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Abstract Although the fundamental equations of ordinary
thermodynamic systems are known to correspond to first-
degree homogeneous functions, in the case of non-ordinary
systems like black holes the corresponding fundamental
equations are not homogeneous. We present several argu-
ments, indicating that black holes should be described by
means of quasi-homogeneous functions of degree different
from one. In particular, we show that imposing the first-
degree condition leads to contradictory results in thermo-
dynamics and geometrothermodynamics of black holes. As
a consequence, we show that in generalized gravity theories
the coupling constants like the cosmological constant, the
Born–Infeld parameter or the Gauss–Bonnet constant must
be considered as thermodynamic variables.

1 Introduction

An important property of thermodynamic laboratory systems
is that their fundamental equations are given in terms of
homogeneous functions of first degree. Recall that a fun-
damental equation is a function that relates an extensive
thermodynamic potential (entropy or energy) with the exten-
sive thermodynamic variables necessary to describe the sys-
tem. Then, the homogeneity condition is a consequence of
the fact that extensive variables are additive [1]. General-
izations of the extensivity property have been also consid-
ered in the literature and concepts like sub-extensive and
supra-extensive variables have been introduced to correctly
describe the behavior of certain thermodynamic systems.
Recently in [2], we proposed to classify thermodynamic sys-
tems into ordinary and non-ordinary by using an exact math-
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ematical concept, namely, the concept of homogeneous and
generalized homogeneous functions.

Let � denote a fundamental thermodynamic potential [3]
which could be either the entropy or the internal energy. Let
{Ea} (a = 1, . . . , n) denote the set of extensive variables
that are necessary to describe a thermodynamic system with
n degrees of freedom. Then, a system described by the fun-
damental equation �(Ea) is called ordinary if � is a homo-
geneous function

�(λEa) = λβ�(Ea), (1)

where λ is a real constant and β > 0 is the degree of homo-
geneity. In general, ordinary systems are characterized by the
value β = 1. If � is a generalized homogeneous function,
i.e., [4]

�(λβ1 E1, . . . , λβn En) = λβ��(E1, . . . , En), (2)

where βa = (β1, . . . , βn) are real constants, and β� is the
degree of homogeneity, the system is called non-ordinary. In
the literature, generalized homogeneous functions are also
known as quasi-homogeneous functions; in fact, the idea of
considering quasi-homogenous thermodynamics in several
contexts, including black hole physics and geometric repre-
sentations of thermodynamics, has been analyzed previously
by Belgiorno and Cacciatore in a series of publications [5–
7]. Accordingly, non-ordinary and quasi-homogeneous are
terms that can be used indistinctly to refer to thermodynamic
systems that are not described by homogeneous functions of
first degree.

As pointed out in [5–7], black holes and other non-
ordinary systems should be considered as quasi-homogeneous
systems for different reasons and, in fact, it is a consequence
of the well known non-extensivity property of certain ther-
modynamic systems. In particular, quasi-homogeneity is
important to correctly describe the behavior of non-ordinary
systems near the critical points [5]. In a different context, by
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investigating the thermodynamics of AdS black holes [8], it
has been long suggested [9,10] that the cosmological con-
stant can be considered as a thermodynamic variable. It turns
out that in this case the cosmological constant can naturally
be thought of as a pressure and the mass of the black hole as
the enthalpy of the spacetime. By following this idea, it has
been recently established that AdS black holes can be inves-
tigated from the point of view of chemistry and that there
exists an intriguing physical analogy between van der Waals
fluids and black holes [11]. This is a remarkable result that
deserves further investigation and will certainly contribute to
the understanding of the physical properties of black holes.
It is therefore important to find out why the cosmological
constant can be assumed to be an additional thermodynamic
variable for black holes. In this work, we will see that this
assumption is not only possible, but also necessary in order
for black holes to be quasi-homogeneous systems. Although
black hole thermodynamics is perfectly well defined without
cosmological constant, the recently proposed extended ther-
modynamics with cosmological constant reveals new physi-
cal aspects of black holes, hitherto unseen.

On the other hand, differential geometric methods have
been applied during the past few decades in classical ther-
modynamics to investigate the stability and the critical points
of thermodynamic systems [12–15]. The main goal of these
studies consists in finding connections between the thermo-
dynamic properties of the system and the geometric proper-
ties of the corresponding equilibrium space. The approach
of thermodynamic geometry consists in introducing a com-
pletely fixed Riemannian metric into the space of equilib-
rium states of a given system. In this case, the components
of the metric are associated with the second moment of the
fluctuations of a particular thermodynamic potential [14]. A
second approach consists in demanding that the metric of
the equilibrium space be invariant with respect to Legendre
transformations, i.e., with respect to the choice of thermo-
dynamic potential. This approach is known as geometrother-
modynamics (GTD) [15]. In this case, the metric of the equi-
librium space is derived by using Legendre invariance and
turns out to contain certain degree of arbitrariness. We will
see below that this arbitrariness becomes completely fixed
as a consequence of imposing the quasi-homogeneity condi-
tion.

Thus, in this work, we will explore the consequences of
demanding quasi-homogeneity for black holes in two differ-
ent contexts. First, we will see how the quasi-homogeneity
condition fixes the thermodynamic metric which is used in
GTD to describe black holes and, moreover, that GTD is able
to detect the non-correct use of this condition. Second, we
explore black hole thermodynamics from the point of view of
quasi-homogeneity and show that it dictates the thermody-
namic properties of the parameters that enter the fundamental
equation of black holes. If quasi-homogeneity is not handled

correctly, it turns out that the thermodynamic properties of a
black hole configuration can change drastically.

This work is organized as follows. In Sect. 2, we review
the main physical consequences of imposing homogeneity
in ordinary thermodynamic systems. In Sect. 3, we explore
thermodynamic quasi-homogeneity in the context of GTD,
and show that systems with intrinsic thermodynamic inter-
action can lead to contradictory results for the corresponding
equilibrium space, when the quasi-homogeneity condition is
not implemented properly. In Sect. 4, we analyze the funda-
mental thermodynamic equation of black hole configurations
in several gravity theories, and show that the physical param-
eters, such as the coupling constants, that enter the action in
a field theoretical approach must be considered as thermody-
namic variables as a consequence of the quasi-homogeneity
condition. Moreover, we show the thermodynamic inconsis-
tencies that can arise when the quasi-homogeneity condition
is not applied appropriately. Finally, in Sect. 5, we review
our results, and propose some tasks for future investigations.

2 Homogeneity of ordinary systems

Given a thermodynamic system through its fundamental
equation � = �(Ea), one defines the corresponding inten-
sive variables as

Ia = ∂�

∂Ea
, (3)

so that the first law of thermodynamics is simply

d� = IadE
a . (4)

These relations are valid in general for homogeneous and
quasi-homogeneous systems, and are well-defined if the fun-
damental potential � is differentiable, a condition which is
usually assumed in classical thermodynamics.

Ordinary or homogeneous thermodynamic systems can
be characterized by the degree of homogeneity β, which is
determined through the condition (1). This condition is also
known in the thermodynamic literature as the static scaling
hypothesis [16]. In the case of ordinary laboratory systems
with β = 1, the intensive variables Ia are homogeneous
functions of degree zero, i.e., Ia(λEa) = Ia(Ea), a prop-
erty which is in accordance with our intuitive idea of inten-
sive quantities since they do not depend on the size of the
system [1]. Ordinary laboratory systems have also the prop-
erty that their fundamental potentials can be inverted. Indeed,
the homogeneity, continuity, differentiability and monotonic
property of the entropy S imply that it can be inverted with
respect to the energy U which is, in turn, a homogeneous
function of first degree [1]. For concreteness, let us consider
as a particular example the simple case of an ideal gas with
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a fixed number of particles N , whose fundamental equation
is given by [1]

S(U, V, N ) = kB N

(
ln

V

N
+ 3

2
ln

U

N

)
, (5)

where kB is the Boltzmann constant and V is the volume
of the gas. This is a first-degree homogeneous function, i.e,
S(λU, λV, λN ) = λS(U, V, N ) which can be inverted with
respect to U and yields

U (S, V, N ) = Ne
2S

3kB N

(
V

N

)−2/3

, (6)

with U (λS, λU, λN ) = λU (S, V, N ). We see that in this
case a change of representation preserves the homogeneity
property.

In the case of Legendre potentials, i.e., thermodynamic
potentials that are obtained from the fundamental potentials
by means of Legendre transformations, the situation is com-
pletely different. Consider, for instance, the Legendre poten-
tials of the ideal gas

F(T, V, N ) = U − T S = 3

2
kB NT

×
{

1 − ln

[
3

2
kB T

(
V

N

)2/3
]}

, (7)

H(S, P, N ) = U + PV = 9N P2

4
e
− 2S

3kB N

− 8N

27P2 e
2S

kB N , (8)

G(T, P, N ) = U − T S + PV = 3

2
NkB T

×
[

1 − ln

(
3P2

2kB T

)]
− 4N

9kB T
, (9)

which can all be written explicitly in terms of the correspond-
ing variables. None of these potentials can be considered as a
homogeneous function. However, if we rescale the extensive
variables only, we obtain F(T, λV, λN ) = λF(T, V, N ) and
similar relations for the remaining potentials. This implies
that Legendre potentials preserve the homogeneity property
only at the level of the extensive variables. Intense variables
do not rescale as a consequence of their zero degree of homo-
geneity.

For a general value of β �= 1, the situation is completely
different. First, the intensive variables are not represented by
homogeneous functions of zero degree. Instead, their degree
can be set as β − 1 so that it is positive for supra-extensive
variables and negative for sub-extensive parameters. Also, a
fundamental potential cannot be inverted in general, implying
that a particular representation must be chosen to perform the
physical investigation of the system properties. Moreover,

the constant β enters explicitly the Euler and Gibbs-Duhem
identities (summation over repeated indices) [2],

Ia E
a = β� , (1 − β)IadE

a + Ead Ia = 0, (10)

respectively, which relate extensive and intensive variables.
This implies that homogeneous systems with β �= 1 will
behave differently from a thermodynamic point of view.

In the case of quasi-homogeneous systems, defined
through the condition (2), the situation is similar. The funda-
mental potentials cannot be inverted in general and the Euler
and Gibbs-Duhem identities become [2]

βab I
a Eb=β�� , (βab−β�δab)I

adEb+βabE
bd I a =0,

(11)

with Ia = δab I b and

δab = diag(1, . . . , 1) , βab = diag(β1, . . . , βn). (12)

The diagonal matrix βab contains all the information about
the quasi-homogeneity of the extensive variables. The cor-
responding intensive variables are in general not given as
homogeneous functions of zero degree, implying that, in
fact, they may depend on the size of the system. It is, there-
fore, necessary to handle them with care, always taking into
account their non-trivial degree of quasi-homogeneity.

3 Quasi-homogeneity in geometrothermodynamics

To describe thermodynamics from a geometric point of view,
essentially two different methods have been used so far. The
approach of thermodynamic geometry assumes that the equi-
librium space E is geometrically described by a Hessian met-
ric

gH = �,abdE
adEb = ∂2�

∂Ea∂Eb
dEadEb, (13)

where � = �(Ea) (a = 1, . . . , n) represents the fundamen-
tal equation of the thermodynamic system under considera-
tion. In the energy representation � = U , the correspond-
ing metric is known as the Weinhold metric [13] whereas if
the thermodynamic potential is chosen as minus the entropy
� = −S, the Ruppeiner metric is obtained [14]. In general,
however, it is possible to use as potential for the Hessian met-
ric any thermodynamic potential that can be obtained from
U or S by means of a Legendre transformation [17].

The second approach of GTD is based upon the use of
Legendre invariance, i.e., the property that classical thermo-
dynamics does not depend on the choice of thermodynamic
potential [15]. To consider Legendre invariance as an invari-
ance with respect to coordinate transformations, it is neces-
sary to introduce the auxiliary phase space T , in which all
the thermodynamic variables {�, Ea, I a} are considered as
independent coordinates. Then, the space T is endowed with
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a Legendre invariant Riemannian metric G and a canoni-
cal contact 1-form � = d� − IadEa . Whereas the contact
1-form is uniquely defined modulo a conformal function,
there are three classes of Legendre invariant metrics [18,19],
namely,

G
I/I I = (d� − IadE

a)2 + (ξabE
a I b)(χcddE

cd I d), (14)

which are invariant under total Legendre transformations.
Here ξab and χab are diagonal constant (n×n)-matrices. For
χab = δab = diag(1, . . . , 1), the resulting metric G

I
can be

used to investigate systems with at least one first-order phase
transition. Alternatively, for χab = ηab = diag(−1, . . . , 1),
we obtain the metric G

I I
which has been used to describe

systems with second-order phase transitions. The third class

G
I I I = (d� − IadE

a)2 + (Ea Ia)
2k+1 dEad I a , k ∈ Z,

(15)

is invariant with respect to partial Legendre transformations
and is used to describe ordinary systems.

In GTD, the equilibrium space E , with the set of coordi-
nates {Ea}, is considered as a subspace of the phase space
T and is defined by the embedding map ϕ : E → T with
ϕ : {Ea} �→ {�(Ea), Ea, I a(Ea)} and ϕ∗(�) = 0. Then,
any metric G in T induces a metric g in E by means of the
pullback g = ϕ∗(G). This means that in GTD there can be
also three different classes of metrics g

I
, g

I I
and g

I I I
for the

equilibrium space.
Quasi-homogeneity plays now an important role in the

determination of the final form of g
I

and g
I I

. Indeed, black
hole configurations, which according to our previous descrip-
tion are a particular case of quasi-homogeneous systems, are
also characterized by certain dependence on the statistical
ensemble chosen for their description [20], indicating that
they cannot be completely independent of the choice of ther-
modynamic potential. This implies that quasi-homogeneous
systems can be invariant only with respect to total Legendre
transformations and, consequently, they can be described by
the metrics g

I
and g

I I
, only. This is in accordance with our

previous results obtained in GTD in which we use only the
metric g

I I
to describe black hole systems with second-order

phase transitions. Moreover, by using the Euler-identity for
quasi-homogeneous systems in the derivation of the metrics
of E , we obtain [2]

g
I/I I =β��ξ c

a �bcdE
adEb=β��ξ c

a
∂2�

∂Eb∂Ec
dEadEb,

(16)

where ξ c
a = δ c

a = diag(1, . . . , 1) for g
I

and ξ c
a = η c

a =
diag(−1, 1, . . . , 1) for g

I I
. We then conclude that quasi-

homogeneous systems must be described in GTD by a par-
ticular set of metrics which is invariant with respect to total

Legendre transformations. Notice that the multiplicative con-
stant β� in front of the metrics g

I/I I
corresponds exactly to

the arbitrary constant that remains free in the analysis of
quasi-homogeneous fundamental equations. This means that
in GTD this arbitrariness leads to a simple conformal factor
which does not affect the geometric properties of the equi-
librium space.

We now illustrate in a particular example the importance
of correctly handling the homogeneity properties of the fun-
damental equations. Consider the Reissner–Nordström black
hole in any dimension. Their corresponding line element is
given as in Eq. (50) with [21] (from now on, we will use
geometric units with G = c = h̄ = kB = 1)

f (r) = 1− 16πM

(d − 2)ω(d−2)

1

rd−3 + 8π

(d − 2)(d − 3)

Q2

r2(d−3)
,

(17)

where ω(d−2) = 2π
d−1

2 /�
( d−1

2

)
. The outer event horizon

is, therefore, given by

2(d − 2)

ω(d−2)

r+(d−3) = M + M

√
1 − d − 2

2(d − 3)

Q2

M2 . (18)

On the other hand, the entropy in d dimensions can be com-
puted by using the formula [21,22],

S =
[

2(d − 2)

ω(d−2)

] (d−2)
(d−3)

r+(d−2). (19)

Then, from Eqs. (18) and (19) we obtain explicitly the entropy
function

S(M, Q) =
⎛
⎝M + M

√
1 − d − 2

2(d − 3)

Q2

M2

⎞
⎠

d−2
d−3

, (20)

which represents the fundamental thermodynamic equation
of the Reissner–Nordström black hole in d dimensions. It
is easy to see that it corresponds to a non-ordinary system
because the degree of homogeneity is d−2

d−3 . In this particular
case, the fundamental equation can be inverted, yielding in
the mass representation the equation

M(S, Q) = 1

2
S

d−3
d−2 + d − 2

4(d − 3)

Q2

S
d−3
d−2

, (21)

which satisfies the first law [23]

dM = TdS + φdQ, (22)

where T is the temperature and φ the electric potential. From
the fundamental equation and the first law it is, therefore, pos-
sible to derive the complete set of thermodynamic variables
of the system. Analogously, in GTD all the geometric infor-
mation about the equilibrium space can be obtained from the
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Fig. 1 The curvature scalar RRN as a function of the entropy S with
Q = 10 and d = 5

fundamental equation. Indeed, the metric g
I I

with � = M
and Ea = {S, Q} leads to

g
I I = βMM

(
−∂2M

∂S2 dS2 + ∂2M

∂Q2 dQ
2
)

, (23)

which for the fundamental equation (21) can be expressed as

g
RN = βM

M

2(d − 3)(d − 2)

{
(d − 3)

S2

[
S

2(d−3)
(d−2)

+ (2d − 5)

2
Q2
]
dS2 + (d − 2)2dQ2

}
. (24)

A straightforward computation shows that the corresponding
scalar curvature is

RRN =− 8(d − 2)(d − 3)2S
2(d−3)
(d−2)

βMM

[
2(d − 3)S

2(d−3)
(d−2) −(2d2 − 9d + 10)Q2

]2 .

(25)

The non-zero curvature indicates that this system is charac-
terized by the presence of a non-trivial thermodynamic inter-
action. Moreover, second-order phase transitions are deter-
mined by the curvature singularities (RRN → ∞), which

are present at those points where 2(d − 3)S
2(d−3)
(d−2) − (2d2 −

9d + 10)Q2 = 0. This condition has non-trivial solutions as
illustrated in a particular case in Fig. 1.

According to the results presented in Sect. 4, the degree
of homogeneity remains free and, in principle, can be fixed
arbitrarily. In [23], it was suggested that in the case of black
holes it can be fixed to 1. This would imply that for a certain

choice of thermodynamic variables, black holes can be con-
sidered as ordinary systems. We will see now that in GTD
this assumption can lead to contradictory results. In fact, the
Reissner–Nordström fundamental equation (21) in the new
variables

m = M
d−2
d−3 , q = Q

d−2
d−3 , (26)

reduces to

m(S, q) =
[

1

2
S

d−3
d−2 + 2 − d

2(d − 3)

q
2(d−3)
d−2

S
d−3
d−2

] d−2
d−3

, (27)

which is a homogenous function of degree 1. In this case,
according to Eq. (16), the metric g

I I
for � = m and Ea =

{S, q} reduces to

g
I I = βmm

(
−∂2m

∂S2 dS
2 + ∂2m

∂q2 dq
2
)

. (28)

Using the Reissner–Nordström fundamental equation (27) in
the new variables, we obtain

gRN = βmF(S, q)

(
dS2

S2 − dq2

q2

)
, (29)

with

F(S, q) =
m2q

2d
d−2 S

6
d−2

[
S

2(d−3)
(d−2) (d2 − 7d + 12) − q

2(d−3)
(d−2) (d2 − 4d + 4)

]

S
2(d−3)
(d−2) (d − 3) − q

2(d−3)
(d−2) (d − 2)

.

(30)

The computation of the thermodynamic curvature of this met-
ric shows that it vanishes identically. According to GTD, this
means that this system has no intrinsic thermodynamic inter-
action, which contradicts the result obtained above with the
original variables M and Q. We conclude that in GTD it is
not allowed to perform a transformation of variables at the
level of the fundamental equation with the aim of describ-
ing a black hole configuration by means of a homogeneous
function of first degree. GTD detects such transformations by
changing the geometric properties of the equilibrium space.

4 Quasi-homogeneity in black hole thermodynamics

Ordinary systems are characterized by entropies that depend
on the volume of the system. This is not the case of black
holes. Indeed, 4D black hole thermodynamics is based upon
the Bekenstein-Hawking relation S = A/4 that relates the
entropy of the black hole S with its horizon area A. This
is the first fact that indicates a non-standard thermodynamic
behavior in black holes. The horizon area, in turn, is a geo-
metric quantity that can be calculated by using the metric
of the corresponding spacetime and depends on the physical
parameters of the black hole. In the case of the Einstein-
Maxwell theory, the most general black hole is described by
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the Kerr-Newman spacetime which contains only three inde-
pendent parameters, namely, the mass M , angular momen-
tum J and electric charge Q. A straightforward computation
of the horizon area leads to the fundamental equation [23]

S(M, J, Q) = π
(

2M2 − Q2 + 2
√
M4 − J 2 − M2Q2

)
,

(31)

that according to the postulates of black hole thermodynam-
ics should satisfy the first law

dS = 1

T
dM − �

T
dQ − �

T
d J, (32)

where T , � and � are the corresponding intensive variables,
which are interpreted as the temperature, electric potential
and angular velocity at the horizon, respectively. Then, we
obtain

T = 1

2MS

√
M4 − J 2 − M2Q2, (33)

� = πQ

MS

(
M2 +

√
M4 − J 2 − M2Q2

)
, (34)

� = π J

MS
. (35)

The rescaling M → λβM M , J → λβJ J and Q → λβQ Q
shows that if the conditions

βM = 1

2
βS, βJ = βS, βQ = 1

2
βS, (36)

are satisfied, the function (31) is quasi-homogeneous of
degree βS , i.e., S(λβS/2M, λβS J, λβS/2Q)=λβS S(M, J, Q).
Moreover, it is then easy to show that the only intensive vari-
able with zero degree of quasi-homogeneity is �, whereas
T and � are of degree −βS/2. In particular, the Hawking
temperature T will not behave as the temperature of an ordi-
nary system. Since the constant βS remains arbitrary, one
is tempted to fix it by introducing new thermodynamic vari-
ables. In fact, this is possible because the degree of any quasi-
homogeneous function can always be set equal to one by
choosing the variables appropriately [4]. For instance, the
change of variables

S → s2 , J → j2, M → m, Q → q, (37)

transforms the fundamental equation (31) into

s(m, j, q)=π1/2
(

2m2−q2 + 2
√
m4 − j4−m2q2

)1/2

,

(38)

which is a first-degree function. If this equation were to
describe a thermodynamic system, it must satisfy in particu-
lar the first law of thermodynamics

ds = 1

t
dm − ψ

t
dq − ω

t
d j, (39)

from which we obtain the corresponding intensive variables

t = = 1

ms

√
m4 − j4 − m2q2 , (40)

ψ = πq

ms2

(
m2 +

√
m4 − j4 − m2q2

)
, (41)

ω = 2π j3

ms2 . (42)

All these quantities have zero degree of homogeneity and
as such can be considered as genuine intensive variables.
Some minor differences appear in the behavior of these inten-
sive variables as functions of the extensive variables when
compared with the intensive variables T , � and � that fol-
low from the quasi-homogeneous fundamental equation (31).
This is illustrated in Fig. 1.

However, if we consider the corresponding heat capacities

C
KN

Q,J
= T

(
∂T

∂S

)
Q,J

= 4M3S2T

M4 + J 2 − 4M3ST
, (43)

cq, j = t

(
∂t

∂s

)
q, j

= 1

π

m3s4t

q2(m4 − j4) + 4m2 j4 + mst (m2q2 + 2 j4)
,

(44)

major differences appear. In Fig. 2, we illustrate the behav-
ior of these capacities as functions of the entropies. We see
that the differences are crucial. The quasi-homogeneous heat
capacity C shows clearly a second-order phase transition
which is lacking in the analysis of the capacity c. This shows
that a change of thermodynamic variables in order to get a
first degree homogeneous functions can drastically change
the thermodynamic properties of the system (Fig. 3).

This simple example shows the importance of correctly
handling the homogeneous or quasi-homogeneous character
of fundamental equations. In the next subsections, we will
present several examples that illustrate the way we propose
to handle quasi-homogeneous systems.

4.1 Einstein–Maxwell gravity with cosmological constant

In the Einstein–Maxwell theory with cosmological constant
�, which follows from the action

S = 1

16π

∫
d4x

√−g
(
R − FμνF

μν − 2�
)
, (45)

the most general solution representing a black hole configu-
ration is known as the Kerr–Newman-AdS solution [24]. It
contains four independent parameters, namely, the mass m,
specific angular momentum a = j/m, electric charge q and
cosmological constant �. Since these parameters are usually
defined for asymptotically flat metrics, in the case of asymp-
totically AdS spacetimes the problem appears that several
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Fig. 2 Behavior of the intensive quasi-homogeneous (T , �, �) and homogeneized (t , ω, φ) as functions of the quasi-homogeneous entropy S and
the homogeneized entropy s for the particular values J = j = 5 and Q = q = 10

123



229 Page 8 of 11 Eur. Phys. J. C (2019) 79 :229

Fig. 3 Heat capacity C (left) and heat capacity c (right) as functions of the entropy S and entropy s, respectively, with J = j = 5 and Q = q = 10

definitions are possible. In particular, the physical angular
velocity can be defined as the difference between the angular
velocity at infinity and on the horizon [8]. In the context of
the formalism of isolated horizons [25,26], it is also possi-
ble to address this problem and it has been shown that the
intrinsic physical parameters in this case are given by [27]

M = m

�2 , J = am

�2 , Q = q

�
, � = 1 + �

3

J 2

M2 . (46)

These parameters are related to the physical entropy S by
means of the Smarr formula

M2 = J 2
(

−�

3
+ π

S

)
+ S3

4π3

(
−�

3
+ π

S
+ π2Q2

S2

)2

,

(47)

which is equivalent to the fundamental thermodynamic equa-
tion, relating the total mass (energy) M of the black hole with
the extensive variables S, Q, and J . It is easy to see that this
equation cannot be inverted; this is one of the first signals
indicating that it corresponds to a non-ordinary system.

Performing the rescaling of the extensive variables M →
λβM M , S → λβS S, J → λβJ J , Q → λβQ Q, it is easy to
see that the function (47) does not satisfy either the homo-
geneity nor the quasi-homogeneity condition. However, if we
consider the cosmological constant � as a thermodynamic
variable which rescales as � → λβ��, the fundamental

equation (47) turns out to be a quasi-homogeneous function
if the conditions

βJ = βS, β� = −βS, βQ = 1

2
βS, βM = 1

2
βS (48)

are fulfilled. This means that the degree of the function is
defined modulo the coefficient βS .

Although the cosmological constant is originally not inter-
preted as a thermodynamic variable, we see that if the Kerr-
Newman-AdS black hole is to be considered as a quasi-
homogeneous system, then the requirement appears that the
cosmological constant must be a thermodynamic variable.
Although the coefficient βS remains arbitrary, one can con-
sider it as positive to take into account the sub or supra exten-
sive character of the entropy of the entropy. It then follows
that � should be interpreted as an intensive variable. In fact,
by using a completely different approach, it was shown that
� can be interpreted as the pressure of the system [9–11].

4.2 Einstein–Born–Infeld gravity

Consider the Einstein–Born–Infeld action in 3 + 1 dimen-
sions, which is given by the expression [28]

S =
∫

L
√−gd4x, L = 1

16π
(R − 2�)

+ b2

4π

(
1 −

√
1 + 2F

b2

)
. (49)
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Here, F is the electromagnetic invariant defined as F =
1
4 FμνFμν , and b is known as the Born-Infeld parameter,
which in string theory is related to the string tension α′ as
b = 1

2πα′ .
A particular spherically symmetric solution of the corre-

sponding field equations is described by the line element

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
(d−2), (50)

where d�2
(d−2) the line element on the (d−2) – dimensional

unit sphere (d = 4 in this case) and

f (r) = 1 − 2M

r
− �

3
r2 + 2b2r2

3

×
(

1 −
√

1 + Q2

b2r4

)
+ 4Q2

3r2 F1. (51)

Here F1 represents the hypergeometric function

F1 = F
(

1

4
,

1

2
,

5

4
,−Q2π2

b2S2

)
, (52)

M is the ADM mass and Q the electric charge. The horizons
of this 3 + 1 dimensional black hole are determined by the
roots of the lapse function f (r). In terms of the outer horizon
radius r+ and the electric charge Q, the black hole mass is
given by [28,29]

M(r+, Q) = r+
2

− �

6
r3+ + b2r3+

3

×
(

1 −
√

1 + Q2

b2r4+

)
+ 2Q2

3r+
F1. (53)

In four dimensions, the fundamental equation that relates
the entropy of the black hole with the horizon area leads to
S = πr2+ for spherically symmetric black holes. Then, the
mass of the black hole becomes

M(S, Q) = 1

2
S1/2 + S3/2

×
⎡
⎣−�

6
+ b2

3

⎛
⎝1 −

√
1 + Q2

b2S2

⎞
⎠
⎤
⎦+ 2Q2

3
√
S
F1, (54)

where for the sake of simplicity we have normalized the
entropy as S → π S. This relation represents the fundamen-
tal equation for the Born–Infeld-AdS black hole presented
above.

We now analyze the rescaling properties of the fundamen-
tal equation (54). Since the only independent variables are
S and Q, we perform the transformation S → λβS S and
Q → λβQ Q. Then, the resulting function does not satisfy
the quasi-homogeneous condition. However, if we also per-
form the transformations b → λβbb and � → λβ�� , then
the fundamental equation (54) becomes quasi-homogeneous
M → λβM M under the conditions

βQ = 1

2
βS, β� =−βS, βb=−1

2
βS, βM = 1

2
βS .

(55)

All the coefficients of quasi-homogeneity are determined in
terms of the degree βS , which remains arbitrary as a conse-
quence of the definition of the quasi-homogeneous functions.
The above results show that imposing the quasi-homogeneity
condition for this black hole implies that the cosmological
constant and the Born–Infeld parameter as well must be con-
sidered as thermodynamic variables.

4.3 Einstein–Maxwell–Gauss–Bonnet gravity

The particular case of the Einstein–Maxwell–Gauss–Bonnet
(EMGB) gravity in 4 + 1 dimensions can be obtained by
adding the Gauss–Bonnet invariant and a matter Lagrangian
to the Einstein–Hilbert action, i.e.,

S = κ

∫
d5x

√−g[R + α(R2 − 4RμνRμν

+Rαβγ δRαβγ δ) − 2� + FαβF
αβ ], (56)

where κ is related to the Newton constant, and α is the Gauss-
Bonnet coupling constant.

A five dimensional spherically symmetric solution of this
theory can be explicitly written by using the line element (50)
with d = 5 and the metric function [30,31]

f (r) = 1 + r2

4α
− r2

4α

√
1 + 8αM

r4 − 8αQ2

3r6 + 4α�

3
. (57)

The two parameters M and Q are identified as the mass and
electric charge of the system. The above solution describes
an asymptotically anti-de-Sitter black hole only if the expres-
sion inside the square root is positive and the function
f (rH ) = 0 on the horizon radius, i. e.,

1 + 8αM

r4
H

− 8αQ2

3r6
H

+ 4α�

3

> 0,
�

3
r6
H − 2r4

H + 2 (M − 2α) r2
H − 2

3
Q2 = 0. (58)

By choosing the units appropriately, the Bekenstein-Hawking
entropy in five dimensions can be written as S = r3

H . Then,
assuming the validity of the Bekenstein-Hawking formula
in this case, the corresponding thermodynamic fundamental
equation in the mass representation becomes

M = 2α + S2/3 + Q2

3S2/3 − �

6
S4/3. (59)

Notice that to guarantee the positiveness of the mass in gen-
eral, we must choose α > and � < 0.

Following the procedure described above, it can be shown
that the fundamental equation (59) turns out to be a quasi-
homogeneous function only if we transform all the variables
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as S → λβS S, Q → λβQ Q, α → λβαα, and � → λβ��.
Moreover, the following relationships between the coeffi-
cients must be fulfilled

βQ = βM = βα = 2

3
βS, β� = −2

3
βS . (60)

In this case, the cosmological constant and the Gauss–Bonnet
constant α turn out to be thermodynamic variables in order to
preserve the quasi-homogeneity properties of the black hole
configuration.

It should be mentioned that here we assumed the valid-
ity of the Bekenstein–Hawking entropy formula in EMGB
gravity. However, it is known that in higher dimensional the-
ories the Wald entropy formula should be applied, which does
not necessarily coincides with the Bekenstein–Hawking for-
mula. In fact, this is the case of EMGB gravity for which it
was found that [32]

SW = SBH

(
1 + 12α

r2
H

)
. (61)

We can now solve this cubic algebraic equation, express the
radius rH in terms of SW and replace the resulting expression
in Eq. (58) to obtain the corresponding fundamental equation.
The resulting equation cannot be written in a compact form
due to the presence of the cubic root. However, it can be
shown that it is also a quasi-homogeneous function by virtue
of the algebraic conditions (60). In fact, from the above analy-
sis and Eq. (61), it follows that if SBH is quasi-homogeneous,
then SW is also a quasi-homogeneous function of the same
degree. This proves that the above EMGB black hole is a
quasi-homogeneous thermodynamic system with respect to
both the Bekenstein–Hawking and the Wald entropy.

5 Conclusions

In this work, we argue that black holes are thermodynamic
systems described by fundamental equations that should cor-
respond to quasi-homogeneous functions. This means that
the concept of extensivity and intensivity of black hole ther-
modynamic variables is not as clear and concrete as in the
case of ordinary systems, which are described by homoge-
neous fundamental equations. Essentially, the origin of the
quasi-homogeneity of black holes is already contained in the
Hawking–Bekenstein entropy, which is proportional to the
area and not to the volume, as in the case of ordinary sys-
tems.

From the condition of quasi-homogeneity of black holes,
we derive the important property that coupling constants
of gravity theories must be considered as thermodynamic
variables. We prove this for the cosmological constant, the
Born–Infeld parameter and the Gauss–Bonnet constant. The
cosmological constant can indeed be interpreted as the cou-

pling constant between the gravitational field and the mat-
ter described by the vacuum energy. In turn, the Born–
Infeld parameter and the Gauss–Bonnet constant are cou-
pling constants between gravity and, respectively, the non-
linear electromagnetic field and the effective field repre-
sented by the topological term. In fact, the cosmological con-
stant has been interpreted previously as a thermodynamic
variable with properties consistent with an effective “pres-
sure” [11]. In this context, it would be interesting to investi-
gate the interpretation of the Born-Infeld parameter and the
Gauss–Bonnet constant in the framework of black hole ther-
modynamics. Finally, since the explicit application of the
quasi-homogeneity condition is quite simple, we can conjec-
ture that our results hold for all the coupling constants of any
generalization of Einstein gravity.

Since the degree and the coefficients of quasi-homogeneity
are defined up to a multiplicative constant factor, one is
tempted to use this freedom to fix the degree to 1, by trans-
forming the thermodynamic variables appropriately. We have
shown that this procedure can lead to contradictory results.
In black hole thermodynamics, the phase transition structure
can be modified by the transformation of variables. The free
parameter that appears in the degree of quasi-homogeneity
turns out to correspond to a multiplicative constant of the
metric used in GTD to describe black holes so that it does
not affect the geometric properties of the equilibrium space.
However, GTD is very sensitive to the transformations of
variables at the level of the fundamental equation, which can
completely modify the thermodynamic curvature of the sys-
tem under consideration.

According to our results, quasi-homogeneity is a property
of non-ordinary systems which must be handled correctly
in order to avoid unphysical and contradictory results. It also
leads to a deep modification of the way we interpret coupling
constants in gravity theories. It would be interesting to further
explore the physical consequences of these modifications.
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