

shown in [12] that such comb can, indeed, be seen as
an entangled GKP state, and measuring time or fre-
quency of one the photons enables correcting the errors
of the other, in a reminiscence of a measurement-based
quantum computing scheme.

The main idea behind our results is the fact that
the effective nonlinear interaction producing the pho-
ton pair in a cavity can be seen as a combination of
universal gates, as defined in [22], acting on a separa-

ble ideal pair of GKP states. The effect of such gates
is to add noise to the ideal state, under the form of
a classical distribution of displacement operators, and
entangle both states. Such operations can be seen as
a small quantum circuit that produces entangled GKP
states, which were proven to be a resource for quantum
error correction.

Additionally, frequency-encoded GKP states can also
be manipulated thanks to the HOM interferometer. As
a matter of fact, in the subspace formed by GKP states,
time and frequency displacements of fixed amounts,
corresponding to the combs’ interspacing, act as Pauli
matrices do on qubits. Thus, fixing the time delay in one
arm of the HOM interferometer is equivalent to apply-
ing a quantum gate analogous to the Pauli matrix σx

to a GKP state, as was shown in [12].
Of course, one can use different techniques to gener-

ate frequency comb structures, as placing a cavity in
one arm of the HOM interferometer, as done in [50].
Nevertheless, using the natural cavity-like structure in
the device studied in [12] is interesting since it avoids
extra sources of losses.

5 Discussion and conclusion

We have revisited the HOM experiment, a benchmark
in quantum optics and quantum physics, taking a phase
space perspective which enables interpreting time and
frequency degrees of freedom of single photons as gen-
uine quantum continuous variables, in perfect analogy
with position and momentum. We also discussed the
quantum nature of this experiment and how classical
results reproducing the ones due to photon statistics
may deserve to be interpreted under a different per-
spective.

We have focused on a specific experimental system
and shown how exotic states can be engineered in such
a device by manipulating a classical pump beam. Also,
we identified the “natural” output of such a device
as an entangled state with quantum properties, which
were shown to be useful for quantum error correction.
The presented original approach to the HOM experi-
ment opens the possibility of novel applications of sin-
gle photon-based protocols and shows that quantum
phenomena have not stopped surprising us.

As an interesting perspective, we should also mention
the extension of the presented results to the atomic ver-
sion of the HOM experiment [51], performed by Alain
Aspect and co-workers.
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M.I. Amanti, P. Milman, F. Baboux, S. Ducci, ACS
Photonics 8, 2764 (2021)

11. Y. Chen, M. Fink, F. Steinlechner, J.P. Torres, R.
Ursin, npj Quantum Inf. 5, 43 (2019). https://doi.org/
10.1038/s41534-019-0161-z

12. N. Fabre, G. Maltese, F. Appas, S. Felicetti, A. Ketterer,
A. Keller, T. Coudreau, F. Baboux, M.I. Amanti, S.
Ducci et al., Phys. Rev. A 102, 012607 (2020). https://
doi.org/10.1103/PhysRevA.102.012607

13. S. Sadana, D. Ghosh, K. Joarder, A.N. Lakshmi, B.C.
Sanders, U. Sinha, Phys. Rev. A 100, 013839 (2019).
https://doi.org/10.1103/PhysRevA.100.013839

14. H. Ollivier, S.E. Thomas, S.C. Wein, I.M. de Buy Wen-
niger, N. Coste, J.C. Loredo, N. Somaschi, A. Harouri,
A. Lemaitre, I. Sagnes et al., Phys. Rev. Lett 126,
063602 (2021). https://doi.org/10.1103/PhysRevLett.
126.063602

15. M.J. Woolley, C. Lang, C. Eichler, A. Wallraff, A. Blais,
New J. Phys. 15, 105025 (2013)

16. F. Bouchard, A. Sit, Y. Zhang, R. Fickler, F.M. Miatto,
Y. Yao, F. Sciarrino, E. Karimi, Rep. Progr. Phys.
84, 012402 (2020). https://doi.org/10.1088/1361-6633/
abcd7a

17. G. Boucher, T. Douce, D. Bresteau, S.P. Walborn, A.
Keller, T. Coudreau, S. Ducci, P. Milman, Phys. Rev.
A 92, 023804 (2015)

18. N. Fabre, J. Belhassen, A. Minneci, S. Felicetti, A.
Keller, M.I. Amanti, F. Baboux, T. Coudreau, S. Ducci,
P. Milman, Phys. Rev. A 102, 023710 (2020). https://
doi.org/10.1103/PhysRevA.102.023710

19. L. Praxmeyer, P. Wasylczyk, C. Radzewicz, K.
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J.J. Garćıa-Ripoll et al., Phys. Rev. Lett. 126, 023603
(2021)

30. H. L. Jeannic, A. Tiranov, J. Carolan, T. Ramos,
Y. Wang, M. H. Appel, S. Scholz, A. D. Wieck, A. Lud-
wig, N. Rotenberg, et al. (2021). arXiv:2112.06820
[physics, physics:quant-ph]

31. A.O.C. Davis, V. Thiel, M. Karpiński, B.J. Smith, Phys.
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40. N. Tischler, A. Büse, L.G. Helt, M.L. Juan, N. Piro,
J. Ghosh, M.J. Steel, G. Molina-Terriza, Phys. Rev.
Lett. 115, 193602 (2015). https://doi.org/10.1103/
PhysRevLett.115.193602

41. A. Dosseva, L. Cincio, A.M. Brańczyk, Phys. Rev. A
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