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Paris, France

2 INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Trento, Italy
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Abstract. Quantum effects of fields on curved spacetimes may be studied in the laboratory thanks to
quantum fluids. Here we use a polariton fluid to study the Hawking effect, the correlated emission from the
quantum vacuum at the acoustic horizon. We show how out-of-equilibrium physics affects the dispersion
relation, and hence the emission and propagation of correlated waves: the fluid properties on either side
of the horizon are critical to observing the Hawking effect. We find that emission may be optimised by
supporting the phase and density of the fluid upstream of the horizon in a regime of optical bistability.
This opens new avenues for the observation of the Hawking effect in out-of-equilibrium systems as well as
for the study of new phenomenology of fields on curved spacetimes.

1 Introduction

Analogue gravity is a type of analogue quantum sim-
ulation that enables the laboratory study of quantum
field theories on curved spacetime via the equivalence
between the kinematics of excitation in material sys-
tems and of massless fields in astrophysics [1,2]. For
example, a one-dimensional trans-sonic fluid flow that
is a fluid whose flow velocity goes from being sub- to
super-sonic forms an acoustic horizon where the flow
velocity of the fluid equals the speed of sound [3]. In this
configuration, excitations of the acoustic field behave
as though they propagated on an effectively curved-
spacetime whose properties are directly controlled by
the geometry of the fluid flow [4], thus simulating a
Black Hole. Importantly, quantum fluctuations of the
vacuum scatter at the acoustic horizon, causing the
emission of correlated waves on both sides of the hori-
zon by the Hawking effect (HE) [3,5].

Experimental evidence for correlated emission by the
HE was recently reported in analogue gravity setups
based on classical [6,7] and quantum fluids [8]. While
the thermal fluctuations of classical fluids overpower
quantum fluctuations at the horizon such that vacuum
emission cannot be observed there, this can be done
with quantum fluids. Vacuum emission would yield a
non-separable state at the output [9–18], whose degree
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of entanglement could be quantified from the density
and correlation spectra [19,20].

Although most theoretical work on the HE has been
dedicated to analogues based on atomic Bose–Einstein
condensate (BEC) [21–30], correlated emission with
comparable properties may also be observed in quan-
tum fluids of microcavity polaritons [31–33] where a
sonic horizon has already been experimentally realised
in one- and two-dimensional flows [34,35]. In both quan-
tum fluids, the HE manifests itself as the emission
of collective Bogoliubov excitations that propagate in
opposite directions on either side of the horizon. How-
ever, to date, theoretical works on polariton analogues
have predicted a signal that appears hardly measurable
because of its low strength (correlations on the order of
5 × 10−5 [31–33]) and short propagation length (about
12µm from the horizon for the experimental configura-
tion of [34]).

The main difference between quantum fluids of atoms
and of polaritons is that the latter are intrinsically
out of thermal equilibrium. Radiative and nonradia-
tive dissipative processes in microcavities must be com-
pensated for by optical pumping, and so the non-
equilibrium state is not determined by thermodynamic
equation conditions [36]. The radiative decay of polari-
tons does not solely render real-time, in-situ diagnosis
of the fluid properties possible (a notable experimen-
tal simplification compared with Bose–Einstein conden-
sates of atoms), it also is at the origin of a unique phe-
nomenology in the collective dynamics. Specifically, in
the regime of high fluid density of interest to horizon
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Fig. 1 Waterfall geometry with a polariton fluid. a Sketch
of the system: the pump spot is structured in a two-steps
profile: on the first step (far left), the fluid is set above
the bistable regime (|Fp|=9). On the second step, the fluid
density is supported near the turning point of the bista-
bility loop (|Fp|=1.2, point C in c). The angle kp of the
pump field creates a transsonic fluid flow across an attrac-
tive obstacle at x = 0. b Bistability loop. c Top: pump
profile near the defect (|Fp|=1.2). The pump strength is set
to zero 10µm before the defect. Bottom:Spatial properties
of the fluid when setting the fluid density and phase in the
upstream region as close as possible to point C of the bista-
bility loop. Black, pump intensity; red, fluid velocity; blue,
speed of excitations

physics, a gap may open between the dispersion relation
and the frequency of the pump [37,38]. Here we show
how this affects the strength of the HE and how, in
turn, two-point correlations can be used as a diagnostic
for out-of-equilibrium effects.

In this paper, we explore the parameter space of
quantum fluids of polaritons and identify a regime that
is specifically favourable to the formation of correla-
tions by the HE. The hydrodynamics of the fluid are
controlled by its density and phase profiles, which are
in turn connected with the optical bistability of the
system (the hysteresis cycle of its polariton-density-to-
optical-power relationship) [39], and so we investigate
vacuum emission by the HE from this perspective. We
study the influence of the fluid density on either side
of the horizon on vacuum emission. In doing so, we
explain how out-of-equilibrium effects in the configura-
tions considered in [32–34] limit the emission of Bogoli-
ubov excitations, and we show how to engineer the fluid
such that the strength and spatial extension of the cor-
relation signal become amenable to experimental detec-
tion. We obtain an order of magnitude increase in the
length and a factor 4 in the strength of quantum corre-
lations from vacuum fluctuations compared to [32–34].
Fine control upon the working point provides us with
a better understanding of the influence of the proper-
ties of the quantum fluid of polaritons on emission by
the HE in systems out of equilibrium. Our results open

the way to the experimental observation of the HE in
polaritonic systems.

2 Polariton fluid and analogue gavity

In order to reproduce the kinematics of a scalar quan-
tum field near an event horizon, we use the model of the
so-called waterfall geometry illustrated in Fig. 1 in lab-
oratory frame coordinates x and t. This flow profile is
realised in a polariton wire, a laterally confined micro-
cavity in which the polariton dynamics are effectively
one-dimensional. The microcavity is pumped with a
continuous wave, coherent pump laser incident at a
given angle with respect to the normal to form a sta-
tionary flow along the wire. The light field is structured
in a step-like intensity profile (black line in Fig. 1c). The
first step of high intensity excites the fluid in the non-
linear regime while the second step supports the fluid
density at a tunable working point. As in [33,34], the
cavity features an attractive defect (a localised 1µm
long broadening of the wire) placed after the region
where the pump lies.

Our system is a one-dimensional quantum fluid of
exciton-polaritons whose flow velocity goes from being
sub- to super-sonic, thus forming a sonic horizon where
the local flow velocity of the fluid equals the local
speed of sound. For now, we begin with the theoreti-
cal description of a homogeneous quantum fluid and of
the propagation of quantum fluctuations of its phase
and density.

Exciton-polaritons are quasi-particles resulting from
the interaction of light with matter in a semiconduc-
tor microcavity. Photons emitted by a laser are sent
into a cavity formed by two Bragg mirrors, wherein
their dispersion is the usual Fabry–Perot dispersion,
giving them an effective (very low) mass. These trapped
photons create excitons, which are bound electron-hole
pairs, in the semiconductor microcavity. Strong cou-
pling between the photons and excitons trapped in
quantum wells gives rise to two eigenstates for the
total Hamiltonian, known as the lower polariton (LP)
and upper polariton (UP) branches, separated by the
Rabi splitting. Furthermore, the Coulomb interaction
between excitons results in an effective non-linearity
for exciton-polaritons (polaritons). The dynamics of
the mean-field are governed by a generalised Gross–
Pitaevskii equation, which leads to Euler and continu-
ity equations describing the system as a quantum fluid.
Historically, polaritons have first been described as two-
dimensional quasi-particles [37], although the theory
may be reduced to one-dimensional cavities called wires
[32–34], as in the present case.

In our case, all energies involved are small compared
to the Rabi splitting so the exciton-polariton system
can be described by the mean field approximation [36].
At this level the system is described by a single scalar
field Ψ, the field of lower polaritons, whose dynamics
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are governed by the driven-dissipative Gross–Pitaevskii
equation (GPE)

i∂tΨ(x, t) = Fp(x, t)

+

(
ω0− �

2m∗ ∂2
x+V (x)+g|Ψ(x, t)|2−i

γ

2

)
Ψ(x, t).

(1)

Fp is the field of the pump laser, ω0 is the frequency of
the lower polaritons at the bottom of the branch, m∗ is
their effective mass, V is the ‘external potential’ (that
is controlled via the cavity geometry), g is the effec-
tive non-linearity, γ is the loss rate. The field Ψ(x, t) is
written in the laboratory frame.

In order to make the link between this Gross–
Pitaevskii equation and the description of the polariton
ensemble as a fluid, we perform the Madelung trans-
formation: we write the field of lower polaritons as
Ψ(x, t) =

√
n(x, t)eiθ(x,t) and insert this expression into

Eq. (1). We take the real and imaginary parts to arrive
at the Euler and continuity equations for the polariton
fluid [36]:

∂tθ +
m∗v2

2�
+

�

2m∗
∂2

x

√
n√

n
+ V + gn +

�Fpe
−iθ

√
n

= 0,

∂tn + ∂x(nv) = γn − 2�Fpe
−iθ

√
n (2)

with

v =
�

m∗ ∂xθ. (3)

The first and second equations of (2) correspond to
the Euler and continuity equations of atomic Bose–
Einstein condensates (BECs), albeit with terms coming
from coherent pumping, losses and quantum pressure.
We see that the properties of the fluid depend on two
parameters, namely its density n = |Ψ|2 and phase θ.
The spatial variations of the phase are encapsulated in
v, which we identify from Eq. (3) as the flow velocity of
the fluid. Via n and θ, the geometry of the flow may be
all-optically controlled by engineering the profile and
phase of the pumping laser.

Let us first consider the case of a non-dissipative,
non-driven fluid (leave out γ and Fp). We also neglect
the quantum pressure so Eq. (2) become

∂tθ +
m∗v2

2�
+ V + gn = 0

∂tn + ∂x(nv) = 0.
(4)

We investigate small excitations in this system, i.e. low-
k phononic modes on top of the fluid (see Sect. 2.1 for
details). The linearisation of Eq. (4) around a back-
ground state yields a wave equation that is strictly iso-
morphic to the wave equation of a massless scalar field
Ψ1 (the Klein–Gordon equation) on a 1+1D curved
spacetime,1 ΔΨ1 ≡ 1√−η

∂μ (
√−ηημν∂νΨ1) = 0, with

1 In the covariant notation, the upper and lower Greek
indices are indices of coordinates. These indices are used

the metric tensor

ημν =
n

c2

(− (
c2 − v2

) −v
−v 1

)
, (5)

c ∝ √
n the ‘speed of sound’ and η = Det(ημν). The var-

ious components of this ‘acoustic metric’ [3] are given
by the fluid velocity. Notably, there is an event hori-
zon where v = c (the time component η00 of the metric
goes to zero) [4]. So optically controlling the flow veloc-
ity and the speed of sound permits the engineering of
an effectively curved spacetime for acoustic waves. Cru-
cially, this is also valid for the quantized acoustic field,
such that correlated pairs are emitted at the horizon by
the Hawking effect [5,21].

In paragraph 2.5 we will show that the driven-
dissipative nature of polaritons does not modify the
kinematics of excitations. On the contrary, these addi-
tional interesting properties can be harnessed to reveal
new effects.

2.1 Bogoliubov excitations

We now study the propagation of small fluctuations
such as quantum fluctuations in this fluid using the
linearisation of the Gross–Pitaevskii equation with the
Bogoliubov method.

Assuming the pump beam to be monochromatic with
frequency ωp, Fp(x, t) = Fp(x)e−iωpt, we write the
polariton field as Ψ(x, t) = Ψ(x)e−iωpt. In the steady
state the Gross–Pitaevskii Equation (1) becomes

(
ω0 − ωp − �

2m∗ ∂2
x + V (x)

+g|Ψ(x)|2 − i
γ

2

)
Ψ(x) + Fp(x) = 0, (6)

We first consider a configuration where the wire is
pumped with a spatially homogeneous and monochro-
matic pump of incident wavevector kp. The phase gra-
dient of the fluid is then set by, and equal to, kp while
its density is homogeneous. The steady-state GPE (6)
simplifies to

(
g|Ψ|2 − Δp − i

γ

2

)
Ψ + Fp = 0, (7)

where Δp is the effective detuning defined as the differ-
ence between the pump energy and that of lower polari-
tons,

Δp = ωp − ω0 − �k2
p

2m∗ . (8)

for the time and space components (in this order, ranging
over the indexing set {0, 1}, equivalent to the traditional
{t, x}). Repeated indices are automatically summed over:
y =

∑1
i=0 cix

i = c0x
0 + c1x

1 is simplified by convention

to y = cix
i (Einstein summation convention). ημν is the

inverse of ημν (contravariant metric).
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(a) (b) (c) (d)

Fig. 2 Bogoliubov dispersion. a Dispersion in the co-moving frame of the fluid at point C in Fig. 1. Real part of the
dispersion (11) for a pump vector kp = 0.25µm−1. Blue, ω+, positive-norm modes; orange, ω−, negative norm modes.
Red dashed lines, speed of sound. The dispersion in the laboratory frame is obtained by Doppler-shifting the fluid frame
dispersion: b Laboratory-frame subsonic dispersion exactly at point C (Eq. (11)). c Laboratory-frame subsonic dispersion
away from point C on the upper branch of the bistability loop (Eq. (13)). d Laboratory-frame supersonic dispersion of a
ballistic fluid (Eq. (14)). Blue, positive-norm branch; orange, negative-norm branch. Filled dots, local modes of positive
group velocity; circles, local modes of negative group velocity. ωmin, lower frequency of the gapped positive-norm branch;
ωmax, upper frequency of the negative-norm branch

Bogoliubov excitations are then mathematically
obtained by linearising the GPE (6) around a back-
ground: Ψ → Ψ+δΨ, and Ψ∗ → Ψ∗+δΨ∗. The dynam-
ics of the excitations (δΨ, δΨ∗) is given by the Bogoli-
ubov matrix:

i∂t

(
δΨ
δΨ∗

)
= L

(
δΨ
δΨ∗

)
. (9)

We go to the reference frame co-moving with the fluid
via a Galilean transform (x → x − vt). In the special
case of a homogeneous system where the interaction

energy matches the detuning, gn = ωp − ω0 − �k2
p

2m∗ , the
Bogoliubov matrix L can be written in this frame as

L =

(
gn + �k2

2m∗ − iγ/2 gn e2ikx

−gn e−2ikx −gn − �k2

2m∗ − iγ/2

)

. (10)

where k is the wavenumber of Bogoliubov excitations in
the co-moving frame. Upon diagonalization, we retrieve
the Bogoliubov dispersion relation in this co-moving
frame, which relates k to the frequency of the Bogoli-
ubov excitations ω:

ω
Δp=gn
± = ±

√
�k2

2m∗

(
�k2

2m∗ + 2gn

)
− iγ/2. (11)

Figure 2a shows the real part of Eq. (11), the dis-
persion curve, which, in this case where Δp = gn,
is identical to that of atomic BECs. There are two
branches ω

Δp=gn
± of the dispersion, which are symmet-

rical around the point ω = 0, k = 0. At low k, the dis-
persion curve has a linear slope: ω

Δp=gn
± −−−→

k→0
±cBk,

with cB is the speed of excitations in the fluid, which
is also the speed of sound in the fluid.

cB = cs =
√

�gn/m∗ (12)

At large k, the dispersion is that of free massive parti-
cles, ω

Δp=gn
± −−−−→

k→∞
�k2/2m∗. There, |∂ω

Δp=gn
± / ∂k| >

cs the gradient of the dispersion curve is larger than
the speed of sound.

2.2 Acoustic horizon

The polariton ensemble behaves as a fluid whose dis-
persive properties depend on its density and velocity,
and we will use these properties to study the waterfall
geometry, which is the basis of our black hole analogue
model. The waterfall separates two regions of fluid den-
sity n and phase θ. The polariton fluid flows across a
defect close to x = 0 in the positive x direction at veloc-
ity v = �

m∗ ∂xθ, as shown in red in Fig. 1c. The speed
of excitations in the fluid depends on their wavenum-
ber. As mentioned above, Bogoliubov excitations have a
group velocity ∂ω/∂k. However, the relevant case for our
model is when the excitations have a small wavenumber
k and their speed, given by Eq. (12), does not depend
on k and is proportional to the square root of the fluid
density (in blue in Fig. 1c).

As can be seen in Fig. 1c, the speeds of the fluid
and of the excitations, calculated from the GPE equa-
tion Eq. (1), vary a lot when the flow goes across the
defect, which creates an attractive potential V (x) =
−0.85µeV with a Gaussian distribution centred at
x = 0. Upstream of the defect, for x < −2µm we have
v < cB , the flow is subsonic while downstream of the
defect, for x > −2µm, v > cB , the flow is supersonic,
so there is an acoustic horizon at xH = −2µm. The
region where the flow is subsonic is outside the hori-
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zon, the region where the flow is supersonic is inside
the horizon.2

In the next section, we will focus on the properties
of the fluid in the waterfall configuration and the kine-
matics of collective (or Bogoliubov) excitations therein.
As can be seen in Fig. 1c, the flow velocity v is rather
flat, except in the near-horizon region. In particular, v
spikes around x = 0 because of approximate conserva-
tion of the flow current there (under dissipation). Beside
this narrow feature, the flow velocity may be treated as
homogeneous on either side of the region around x = 0.
Meanwhile, cB is flat in the pumped region, slightly
bumps between the edge of the pump and the defect
as well as just after the defect (under the approximate
conservation of the flow current mentioned above) and
then decreases as the polariton population decays. For
the sake of simplicity, we may consider that the speed of
excitations is homogeneous on either side of the region
around x = 0.

We will first discuss in more detail the dispersive
properties of the fluid as a function of the parameters of
the polariton field and identify the plane waves of this
field before explaining how to construct “global modes”
of the inhomogeneous system (including the horizon).
These are the modes in which correlated emission from
vacuum occurs. We then show the influence of out-of-
equilibrium physics on the kinematics of Bogoliubov
excitations on either side of the horizon.

2.3 Dispersion relations and optical bistability

In this section, we treat the system as composed of two
regions homogeneous in their properties on either side
of the horizon at xH = −2µm. The properties of the
polariton field in the upstream region are set by those
of the pump, and they are given by Eq. (6), with no
external potential (V (x) = 0). By linearizing Eq. (6)
in these conditions, we obtain the dispersion relation in
the laboratory-frame:

ω±(k) = ±
√(

�δk2
p

2m∗ − Δp + 2gn

)2

− (gn)2 + vδkp − iγ/2

(13)

with Δp := ωp − ω0 − �k2
p/2m∗, the effective detuning

between the pump energy �ωp and that of polaritons
flow. kp is the wave-number of the pump field, δkp = k−
kp, and g the interaction strength. The term vδkp is due
to the Doppler effect in the laboratory frame [37]. Note

2 There exist stricter definitions of the curvature of the
effective spacetime in analogue gravity, see [19], but the
related considerations do not impact the conclusions we
draw in the present work. Strictly speaking, the inter-
face at x = −2µm is a sonic horizon only at frequen-
cies for which there are two propagating local modes in
the upstream region and four propagating local modes
(including negative-norm modes) in the downstream region
[25,40,41]: that is for ω ∈ [ωmin, ωmax].

that unlike the configuration considered in the previous
section, we do not assume that the interaction energy
matches the effective detuning, and the dispersion curve
is thus modified.

On the other hand, in the downstream region, the
pump field is zero, so the polariton fluid propagates
ballistically there [42] and the dispersion is

ω±(k) = ±
√

�δk2
0

2m∗

(
�δk2

0

2m∗ + 2gn

)

+ vδk0 − iγ/2, (14)

with δk0 = k − k0 where k0 = m∗v/� denotes the wave-
number of the ballistic fluid.

In the upstream region, due to presence of the pump
laser, the relationship between the density of polaritons
n and the intensity of the pump laser |Fp|2 is obtained
from squaring Eq. (7)

(
(gn − Δp)

2 +
γ2

4

)
n = |Fp|2 (15)

In the case where the energy of the laser is above that
of the lower polaritons, Δp > γ

√
3/2, this equation has

several solutions in n for a given value of Fp [43]. This
degeneracy of fluid densities is due to optical bista-
bility [39]. As shown in Fig. 1b, there is a hysteresis
relationship between the fluid density n and the pump
strength |Fp|, which comes from the bistability loop (cf
“Appendix A”).

The previous equation can be written in terms of the
velocity of excitations cB .

((
m∗c2

B

�
− Δp

)2

+
γ2

4

)
m∗c2

B

g�
= |Fp|2. (16)

This shows that bistability has a critical influence on
the propagation of excitations of the fluid, including
Bogoliubov excitations.

Under optical bistability, the shape of the disper-
sion curve (the real part of the dispersion relation (13))
depends on the working point along the loop, i.e. on Δp.
In the special case where Δp = gn (point C in Fig. 1b),
one recovers the behaviour given in Eq. (11) and the dis-
persion curve has a linear slope at low δkp where inter-
actions are phononic, while the dispersion at high k is
that of free massive particles, ω

Δp=gn
± −−−−→

k→∞
�k2/2m.3

Because of the linear, sound-like, dispersion of excita-
tions at short k, point C is referred to as the “sonic
point” of the bistability loop.

3 There, |∂ω
Δp=gn
± / ∂k| > cB|ω=0—the gradient of the dis-

persion curve is larger than the speed of sound, so the disper-
sion is said to be ‘superluminal’ (in analogy with superlumi-
nal corrections to the dispersion in eg [44,45]). This super-
luminal correction to the dispersion allows for the propaga-
tion of modes against the flow velocity of the fluid inside
the horizon.
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Operation at Δp < gn is also possible, in which case
the linear behaviour at short k disappears and the dis-
persion becomes quadratic. As we will show in Sect. 2.5,
this bears consequences on the emission and propaga-
tion of Bogoliubov excitations in the fluid. For now,
we consider that Δp = gn. In the downstream region
where the fluid is ballistic, interactions at low δk0 are
phononic, as shown in Eq. (14).

2.4 Modes of the system

In the configuration of Fig. 1a, the fluid flow is
transsonic: it goes from being sub- to supersonic with
a sonic horizon (v = cB) at x = −2µm. We plot
the dispersion curve in the laboratory frame (the real
part of Eq. (13)) of the subsonic fluid flow upstream in
Fig. 2b/c, and of the supersonic fluid flow downstream
in Fig. 2d. Blue (orange) curves correspond to ω+ (ω−)
solutions of Eq. (13). In the subsonic case of Fig. 2b,
the sonic behaviour close to ω = 0, with a slope shifted
by the Doppler effect, can easily be seen. In Fig. 2d the
fluid is supersonic and the shape of the dispersion curve
of the excitations in the laboratory frame is changed a
lot. The sonic behaviour at ω = 0 manifests itself by a
discontinuity in the slope of the dispersion curve (14)
in Fig. 2d.

Note that in the rest frame of the fluid, the ω+ (ω−)
modes, which are the positive (negative) norm modes
[46] have positive (negative) energies. However, in the
laboratory frame, the Doppler effect modifies the shape
of the dispersion relation. For subsonic fluid flows, the
ω− branch is at negative laboratory frame energies. For
supersonic flows, part of the negative norm ω− branch
is pulled up to positive laboratory frame energies (up
to a maximum energy which we denote by ωmax) while
part of the positive norm ω+ branch is pulled down to
negative laboratory frame energies. This has a critical
effect on the transmission of the excitations at the hori-
zon.

Now that we have described the dispersive properties
of the transsonic fluid, we consider the kinematics of
Bogoliubov excitations therein. Because of the steady-
state condition of the system, these are plane wave
modes. Eq. (13) is a fourth-order polynomial, so there
are four (positive laboratory-frame frequency) solutions
to the equations of motion in each spatial region on
either side of the interface. These solutions are found
at the intersection point of line of constant ω with the
dispersion branches at positive energies in Fig. 2c and
d. Although these solutions share the same ω (which
manifests energy conservation in the laboratory frame),
they have distinct k, i.e. they are local modes of the
homogeneous system. For ω > 0 in the upstream region
there are two propagating modes of positive norm and
two modes of complex ω and k, which are exponen-
tially growing and decaying modes. For ω < ωmax in the
downstream region, there are four propagating modes,
two of which have positive norm while the other two
have negative norm. For ω > ωmax, there are two prop-

agating modes of positive norm and two exponentially
growing and decaying modes.

Local modes in a homogeneous region may be sorted
by their respective group velocity vg = ∂ω±/ ∂k: those
which have positive group velocity propagate right-
wards (towards positive x) while those which have neg-
ative group velocity propagate leftwards. In the super-
sonic region downstream, because of the superluminal
behaviour of the dispersion relation for large k, there
are leftward propagating modes. This is a specificity
of analogue systems based on quantum fluids (be they
atomic or polaritonic [23,40,45]).

From the local modes, one may construct modes of
the whole transsonic fluid—the global modes (GMs)
[46]. These are solutions to the equation of motion that
are valid in both regions on either sides of the inter-
face. GMs correspond to waves scattering at the inter-
face, and they describe the conversion of an incoming
field to scattered fields in both regions. Although the
system is driven-dissipative, GMs may be constructed
similarly to those of conservative systems, i.e. as super-
positions of the plane wave solutions in the two homo-
geneous regions on either side of the interface [40]. GMs
are identified via their defining local mode depending
on its group velocity vg: an in GM describes the scat-
tering of an incoming plane wave to various outgoing
plane waves while an out GM describes a single outgo-
ing plane wave resulting from the scattering of various
incoming waves.

The horizon separates two regions of differing prop-
erties, so the vector bases of the in and out GMs are
different. As a result, scattering at the horizon mixes
the annihilation and creation operators of the field (as
described by a Bogoliubov matrix [20,47]). The matrix
giving the scattering of the operators of the in-going
modes a into the operators of the outgoing modes b can
be expressed as [23]

⎛

⎝
bu

bd1

b†
d2

⎞

⎠ = S

⎛

⎝
au

ad1

a†
d2

⎞

⎠ (17)

where the indices u and d indicates the upstream and
downstream positions. The S matrix elements are deter-
mined from the transmission/reflection coefficients of
an in-going mode into an outgoing mode. Because of
their negative norm, the d2 modes must be quantized
using creation operators a†

d2 and b†
d2 rather than anni-

hilation operators. This is at the origin of the Hawk-
ing radiation. As a result quantum fluctuations in the
in GMs {uin, d1in, d2in} will be converted into pairs
of real excitations in the out GMs {uout, d1out, d2out}:
the Hawking radiation will occur in correlated pairs
uout − d2out (Hawking-partner) on top of the classical
background formed by the mean-field of the polariton
fluid.4

4 As in all quantum fluids, there are also quantum cor-
relations between the partner and the companion waves
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2.5 Effects of out-of-equilibrium physics

So far we have discussed the dispersive properties of
the fluid when Δp = gn, that is, when operating at
the sonic point C of the bistability loop. In the regime
Δp < gn, the microcavity acts as an optical limiter
[37]: as can be seen in Fig. 1b, the growth of the speed
of excitations cB with the pump strength on the upper
branch of the loop is sub-linear. While the fluid is stable
in this regime, a gap opens between the ω± branches of
the dispersion curve, see Fig. 2c. We mark the bottom
of the ω+ curve as ωmin.

This behaviour is markedly different from that
observed in systems like quantum fluids of atoms.
There, the oscillation frequency of the condensate wave-
function corresponds to the chemical potential. Instead
here it corresponds to ωp. The opening of the gap illus-
trates how tuning Δp gives access to a unique phe-
nomenology of collective dynamics. Specifically, the lin-
ear behaviour at short k disappears as soon as the gap
opens and the dispersion is always quadratic, mean-
ing that the polariton ensemble cannot be superfluid.
As we will see in Sect. 3.1, this departure from super-
fluid propagation modifies the density of the fluid in the
region x < 0 as a function of the pump strength and
profile.

In Sect. 2.4, we have seen that the Hawking Effect
consists in the mixing of in GMs of opposite sign of
norm at the horizon, uin from x < 0 and d1in and d2in

from x > 0. The downstream modes only exist over the
limited interval 0 < ω < ωmax. When the gap between
ω− and ω+ opens, uin only exists for ω > ωmin > 0
so the frequency interval for scattering is reduced to
ωmin < ω < ωmax. We will show in the simulations (cf
Sect. 3.2) that the strength of vacuum emission by the
HE is thus decreased.

In brief, when Δp < gn, out-of-equilibrium physics
manifests itself in the opening of a gap between the
branches of the dispersion relation and a modification of
the shape of the dispersion to a purely quadratic form.
This affects the generation of Bogoliubov excitations as
well as their propagation in the fluid.

3 Emission by the Hawking effect

We now perform calculations with the cavity param-
eters of [34]: �γ = 0.047 meV, �g = 0.0003 meVµm
(same as in [32]), m∗ = 3 · 10−5me. Importantly,
ωp − ω0 = 0.49 meV was kept constant throughout.

We study vacuum emission via non-local correlations
in the fluid density [21], which we quantify with the
normalised spatial correlation function

g(2)(x, x′) =
G(2)(x, x′)

< n(x) >< n(x′) >
. (18)

(d1out − d2out) and classical correlations between Hawking
and the companion wave (uout − d1out) [20].

G(2)(x, x′) is the two-point correlation function of the
field (cf “Appendix B”).

In Fig. 3 we plot the operation point on the bistability
loop of the fluid on either side of the horizon (solid line,
upstream, dashed line, downstream), the pump profile
(black line) and ensuing properties of the inhomoge-
neous fluid—characterised by its velocity (red line) and
the speed of excitations cB (blue line)—as well as the
resulting density-density correlations (18). We are inter-
ested in the fluid properties and their influence on cor-
related emission. Note that we plot cB for better com-
parison between the working point along the bistabil-
ity loop and the local properties of the inhomogeneous
fluid.

3.1 Fluid configurations

We consider various flow profiles on either side of the
horizon. The bistability of the fluid on either side of the
horizon may be tuned by controlling the wave-number
of the fluid in either region by means of the pump (kp,u

or kp,d in the up- or downstream region, respectively),
see “Appendix A”. The fluid density may be supported
on the higher branch of the bistability loop by means of
the pump intensity. In order to explore the full parame-
ter space we have computed 36 correlation spectra. Not
all combinations are interesting, though, so in Fig. 3 we
present five configurations that give typical behaviours.
We consider two types of settings: in rows (a) and (b),
there is an additional beam that supports the polariton
density in the downstream region, while in rows (c), (d)
and (e) the pump strength is set abruptly to zero at
x = −7µm and so the fluid is left free to evolve from
that point on (across the defect into the downstream
region). Row (a), the fluid density is set near (but not
at) the sonic point in both regions with a jump in kp at
the interface (kp,u = 0.25µm−1, kp,d = 0.55µm−1), the
pump strength is set to 0 at x = −7µm the horizon;
row (b) the fluid density is set near to and away from
the sonic point on the upper branch of the bistability
loop in the up- and downstream region, respectively,
with a jump in kp at the interface (kp,u = 0.25µm−1,
kp,d = 0.58µm−1); rows (c), (d) and (e), the fluid den-
sity is set gradually closer to the sonic point on the
upper branch of the bistability loop in the upstream
region (kp,u = 0.25µm−1),. In configuration (e) the
fluid density is supported as close as possible to the
sonic point.

In all configurations, the fluid builds up in the region
−10µm < x < xd: a relatively small amplitude bump
in the density forms before the defect (the fluid veloc-
ity slightly dips in that region). On the other hand,
while the density of the fluid is mostly flat in the
configuration of Fig. 3a, in that of Fig. 3b its ampli-
tude undulates widely over 100µm downstream of the
horizon before flattening down. This illustrates how
attempting to force the fluid properties to a working
point away from the sonic point after it has propagated
across an obstacle destabilises it. Meanwhile, the fluid
density decreases exponentially (with a high, ballistic,
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(a)

(b)

(c)

(d)

(e)

Fig. 3 Correlated emission as a function of the trans-sonic flow profile. Left column, bistability loop: solid line,
upstream region; dashed line, downstream region. Dots, corresponding pump strength. Middle column, pump strength
|Fp| [ps−1.µm−1/2]: solid black, upstream; dashed black, downstream. Velocities [µm ps−1]. blue, speed of excitations cB ;
orange, fluid flow velocity v set by kp,u. If the pump strength is zero in the downstream region (c, d and e), the fluid

propagates ballistically (free evolution with no support) there. Right column, spatial correlation function g(2)(x, x′) − 1
(Eq. (18)), colour scale from −1.25 × 10−4 to 1.25 × 10−4
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wavenumber) in configurations (c), (d) and (e) where
there is no pump in the downstream region.

Given the variety of fluid properties and the possi-
ble fast variations within, the description of the sys-
tem as two homogeneous media adopted in Sect. 2
and amenable to analytical solutions is not valid
everywhere. Instead we must calculate the flow pro-
file and quantum fluctuations at all points. To this
end, we use the Truncated Wigner Approximation (see
“Appendix B”) to evolve the wave function and obtain
the properties of the fluid at all points in the cavity
as well as the dynamics of the Bogoliubov excitations
therein. This numerical method is adapted to analogue
systems based on atomic as well as polaritonic quan-
tum fluids [21,43]. Here, it enables the study of vac-
uum emission on highly varying backgrounds. All maps
result from a statistical average over 106 Monte-Carlo
realisations.

3.2 Correlation diagrams

In all configurations, correlations may be sorted by the
spatial region in which the involved modes propagate,
which correspond to four quadrants in the plots. The
South West quadrant (x < 0, x′ < 0) corresponds to
correlations in the upstream region; the South East and
North West quadrants correspond to correlations across
the horizon in the up- and downstream regions; the
North East quadrant corresponds to correlations in the
downstream region. All configurations have some com-
mon traces, which are most visible in Fig. 3e: (i) anti-
correlations along the x = x′ diagonal that indicate
anti-bunching under repulsive polariton interactions;
(ii) a negative moustache-shaped trace in the upstream-
downstream region that indicates correlations across
the horizon between Hawking radiation and modes in
the downstream region; (iii) oblique interference fringes
localised along the x = 0, x′ > 0 half line (and, sym-
metrically, the x′ = 0, x > 0 half line), and another
series (iv) of fringes localised along the x = 0, x′ < 0
half line. While traces (i) and (ii) are generic features
of the HE in quantum fluids, see, e.g. [21,23,30,32,33],
the fringes (iii) and (iv) are new. They indicate corre-
lations between the propagating modes uout and d1out

and a mode bound to the horizon. This coupling mani-
fests the excitation of quasi-normal modes of the acous-
tic field under vacuum-driven perturbations [48]. (Note
that this was not seen in [32], where a repulsive defect
was used, see “Appendix D”)

Configuration 3e leads to a longer Hawking mous-
tache (ii) than obtained in other models for a quan-
tum fluid: about 35µm- and 105µm-long in the up-
and downstream regions, respectively. It also features
stronger correlations than obtained in previous polari-
ton analogue studies, with a maximal relative ampli-
tude of 1.5 · 10−4. In comparison, the Hawking mous-
tache is shorter and weaker in all other configurations:
we observe the influence of the regime of density of the
fluid properties (working point on the bistability loop
on either side of the horizon) on vacuum emission at the

horizon and propagation in either region thereafter. We
remark that supporting the density of the fluid in the
downstream region as in configuration (a) does not aid
emission while coming at a higher technical cost (due to
the precise matching of the pump wavenumber across
the defect). Finally, although emission occurs in all con-
figurations, as a comparison between configurations (c),
(d) and (e) shows, its strength is limited by the opening
of the gap in the dispersion upstream, which reduces the
interval {ωmin, ωmax} over which the HE occurs. This
is why the emission strength in [32] was lower than in
Fig. 3e although a similar pump profile was used.

In brief, we have established that operating such that
the fluid is as close as possible to the turning point C of
the bistability loop upstream of the horizon and letting
the fluid propagate ballistically downstream enhances
the emission and propagation of Bogoliubov excita-
tions. In that regard, operating with a flat pump profile
whose spatial extension is well controlled is better than
with a Gaussian profile.

4 Discussion

We showed how engineering the density of a quantum
fluid of polaritons can enhance the emission and propa-
gation of paired Bogoliubov excitations in a transsonic
flow. Our work sheds light on the interplay between
optical bistability and parametric amplification in flu-
ids of light. The bistable behaviour of a system can thus
be exploited to study field theoretic effects like the HE
in the laboratory. Specifically, we have found that fine
control over the fluid properties may be achieved with
a step-like pump profile.

Here we observed the generation and propagation
of paired Bogoliubov excitations of the quantum fluid
on either side of a sonic horizon when supporting the
density of the fluid at various points in the bistable
regime. Support of an inhomogeneous fluid density and
velocity may be achieved by changing the wave-number
of the pump. In an experiment, this is easily imple-
mented with high spatial resolution (limited by diffrac-
tion) thanks to spatial light modulators [49–53]. We
found that letting the fluid flow ballistically across an
attractive defect so as to form a horizon yields Hawk-
ing correlations of the order of 2 × 10−4 over more
than 100µm. Thus we obtained a strong increase of the
quantum correlations by the HE: these are a fourfold
enhancement in the strength and tenfold enhancement
in the propagation length of correlations compared with
previous results in quantum fluids of light. Further-
more, we showed how moving away from this optimal
configuration reduces the signal strength and length—
two effects directly linked to the kinematics of Bogoli-
ubov excitations in the out-of-equilibrium fluid. In this
way, our work demonstrates that the correlation traces
are a diagnostic for the influence of out-of-equilibrium
physics on mode conversion in inhomogeneous flows.
For example, in the paper [48], we have explained how
a dissipative quench of a mode bound to the horizon
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yields novel, local correlation traces between a local
and propagating modes, i.e. a quasi-normal mode of
the acoustic field.

Given the strength of the Hawking correlations
reported in this paper, these should be amenable to
experimental detection with state-of-the-art apparatus.
As such, our methods open the way to the theoretical
and experimental study of the quantum statistics of
the HE in driven-dissipative systems: for example, one
could calculate (and observe) the Hawking correlations
in reciprocal space [29], thus gaining frequency-resolved
information on them [30], which could in turn be used to
measure entanglement in the Hawking emission [19,20].

Acknowledgements We thank Michiel Wouters for dis-
cussions on dispersion in bistable fluids, Tangui Aladjidi for
help with code speed-ups as well as computer power, and
Yuhao Liu for his work early in the project.

Author contributions

MJJ conceived the project. MJ, MJJ and LG car-
ried out the numerical simulations. All authors con-
tributed to the analysis. MJJ, MJ, IC and EG wrote
the manuscript.

Funding We acknowledge financial support from the
H2020-FETFLAG-2018-2020 project “PhoQuS” (n.820392).
IC and LG acknowledges financial support from the Provin-
cia Autonoma di Trento and from the Q@TN initiative. QG
and AB are members of the Institut Universitaire de France.

Data Availability Statement This manuscript has asso-
ciated data in a data repository. [Authors’ comment: The
data obtained from the numerical simulations is available
on zenodo: https://doi.org/10.5281/zenodo.7010698.]

Declarations

Code availability The Julia code written during the cur-
rent study is available from the corresponding author on
reasonable request.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A The physical system

In this appendix we present the field theory of polari-
tons and their fundamental excitations.

Our system is a one-dimensional quantum fluid of
exciton-polaritons whose flow velocity goes from being
sub- to super-sonic, thus forming a sonic horizon where
the local flow velocity of the fluid equals the local
speed of sound. For simplicity, we may consider that
the horizon separates two spatial regions whose proper-
ties are independent of space—two homogenous regions,
although we shall eventually depart from this simplified
picture. For now, we begin with the theoretical descrip-
tion of a homogeneous quantum fluid and of the propa-
gation of quantum fluctuations of its phase and density.

In the majority of cases the interaction energy does
not match the effective detuning and the dispersion
curve is thus modified. Furthermore, writing the den-
sity of the fluid as a function of the intensity of the
laser yields several solutions [43]. This degeneracy of
fluid densities is due to optical bistability [39], which, as
we will show, has tremendous influence on the emission
and propagation of excitations of the fluid, including
Bogoliubov excitations. Here we describe the influence
of the bistability on the Bogoliubov dispersion.

We begin by describing the relationship between the
density of polaritons, n, and the intensity of the pump
laser, |Fp|2 in the case where the energy of the laser is
above that of the lower polaritons, Δp > γ

√
3/2: we

square Eq. (7) and find

(
(gn − Δp)2 +

γ2

4

)
n = |Fp|2 (A1)

or, equivalently,

((
m∗c2

B

�
− Δp

)2

+
γ2

4

)
m∗c2

B

g�
= |Fp|2. (A2)

The physics at play may be investigated equivalently
in terms of the relationship between the speed of exci-
tations cB and the strength of the pump, as shown in
Fig. 4. At first, cB increases slowly with |Fp| (arrow
(1)), until |Fp| = F1 where it increases abruptly (arrow
(2)). For |Fp| > F1, cB increases slowly again. If
the pump’s strength is decreased from |Fp| ≥ F1, cB

decreases slowly until |Fp| = F2 (arrow (3)), where it
falls abruptly (arrow (4)). Since F1 > F2, the cB to
|Fp| relationship presents a hysteresis cycle with two
regimes of speed of sound: the low density regime when
|Fp| < F1 and cB is low, and the high density regime
when |Fp| > F2 and cB is high. This hysteresis cycle is
the manifestation of optical bistability [39], so we will
henceforth refer to it as the ‘bistability loop’. Note that
the dashed line in Fig. 4 is unstable and the speed of
sound will actually follow the hysteresis cycle schema-
tised by arrows (1)–(4).

Now, in order to explicitly show the dependence of
the Bogoliubov dispersion on the density of the fluid
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Fig. 4 Bistability loop for an homogeneous polaritonic
fluid. ωp − ω0 > 0 and kp = 0. Black, stable points; dashed,
unstable points. The system is bistable for F2 < |Fp| < F1

and follows the hysteresis cycle (1)–(4)

as well as the influence of optical bistability thereon,
we generalise Eq. (11): We diagonalise the Bogoliubov
matrix L for a homogeneous system pumped with arbi-
trary strength and obtain

ω±(k) = ±
√(

�k2

2m∗ + 2gn − Δp

)2

− (gn)2 − iγ/2.

(A3)

Eq. (13) is the Doppler shifted version of Eq. (A3). In
Fig. 5, we show the dispersion curve for 5 different fluid
densities along the bistability loop. As can be seen in
Fig. 5a and b, the shape of the dispersion does not
change much in the linear regime: the two branches of
the dispersion curve cross. When the fluid is bistable
(F1 ≤ |Fp| ≤ F2), in Fig. 5b, we observe the appear-
ance of plateaus characteristic of an unstable fluid at
the crossing points. On the other hand, the shape of the
dispersion curve changes significantly in the high den-
sity regime depending on the position along the bista-
bility loop: at high pump strength (Fig. 5e), the two
branches are split in energy by a gap that increases with
the pump strength. The sonic dispersion relation (11) is
recovered at point C (Fig. 5c), while for slightly lower
pump strength (Fig. 5d), the plateau at low k is char-
acteristic of an unstable fluid (similarly to Fig. 5d) .
Note that the dispersion curve has a linear slope at low
k (and thus a sonic interpretation) at point C only,
which is thus sometimes referred to as the ‘sonic point’
of the bistability.

As Eq. (A3) is of order four in k, the dispersion has
four complex roots. The real part of these roots is non-
zero in the low density regime (Fig. 5a, b) as well as
at points C and C ′ (Fig. 5c, d), but not at point D
(Fig. 5e).

In this appendix, we have seen that the mean-field
of a polariton system behaves as a fluid. We have
reviewed the dispersion relation of Bogoliubov excita-
tions in this fluid and seen that optical bistability of the
fluid strongly influences the properties of this dispersion
relation. These considerations may be generalised to a
fluid whose density is not homogeneous.

Appendix B Numerical method and correla-
tion function

In this appendix we present the numerical method used
to compute the correlation maps of the main text.

Our interest is in vacuum emission, that is amplifi-
cation of the quantum vacuum fluctuations at the hori-
zon (the spontaneous Hawking effect). The quantum
description of the Bogoliubov excitations relies on the
dispersion relation of the classical field, Eq. (13). In
order to encompass quantum effects, we use a quan-
tum Monte-Carlo method called the truncated Wigner
approximation (TWA). In this method, the equation
of motion is truncated so as to map it to a stochastic
partial differential equation for a classical field Ψ:

idΨ =
(

ω0 − �

2m∗
d2

dx2 + V + g(|Ψ|2 − 1/Δx) − i
γ

2

)

×Ψdt + Fpdt +
√

γ

4Δx
dW, (B4)

where dW is complex white noise. In numerical simu-
lations, sampling of the realisations obtained with (B4)
starts when the steady state is reached. One must
ensure that enough time is spent between each sam-
pling to ensure independence of the realisations. Quan-
tum observables are computed with statistical averag-
ing over the realisations obtained with the TWA: the
general rule for N arbitrary observables is [43]

〈O1...ON 〉W =
1

N !

∑

All
N−permutations

〈P (Ô1, ..., ÔN )〉, (B5)

where 〈〉W denotes the statistical averaging over the
realisations. In all figures of this paper we computed 1
million realisations.

Emission at the horizon by the HE is best detected
via nonlocal correlations in the fluid density [21]. These
may be quantified via the normalised spatial correlation
function

g(2)(x, x′) =
G(2)(x, x′)

G(1)(x)G(1)(x′)
. (B6)

G(2)(x, x′) is the diagonal two-points correlation func-
tion of the field, which is calculated from (B5) and nor-
mally ordered using Bose statistics

G
(2)(x, x

′) = 〈Ψ̂†(x)Ψ̂†(x′)Ψ̂(x′)Ψ̂(x)〉

= 〈Ψ∗(x)Ψ∗(x′)Ψ(x′)Ψ(x)〉W − 1

2Δx
(1 + δx,x′)

×
(

〈Ψ∗(x)Ψ(x)〉W + 〈Ψ∗(x′)Ψ(x′)〉W − 1

2Δx

)
,

(B7)

while the diagonal one-point correlation function is

G(1)(x) = 〈Ψ̂†(x)Ψ̂(x)〉 = 〈Ψ∗(x)Ψ(x)〉W − 1

2Δx
. (B8)
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Fig. 5 Bogoliubov dispersion for various fluid densities. Top row: Eq. (A3) is plotted in the fluid frame. a and b regime of
low density; c unstable fluid; d, sonic dispersion; e regime of high density. Bottom, f bistability curve for a homogeneous
fluid. A low density; B low density and bistable; C’ unstable; C sonic point; D high density and bistable

(a) (b)

Fig. 6 Emission with a repulsive defect. a Flow profile. b Correlated emission

Appendix C Constraints on the calculations

All configurations in Fig. 3 have been realised with the
cavity parameters of [34]. When exploring all possible
configurations of fluid density on either side of the hori-
zon, some constraints must be abode by. We present
them in this appendix.

The first constraint is on the upstream pump wavevec-
tor kp,u for a fluid near the sonic point. The fluid is at

the sonic point for

cu =

√
ωp − ω0 − �k2

p,u/2m∗

m∗ , (C9)

together with the upstream condition vu < cu, this
yields an upper bound for the upstream fluid flow veloc-
ity and thus for the wavevector of the pump:

ωp − ω0 >
3
2
m∗v2

u. (C10)
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For the value of detuning used throughout this paper
the upper bound is around kp,u = 0.28µm−1. In most
simulations, we used kp,u = 0.25µm−1 in order to be
close to the bound while leaving a small interval for
easier simulations.

Exploring all regimes of density in the downstream
region comes with some constraints as well: For instance,
placing the fluid in the upper part of the bistable regime
as in configurations 3b is easier for a large bistable inter-
val F1 − F2. The turning point in configuration 4f is
obtained at

cd =

√
ωp − ω0 − �k2

p,d/2m∗

2m∗ . (C11)

and the width of the interval is then given by

ΔIbistable = |Fp,max|2 − |Fp,min|2

=

⎛

⎝4
9

(

ωp − ω0 − �k2
p,d

2m∗

)2

− 1
2
γ2

⎞

⎠

×ωp − ω0 − �k2
p,d/2m∗

3g
. (C12)

A bistable regime exists only if ωp − ω0 > �k2
p,d/2m∗ +

γ
√

3/2, hence an upper bound on kp,d.
Furthermore, the speed of excitations right after the

defect, cd is fixed by the upstream parameters and
the strength of the defect, Vdef . Pumping in the upper
branch of the bistability requires

cd >

√
ωp − ω0 − �k2

p,d/2m∗

m∗ . (C13)

This critical point needs to be below cd for the fluid
density to be on the upper branch. (Note that it would
also be possible to change the value of cd, which can
be achieved for a weaker defect potential—energy con-
servation before and just after the defect links Vdef and
cd). The choice of different kp,d in the simulations of
Fig. 3 is a consequence of all these constraints.

Appendix D Repulsive defect

Here we consider the configuration of Fig. 3e but with
a repulsive defect (Vext = 0.85 meV) instead.

This configuration is comparable to that of ref [32]
but with a pumping scheme such that the fluid density
is supported as close to point C of the bistability as pos-
sible. In Fig. 6, we observe that, although stronger and
longer than in [32], correlated emission by the Hawk-
ing effect is weaker than in Fig. 3e. So the attractive
potential of the defect aids correlated emission. Further-
more, the horizontal/vertical traces signalling correla-
tions with the horizon region (vacuum quantum excita-
tion of a QNM of the acoustic field [48]) are absent.
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8. J.R. Muñoz de Nova, K. Golubkov, V.I. Kolobov, J.
Steinhauer, Observation of thermal Hawking radiation
and its temperature in an analogue black hole. Nature
569(7758), 688–691 (2019). https://doi.org/10.1038/
s41586-019-1241-0

9. D. Campo, R. Parentani, Inflationary spectra and vio-
lations of Bell inequalities. Phys. Rev. D 74(2), 025001
(2006). https://doi.org/10.1103/PhysRevD.74.025001

10. S. Giovanazzi, Entanglement entropy and mutual infor-
mation production rates in acoustic black holes. Phys.
Rev. Lett. 106(1), 011302 (2011). https://doi.org/10.
1103/PhysRevLett.106.011302

11. X. Busch, R. Parentani, Quantum entanglement in ana-
logue hawking radiation: when is the final state nonsep-
arable? Phys. Rev. D 89, 105024 (2014). https://doi.
org/10.1103/PhysRevD.89.105024

12. S. Finazzi, I. Carusotto, Entangled phonons in atomic
Bose-Einstein condensates. Phys. Rev. A 90, 033607
(2014). https://doi.org/10.1103/PhysRevA.90.033607
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